

www.maxeler.com

1 Down Place Hammersmith London UK 530 Lytton Ave. Palo Alto CA USA

Deployed Maximum Performance Computing

customers comparing 1 box from Maxeler (in a deployed system) with 1 box from Intel

Customer 1
App1 19x and App2 25x

Customer 2 1.2GB/s per card

Customer 3 App1 22x, App2 22x

Customer 4
App 32x and App2 29x

Customer 5 30x

Customer 6 App1 26x and App2 30x

What Maxeler do

- Maxeler delivers bespoke dataflow HPC solutions
 => An HPC Computing Appliance for "structured Big Data"
- Building the HPC compute fabric based on the application in a multi-disciplinary, data-centric approach

- Building 1U boxes, Workstations and the cards inside.
- Building custom large memory systems to deal with Big Data
- Integrating rack system with networking and storage.
- Integrated environment brings bespoke dataflow computing to high end HPC users
- Dataflow programming in Java and Eclipse IDE
- HPC System Performance Architecture
- Algorithms and Numerical Optimization
- Integration into business and technical processes

Dataflow Computing

What is Dataflow Computing?

Technology

MAXELER DATAFLOW COMPUTING

One result per clock cycle

Dynamic (switching) Power Consumption:

$$P_{avg} = C_{load} \cdot V_{DD}^{2} \cdot f$$

Minimal frequency f achieves maximal performance, thus for a given power budget, we get Maximum Performance Computing (MPC)!

Explaining Control Flow versus Data Flow

Analogy 1: The Ford Production Line

- Experts are expensive and slow (control flow)
- Many specialized workers are more efficient (data flow)

Maxeler Hardware Solutions

CPUs plus DFEs

Intel Xeon CPU cores and up to 6 DFEs with 288GB of RAM

DFEs shared over Infiniband

Up to 8 DFEs with 384GB of RAM and dynamic allocation of DFFs to CPU servers

Low latency connectivity

Intel Xeon CPUs and 1-2 DFEs with up to six 10Gbit Ethernet connections

MaxWorkstation

Desktop development system

MaxCloud

On-demand scalable accelerated compute resource, hosted in London

Maxeler Application Components

Programming with MaxCompiler

Cluster-level management

- Deploying Maximum Performance Computing requires considering cluster resource allocation and scheduling
- Maxeler create custom job-management systems to manage clusters
- MaxQ Cluster Management System
 - Job Distribution
 - Designed to manage thousands of CPU cores and terabytes of memory
 - Dynamically reallocates resources during execution
 - Logging of running processes
 - Remotely Attach to running processes

Example Accelerated Applications

Seismic Imaging

Running on MaxNode servers

- 8 parallel compute pipelines per chip
- 150MHz => low power consumption!
- 30x faster than microprocessors

An Implementation of the Acoustic Wave Equation on FPGAs

T. Nemeth[†], J. Stefani[†], W. Liu[†], R. Dimond[‡], O. Pell[‡], R.Ergas[§]

[†]Chevron, [‡]Maxeler, [§]Formerly Chevron, SEG 2008

JP Morgan Credit Derivatives Pricing

O. Mencer and S. Weston, 2010

- Compute value of complex financial derivatives (CDOs)
- Typically run overnight, but beneficial to compute in real-time
- Many independent jobs
- Speedup: 220-270x
- Power consumption per node drops from 250W to 235W/node

3000³ Modeling

8 Full Intel Racks ~100kWatts => Single 3U Maxeler System <1kWatt

CRS Results

- Performance of one MAX2 card vs. 1 CPU core
 - Land case (8 params), speedup of 230x
 - Marine case (6 params), speedup of 190x

Sparse Matrix Solving with Maxeler

O. Lindtjorn et al, HotChips 2010

Given matrix **A**, vector b, find vector x in $\mathbf{A}x = b$.

DOES NOT SCALE BEYOND 6 x86 CPU CORES

MAXELER SOLUTION: 20-40x in 1U

Domain Specific Address and Data Encoding (*Patent Pending)

Schlumberger

