
	
  	
  

Multiscale Dataflow Computing 
The Vertical Perspective 



Richard Feynman on Computation 
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In	
  theory,	
  a	
  computer	
  system	
  	
  
can	
  be	
  constructed	
  which	
  uses	
  no	
  energy.	
  
	
  
Energy	
  is	
  only	
  needed	
  when	
  informa*on	
  is	
  lost.	
  
	
  
Reordering	
  of	
  informa*on	
  does	
  not	
  require	
  energy	
  	
  
from	
  a	
  pure	
  physics	
  perspec<ve.	
  
	
  
Of	
  course,	
  moving	
  informa*on	
  takes	
  Energy…	
  
	
  



The Next Generation 
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Multiscale dataflow computing 

   Definiton: “Multiscale”  
         Problems which have important features at multiple scales  

Mul*ple	
  scales	
  of	
  compu*ng	
   Important	
  features	
  for	
  op*miza*on	
  

complete	
  system	
  level	
   ⇒ balance	
  compute,	
  storage	
  and	
  IO	
  

parallel	
  node	
  level	
   ⇒ maximize	
  u<liza<on	
  of	
  compute	
  and	
  
interconnect	
  

microarchitecture	
  level	
   ⇒ minimize	
  data	
  movement	
  	
  

arithme<c	
  level	
   ⇒ tradeoff	
  range,	
  precision	
  and	
  accuracy	
  
=	
  discre<ze	
  in	
  <me,	
  space	
  and	
  value	
  

bit	
  level	
   ⇒ encode	
  and	
  add	
  redundancy	
  
transistor	
  level	
   =>	
  create	
  the	
  illusion	
  of	
  ‘0’	
  and	
  ‘1’	
  



Assembly-line Computing 
 

One result  
per clock cycle 

Dynamic (switching) Power: 
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fVCP DDloadavg ⋅⋅= 2

Static ultradeep (>1000 stage) computing pipelines 



Assembly-line Computing 
 

One result  
per clock cycle 

Static ultradeep (>1000 stage) computing pipelines 

Dynamic (switching) Power: 
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fVCP DDloadavg ⋅⋅= 2

Maximum Performance Computing: 
Generate the maximal number of results per clock cycle 
=> Maximum performance per Watt, and per cubic foot. 



What is the most efficient way to move lot’s 
of stuff? 

Courtesy of Bob Clapp, Stanford Geophysics 



Kolmogorov Complexity (K) 

Definition (Kolmogorov):  
“If a description of string s, d(s), is of minimal length, […]  
it is called a minimal description of s. Then the length of d(s), 
[…] is the Kolmogorov complexity of s, written K(s), where 
K(s) = |d(s)|” 
 

Of course K(s) depends heavily on the Language L used to 
describe actions in K.  
(e.g. Java, Esperanto, an Executable file, etc) 
 

for Application-specific computing, really, 
we want to find the optimal language L, so that… 
 
 Kolmogorov, A.N. (1965). "Three Approaches to the Quantitative Definition of Information". Problems Inform. Transmission 1 (1): 1–7. 

 



Remembering Fast and Slow 

John	
  von	
  Neumann,	
  1946:	
  	
  
	
  
“We	
  are	
  forced	
  to	
  recognize	
  the	
  
possibility	
  of	
  construc<ng	
  a	
  hierarchy	
  of	
  
memories,	
  each	
  of	
  which	
  has	
  greater	
  
capacity	
  than	
  the	
  preceding,	
  but	
  which	
  
is	
  less	
  quickly	
  accessible.”	
  



Thinking Fast and Slow 

Daniel	
  Kahneman	
  	
  
Nobel	
  Prize	
  in	
  Economics,	
  2002	
  

	
  
17	
  ×	
  24	
  =	
  ?	
  
	
  

Kahneman	
  splits	
  thinking	
  into:	
  
System	
  1:	
  fast,	
  hard	
  to	
  control	
  ...	
  400	
  
System	
  2:	
  slow,	
  easier	
  to	
  control	
  ...	
  408	
  



Putting it all together on the arithmetic level 
	
  
	
  
	
  	
  

Computing log(x) in the range [a,b] with Error < x 
    Table                 Table+Polynomial                      Polynomial 

	
  and	
  +,×	
   +,×	
  

Tradeoff: number of coefficients, number of bits per coefficient, 
range versus precision of result and  
maximal versus average error of result  

Dong-­‐U	
  Lee,	
  Altaf	
  Abdul	
  Gaffar,	
  Oskar	
  Mencer,	
  Wayne	
  Luk	
  
