
1/10

An Introduction to
Maxeler

Sasa Stojanovic
stojsasa@etf.rs

Veljko Milutinovic
vm@etf.rs

mailto:stojsasa@etf.rs

2/10

Essence of the Maxeler Approach!

Compiling below the machine code level brings speedups;
also a smaller power, volume, and cost.

The price to pay:
The machine is more difficult to program.

Consequently:
Ideal for WORN applications :)

Examples:
GeoPhysisc, banking, dataminig in social networks, ...

3/10

Examples of Maxeler Applications!

4/10

Examples of Maxeler Applications!

5/10

Examples of Maxeler Applications!

6/10

One has to know
how to program Maxeler machines,
in order to get the best possible speedup out of them!

For some applications (G),
there is a large difference between
what an experienced programmer achieves,
and what an un-experienced one can achieve!

For some other applications (B),
no matter how experienced the programmer is,
the speedup will not be revolutionary
(may be even <1).

How-to? What-to?
Introduction

7/10

The Essential Figure:
Introduction

Assumptions:
 1. Software includes enough parallelism to keep all cores busy
 2. The only limiting factor is the number of cores.

tGPU =
N * NOPS * CGPU*TclkGPU /
NcoresGPU

tCPU =
N * NOPS * CCPU*TclkCPU
/NcoresCPU

tDF = NOPS * CDF * TclkDF +
 (N – 1) * TclkDF / NDF

8/10

When is Maxeler better?
if the number of operations in a single loop iteration
 is above some critical value
then
 more data items means more advantage for Maxeler.

In other words:
More data does not mean better performance
if the #operations/iteration is below a critical value.

Conclusion:
If we see an application with a small #operations/iteration,
 then
 it is possibly (not always) a “what-not-to” application,
 and we better execute it on the host;
else
 we will (or may) have a slowdown.

Bottomline:
Introduction

ADDITIVE SPEEDUP ENABLER

ADDITIVE SPEEDUP MAKER

9/10

Maxeler: One new result in each cycle
 e.g. Clock = 100MHz
 Period = 10ns
 One result every 10ns
[No matter how many operations in each loop iteration]

Consequently: More operations does not mean proportionally more time;
however, more operations means higher latency till the first result.

CPU: One new result after each iteration
 e.g. Clock=10GHz (!?)
 Period = 100ps
 One result every 100ps times #ops
[If #ops > 100 => Maxeler is better, although it uses a slower clock]

Also: The CPU example will feature an additional slowdown,
due to memory hierarchy access and pipeline related hazards
 =>
critical #ops (bringing the same performance) is significantly below 100!!!

To have it more concrete:
Introduction

10/10

An Introduction to Maxeler

Q&A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

