
	
 	

Multiscale Dataflow Computing
The Vertical Perspective

Richard Feynman on Computation

2	

In	
 theory,	
 a	
 computer	
 system	
 	

can	
 be	
 constructed	
 which	
 uses	
 no	
 energy.	

	

Energy	
 is	
 only	
 needed	
 when	
 informa*on	
 is	
 lost.	

	

Reordering	
 of	
 informa*on	
 does	
 not	
 require	
 energy	
 	

from	
 a	
 pure	
 physics	
 perspec<ve.	

	

Of	
 course,	
 moving	
 informa*on	
 takes	
 Energy…	

	

The Next Generation

3	

Jack	
 Dennis	

Sta*c	
 Dataflow	

Arvind	

Dynamic	
 Dataflow	

Tommaso	
 Tofoli	

Tofoli	
 Gate	

Norman	
 Margolus	

Cellular	
 Automata	

Machine	
 CAM-­‐8	

Ed	
 Fredkin	

Fredkin	
 Gate	

	

Reversible	
 Compu*ng	

H.T.	
 Kung	
 S.Y.	
 Kung	

Systolic	
 Arrays	

Mar<n	
 Morf	
 Reconfigurable	
 	

Compu*ng	

Jean	
 Vuillemin	

Programmable	
 Ac<ve	
 	

Memories	

Wayne	
 	

Luk	
 Mike	
 Flynn	

SIMD,	
 SISD	

MIMD,	
 MISD	
 Dan	
 Slotnick	

ILLIAC	
 IV	

SOLOMON	

Multiscale dataflow computing

 Definiton: “Multiscale”
 Problems which have important features at multiple scales

Mul*ple	
 scales	
 of	
 compu*ng	
 Important	
 features	
 for	
 op*miza*on	

complete	
 system	
 level	
 ⇒ balance	
 compute,	
 storage	
 and	
 IO	

parallel	
 node	
 level	
 ⇒ maximize	
 u<liza<on	
 of	
 compute	
 and	

interconnect	

microarchitecture	
 level	
 ⇒ minimize	
 data	
 movement	
 	

arithme<c	
 level	
 ⇒ tradeoff	
 range,	
 precision	
 and	
 accuracy	

=	
 discre<ze	
 in	
 <me,	
 space	
 and	
 value	

bit	
 level	
 ⇒ encode	
 and	
 add	
 redundancy	

transistor	
 level	
 =>	
 create	
 the	
 illusion	
 of	
 ‘0’	
 and	
 ‘1’	

Assembly-line Computing

One result
per clock cycle

Dynamic (switching) Power:
	

	

5	

fVCP DDloadavg ⋅⋅= 2

Static ultradeep (>1000 stage) computing pipelines

Assembly-line Computing

One result
per clock cycle

Static ultradeep (>1000 stage) computing pipelines

Dynamic (switching) Power:
	

	

6	

fVCP DDloadavg ⋅⋅= 2

Maximum Performance Computing:
Generate the maximal number of results per clock cycle
=> Maximum performance per Watt, and per cubic foot.

What is the most efficient way to move lot’s
of stuff?

Courtesy of Bob Clapp, Stanford Geophysics

Kolmogorov Complexity (K)

Definition (Kolmogorov):
“If a description of string s, d(s), is of minimal length, […]
it is called a minimal description of s. Then the length of d(s),
[…] is the Kolmogorov complexity of s, written K(s), where
K(s) = |d(s)|”

Of course K(s) depends heavily on the Language L used to
describe actions in K.
(e.g. Java, Esperanto, an Executable file, etc)

for Application-specific computing, really,
we want to find the optimal language L, so that…

 Kolmogorov, A.N. (1965). "Three Approaches to the Quantitative Definition of Information". Problems Inform. Transmission 1 (1): 1–7.

Remembering Fast and Slow

John	
 von	
 Neumann,	
 1946:	
 	

	

“We	
 are	
 forced	
 to	
 recognize	
 the	

possibility	
 of	
 construc<ng	
 a	
 hierarchy	
 of	

memories,	
 each	
 of	
 which	
 has	
 greater	

capacity	
 than	
 the	
 preceding,	
 but	
 which	

is	
 less	
 quickly	
 accessible.”	

Thinking Fast and Slow

Daniel	
 Kahneman	
 	

Nobel	
 Prize	
 in	
 Economics,	
 2002	

	

17	
 ×	
 24	
 =	
 ?	