Op<mizing	
  Hardware	
  Func<on	
  Evalua<on	
  
IEEE	
  Transac<ons	
  on	
  Computers.	
  vol.	
  54,	
  no.	
  12,	
  pp.	
  1520-­‐1531.	
  Dec,	
  2005.	
  



optimize microarchitecture with finite resources 

SYSTEM	
  1	
  
x86	
  cores	
  

SYSTEM	
  2	
  
flexible	
  memory	
  

plus	
  logic	
  

Low	
  Latency	
  
Memory	
  
System	
  

High	
  Throughput	
  
Memory	
  

minimize data movement 

Op<mal	
  
Encoding	
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A Heterogeneous Computing System 

MaxRing  
Interconnect 

Control (CPU) Dataflow Engine (DFE) 

Manage coarse-grain  
‘if’ statements 

PCI Express or  
Infiniband or 
Ethernet 
 



Maxeler Dataflow Engines (DFEs) 

High	
  Density	
  DFEs	
  
Intel	
  Xeon	
  CPU	
  cores	
  and	
  up	
  to	
  6	
  

DFEs	
  with	
  288GB	
  of	
  RAM	
  

The	
  Dataflow	
  Appliance	
  
Dense	
  compute	
  with	
  8	
  DFEs,	
  
384GB	
  of	
  RAM	
  and	
  dynamic	
  

alloca<on	
  of	
  DFEs	
  to	
  CPU	
  servers	
  
with	
  zero-­‐copy	
  RDMA	
  access	
  

The	
  Low	
  Latency	
  Appliance	
  
Intel	
  Xeon	
  CPUs	
  and	
  1-­‐2	
  DFEs	
  with	
  
direct	
  links	
  to	
  up	
  to	
  six	
  10Gbit	
  

Ethernet	
  connec<ons	
  

MaxWorksta*on	
  
Desktop	
  	
  
dataflow	
  
development	
  system	
  

Dataflow	
  Engines	
  
48GB	
  DDR3,	
  high-­‐speed	
  
connec<vity	
  and	
  dense	
  
configurable	
  logic	
  

MaxRack	
  
10,	
  20	
  or	
  40	
  node	
  rack	
  systems	
  integra<ng	
  
compute,	
  networking	
  &	
  storage	
  

MaxCloud	
  
Hosted,	
  on-­‐demand,	
  scalable	
  accelerated	
  	
  
compute	
  



 
 
 
for (int i =L; i < DATA_SIZE-L; i++) 
    y[i]= c0*x[i-1] + c1*x[i] + 
           c2 * x[i+1] + 
           c3 * x[i-L] + c4 * x[i+L] 

PCI 
 
 

Express 

Manager 

Chip 

Memory 

Manager (.java) 
Manager m = new 
Manager(“Calc”); 
Kernel k =  
     new MyKernel(); 
m.setKernel(k); 
m.setIO( 
    link(“x", PCIE), 
 
m.addMode(modeDefault()); 
m.build(); 

 
 
 
 
 
 
 
    link(“y", PCIE)); 

#include “MaxSLiCInterface.h” 
#include “Calc.max” 
 
 
 
Calc(x, y, DATA_SIZE) 

Main 
Memory 

CPU 
CPU 
Code  

CPU Code (.c) 

2D convolution with MaxCompiler 

SLiC 
MaxelerOS 

DFEvar x = io.input("x", hwInt(32)); 
 
DFEvar result = c0*FIFO(x,1) + 
                          c1*x +  
                          c2*FIFO(x,-1) + 
                          c3*FIFO(x,L) + 
                          c4*FIFO(x,-L); 
 
io.output("y", result, hwInt(32)); 

MyKernel (.java) 
 
 
int *x, *y; 

y	
  x	
  

c0 c2 c1 

c4 

c3 

c0 c2 c1 

c4 

c3 



Example:	
  
data	
  flow	
  graph	
  	
  
generated	
  by	
  	
  
MaxCompiler	
  	
  

4866	
  	
  
sta<c	
  dataflow	
  cores	
  

in	
  1	
  chip	
  



Star	
  versus	
  Cube	
  Stencil	
  

More	
  Computa*on	
  in	
  Less	
  Time?	
  