	

Kahneman	
 splits	
 thinking	
 into:	

System	
 1:	
 fast,	
 hard	
 to	
 control	
 ...	
 400	

System	
 2:	
 slow,	
 easier	
 to	
 control	
 ...	
 408	

Putting it all together on the arithmetic level
	

	

	
 	

Computing log(x) in the range [a,b] with Error < x
 Table Table+Polynomial Polynomial

	
 and	
 +,×	
 +,×	

Tradeoff: number of coefficients, number of bits per coefficient,
range versus precision of result and
maximal versus average error of result

Dong-­‐U	
 Lee,	
 Altaf	
 Abdul	
 Gaffar,	
 Oskar	
 Mencer,	
 Wayne	
 Luk	

Op<mizing	
 Hardware	
 Func<on	
 Evalua<on	

IEEE	
 Transac<ons	
 on	
 Computers.	
 vol.	
 54,	
 no.	
 12,	
 pp.	
 1520-­‐1531.	
 Dec,	
 2005.	

optimize microarchitecture with finite resources

SYSTEM	
 1	

x86	
 cores	

SYSTEM	
 2	

flexible	
 memory	

plus	
 logic	

Low	
 Latency	

Memory	

System	

High	
 Throughput	

Memory	

minimize data movement

Op<mal	

Encoding	

13	

A Heterogeneous Computing System

MaxRing
Interconnect

Control (CPU) Dataflow Engine (DFE)

Manage coarse-grain
‘if’ statements

PCI Express or
Infiniband or
Ethernet

Maxeler Dataflow Engines (DFEs)

High	
 Density	
 DFEs	

Intel	
 Xeon	
 CPU	
 cores	
 and	
 up	
 to	
 6	

DFEs	
 with	
 288GB	
 of	
 RAM	

The	
 Dataflow	
 Appliance	

Dense	
 compute	
 with	
 8	
 DFEs,	

384GB	
 of	
 RAM	
 and	
 dynamic	

alloca<on	
 of	
 DFEs	
 to	
 CPU	
 servers	

with	
 zero-­‐copy	
 RDMA	
 access	

The	
 Low	
 Latency	
 Appliance	

Intel	
 Xeon	
 CPUs	
 and	
 1-­‐2	
 DFEs	
 with	

direct	
 links	
 to	
 up	
 to	
 six	
 10Gbit	

Ethernet	
 connec<ons	

MaxWorksta*on	

Desktop	
 	

dataflow	

development	
 system	

Dataflow	
 Engines	

48GB	
 DDR3,	
 high-­‐speed	

connec<vity	
 and	
 dense	

configurable	
 logic	

MaxRack	

10,	
 20	
 or	
 40	
 node	
 rack	
 systems	
 integra<ng	

compute,	
 networking	
 &	
 storage	

MaxCloud	

Hosted,	
 on-­‐demand,	
 scalable	
 accelerated	
 	

compute	

for (int i =L; i < DATA_SIZE-L; i++)
 y[i]= c0*x[i-1] + c1*x[i] +
 c2 * x[i+1] +
 c3 * x[i-L] + c4 * x[i+L]

PCI

Express

Manager

Chip

Memory

Manager (.java)
Manager m = new
Manager(“Calc”);
Kernel k =
 new MyKernel();
m.setKernel(k);
m.setIO(
 link(“x", PCIE),

m.addMode(modeDefault());
m.build();

 link(“y", PCIE));

#include “MaxSLiCInterface.h”
#include “Calc.max”

Calc(x, y, DATA_SIZE)

Main
Memory

CPU
CPU
Code

CPU Code (.c)

2D convolution with MaxCompiler

SLiC
MaxelerOS

DFEvar x = io.input("x", hwInt(32));

DFEvar result = c0*FIFO(x,1) +
 c1*x +
 c2*FIFO(x,-1) +
 c3*FIFO(x,L) +
 c4*FIFO(x,-L);

io.output("y", result, hwInt(32));

MyKernel (.java)

int *x, *y;

y	
 x	

c0 c2 c1

c4

c3

c0 c2 c1

c4

c3

Example:	

data	
 flow	
 graph	
 	

generated	
 by	
 	

MaxCompiler	
 	

4866	
 	

sta<c	
 dataflow	
 cores	

in	
 1	
 chip	

Star	
 versus	
 Cube	
 Stencil	

More	
 Computa*on	
 in	
 Less	
 Time?	

Local	
 temporal	
 parallelism	

⇒ cascade	
 in	
 space	

⇒ twice	
 as	
 many	
 *mesteps	

19	
 MADDs	
 27	
 MADDs	

Local	
 Buffer	
 =	
 6	
 slices	
 Local	
 Buffer	
 =	
 3	
 slices	

	

•  Moving	
 overnight	
 run	
 to	

real-­‐<me	
 intra-­‐day	

	

•  Compute	
 the	
 probability	

of	
 default	
 and	
 associated	

price	
 and	
 risk.	

•  Power	
 consump<on	
 per	

node	
 drops	
 from	
 250W	
 to	

235W	
 per	
 node,	

with	
 22x	
 less	
 nodes.	

JP Morgan Credit Derivatives Pricing
American	
 Finance	
 Technology	
 Award	
 for	
 Most	
 CuUng	
 Edge	
 Technology	
 Winner,	
 Dec	
 2011	

1200m	

1200m	

1200m	

1200m	

1200m	

Generates	
 	
 >1GB	
 every	
 10s	

The Subsea Imaging Problem

Image Courtesy of Schlumberger

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

1 4 8

Eq
ui
va
le
nt
	
 C
PU

	
 c
or
es

Number	
 of	
 MAX2	
 cards

15Hz	
 peak	
 frequency

30Hz	
 peak	
 frequency

45Hz	
 peak	
 frequency

70Hz	
 peak	
 frequency

3D Finite Difference
2 MaxNodes equiv. to 1,900 Intel CPU cores

Compared	
 to	
 32	
 3GHz	
 x86	
 cores	
 parallelized	
 using	
 MPI	

FD modeling beyond 70Hz with FPGA acceleration, D. Oriato, O. Pell, C. Andreoletti and N.
Bienati. Maxeler Technologies, Eni E&P Division, SEG 2010 HPC Workshop, Denver, Oct 2010.

Running with SEG Salt Model

21	

ü  Running	
 on	
 MPC-C servers
- 8 parallel compute pipelines per chip
- 150MHz => low power consumption!
- 30x advantage over same size CPU-only implementation

	
 Beyond Traditional Microprocessors for Geoscience High-Performance Computing Applications
O. Lindtjorn, R. G. Clapp, O. Pell, O. Mencer, M. J. Flynn and H. Fu,. Stanford, Schlumberger,
Maxeler, Tsinghua University, IEEE Micro, vol. 31, no. 2, March/April 2011.

22	

Smith Waterman Algorithm

Compute Appliance for Medical Use

•  Add dense compute directly to BioMedical device
•  Remove the need for a large HPC datacenter

A	
 compute	
 appliance	
 eliminates	
 	

the	
 need	
 for	
 unscalable	
 datacenter	

solu<ons	
 requiring	
 expensive	
 high-­‐speed	

networking,	
 large	
 HPC	
 infrastructure,	

large	
 HPC	
 infrastructure	
 opera<ons	
 teams,	

and	
 immense	
 power	
 consump<on.	
 	

-­‐  A	
 dataflow	
 compute	
 appliance	
 makes	
 solu<ons	
 	

more	
 portable,	
 scalable,	
 and	
 moves	
 computa<ons	

from	
 batch	
 jobs	
 to	
 real	
 <me.	

MAX-UP: Astro Chemistry

CPU
DFE

Note: Comparison is made between a single core CPU without using any of extensions available in today’s modern
processors and a single dataflow implementation on the oldest and smallest MAX 2 Maxeler card. Using modern CPUs
equiped with several cores, each one with extensions for parallel processing of data, and modern Maxeler card with higher
capacity, bandwidth to memory and host, and working frequency, will result in decreased execution times in both cases, but it
is expected that the speedup will not change significantly.

Execution time for two iterations:
CPU execution time: 50s
Dataflow execution time: 4.9s

Achieved speedup: 10.2x

Programmer:

Sasha Stojanovic
stojsasa@etf.bg.ac.rs

Advisor:

Veljko Milutinovic
vm@etf.bg.ac.rs

MAX-UP: Acceleration of an algorithm based on
the Gross Pitaevskii equation.

Localization microscopy enhances the resolution of fluorescence light
microscopy (shown in green) by about an order of magnitude. Single

fluorescent molecules act as switchable markers. Their detected signals
can be fitted with a two-dimensional Gaussian distribution and thus

located with sub-pixel resolution. Using MaxCompiler we achieved an
acceleration of 225 in signal detection and fitting.

Brain network analysis
Dynamic community analysis on corpus callosum to identify
functional regions. By accelerating the linear correlation
calculation, Maxeler dataflow engines can build brain networks
on-the-fly while the lab experiment is running.

Maxeler University Program Members