Local	
  temporal	
  parallelism	
  
⇒ cascade	
  in	
  space	
  
⇒ twice	
  as	
  many	
  *mesteps	
  

19	
  MADDs	
   27	
  MADDs	
  

Local	
  Buffer	
  =	
  6	
  slices	
   Local	
  Buffer	
  =	
  3	
  slices	
  



	
  
•  Moving	
  overnight	
  run	
  to	
  

real-­‐<me	
  intra-­‐day	
  
	
  
•  Compute	
  the	
  probability	
  

of	
  default	
  and	
  associated	
  
price	
  and	
  risk.	
  

•  Power	
  consump<on	
  per	
  
node	
  drops	
  from	
  250W	
  to	
  
235W	
  per	
  node,	
  
with	
  22x	
  less	
  nodes.	
  

JP Morgan Credit Derivatives Pricing 
American	
  Finance	
  Technology	
  Award	
  for	
  Most	
  CuUng	
  Edge	
  Technology	
  Winner,	
  Dec	
  2011	
  



1200m	
  

1200m	
  

1200m	
  
1200m	
  

1200m	
  

Generates	
  	
  >1GB	
  every	
  10s	
  

The Subsea Imaging Problem 

Image Courtesy of Schlumberger 
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3D Finite Difference 
2 MaxNodes equiv. to 1,900 Intel CPU cores 

Compared	
  to	
  32	
  3GHz	
  x86	
  cores	
  parallelized	
  using	
  MPI	
  

FD modeling beyond 70Hz with FPGA acceleration, D. Oriato, O. Pell, C. Andreoletti and N. 
Bienati. Maxeler Technologies, Eni E&P Division, SEG 2010 HPC Workshop, Denver, Oct 2010. 



Running with SEG Salt Model 
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ü  Running	
  on	
  MPC-C servers 
- 8 parallel compute pipelines per chip 
- 150MHz => low power consumption! 
- 30x advantage over same size CPU-only implementation 

	
  Beyond Traditional Microprocessors for Geoscience High-Performance Computing Applications 
O. Lindtjorn, R. G. Clapp, O. Pell, O. Mencer, M. J. Flynn and H. Fu,. Stanford, Schlumberger,  
Maxeler, Tsinghua University, IEEE Micro, vol. 31, no. 2, March/April 2011. 
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Smith Waterman Algorithm 



Compute Appliance for Medical Use 

•  Add dense compute directly to BioMedical device 
•  Remove the need for a large HPC datacenter 

A	
  compute	
  appliance	
  eliminates	
  	
  
the	
  need	
  for	
  unscalable	
  datacenter	
  
solu<ons	
  requiring	
  expensive	
  high-­‐speed	
  
networking,	
  large	
  HPC	
  infrastructure,	
  
large	
  HPC	
  infrastructure	
  opera<ons	
  teams,	
  
and	
  immense	
  power	
  consump<on.	
  	
  
-­‐  A	
  dataflow	
  compute	
  appliance	
  makes	
  solu<ons	
  	
  
more	
  portable,	
  scalable,	
  and	
  moves	
  computa<ons	
  
from	
  batch	
  jobs	
  to	
  real	
  <me.	
  



MAX-UP: Astro Chemistry 
 

CPU 
DFE 



Note: Comparison is made between a single core CPU without using any of extensions available in today’s modern 
processors and a single dataflow implementation on the oldest and smallest MAX 2 Maxeler card. Using modern CPUs 
equiped with several cores, each one with extensions for parallel processing of data, and modern Maxeler card with higher 
capacity, bandwidth to memory and host, and working frequency, will result in decreased execution times in both cases, but it 
is expected that the speedup will not change significantly. 

 
Execution time for two iterations: 
CPU execution time:           50s   
Dataflow execution time:    4.9s 

 
Achieved speedup: 10.2x 

 
Programmer: 

Sasha Stojanovic 
stojsasa@etf.bg.ac.rs 

 
Advisor: 

Veljko Milutinovic 
vm@etf.bg.ac.rs 

 

MAX-UP: Acceleration of an algorithm based on  
the Gross Pitaevskii equation. 



Localization microscopy enhances the resolution of fluorescence light 
microscopy (shown in green) by about an order of magnitude. Single 

fluorescent molecules act as switchable markers. Their detected signals 
can be fitted with a two-dimensional Gaussian distribution and thus 

located with sub-pixel resolution. Using MaxCompiler we achieved an 
acceleration of 225 in signal detection and fitting. 



Brain network analysis 
Dynamic community analysis on corpus callosum to identify 
functional regions. By accelerating the linear correlation 
calculation, Maxeler dataflow engines can build brain networks 
on-the-fly while the lab experiment is running. 



Maxeler University Program Members 


