
2 1092-3063/00/$10.00 © 2000 IEEE IEEE Concurrency

Caching in Distributed Systems

Caching
Cache memory is a small but fast mem-

ory meant to hold data for reuse in the near
future. Maurice V. Wilkes introduced the
concept to fulfill the speed gap between
the CPU and main memory.1 He envi-
sioned that cache memory would bridge
that gap by using the principles of spatial
and temporal locality.

Recent advances in computer systems
engineering have pushed cache memory
to higher levels in the computer systems
hierarchy. On each new level, the imple-
mentation details differ (to reflect the con-
crete requirements of the particular sys-
tem level), but the essence stays the same
(to reflect the chosen methods for using
the principles of spatial and temporal local-
ity). So, the principles of spatial and tem-
poral locality help the concept survive and
spread into the newly opened layers of the
emerging computer system hierarchies.

The seven layers of caching

A careful analysis on various system lev-
els in current systems reveals seven layers
of caching:

1. CPU (in uniprocessor systems),
2. SMP (in shared memory multi-

processor systems),
3. DSM (in distributed shared memory

systems),
4. DFM (in distributed file management

and smart disk systems),

5. DPC (in distributed proxy cache
systems),

6. WWW (on the World Wide Web
level), and

7. IAI (on the Internet application and
integration level).

In principle, this number could be higher
(if a higher granularity of system analysis is
implied) or lower (because different
caching layers are highly correlated). We
can define the principles of spatial and
temporal locality on each layer.

CPU
The traditional definition of spatial and

temporal localities comes from the
uniprocessor environment. Spatial local-
ity implies that the next data item in the
address space is most likely to be used next,
while temporal locality implies that the last
data item used is most likely to be used
next. Implementation is typically based on
a fast but expensive memory (the price is
affordable because, by definition, cache
memory is small). Even if we use the same
technology for the main memory and
cache memory, the cache memory will be
faster because smaller memories have a
shorter access time. Recent research tries
to split the CPU cache into two subcaches:
one for spatial locality and one for tempo-
ral locality.2

SMP
On the SMP level, spatial and temporal

Guest Editor’s Introduction

M
odern computer systems, as well as the Internet, use caching

to maximize their efficiency. Nowadays, caching occurs in

many different system layers. Analysis of these layers will

lead to a deeper understand of cache performance.

Veljko Milutinovic
University of Belgrade

July–September 2000 3

locality continue to be present on the
uniprocessor level. However, on the mul-
tiprocessor level, new forms of locality
gain importance: processor locality, local-
ity of shared data, and so forth. Imple-
mentation also includes mechanisms for
maintaining data consistency, on either
the hardware or software levels. Recent
research concentrates on cache miss and
bus traffic reduction by combining con-
ventional and new approaches, such as the
prefetch and injection approaches.3

DSM
Caches on the DSM level also exist on

the CPU and SMP levels (a DSM sys-
tem often consists of clusters imple-
mented as SMP systems). Misses on the
DSM level can be extremely costly; how-
ever, the caches on the DSM level have
much more difficulty capturing locality.

DFM
On the DFM level, caches can help

implement several different applications
(media servers, file distribution, and so
forth). Spatial locality is present much
more than temporal locality. Additional
types of locality, stemming from the spe-
cific internal and external disk structure,
can also be defined and used for better
system efficiency. Recent research con-
centrates on the so-called smart disks,
using different specialized resources to
maximize performance.

DPC
The DPC level uses caching in con-

junction with protection. In addition to
spatial locality (present to a smaller extent)
and temporal locality (present to a larger
extent), we can define and use many dif-
ferent types of locality: URL, geograph-
ical (if it can be defined), user, institu-
tional, and so forth. Often, distinguishing
the specifics of the distributed proxy cache
is difficult; consequently, strategic errors
in proxy cache design are possible.

WWW
On the WWW level, caches subdi-

vide into client, server, and network
caches. The client cache’s primary goal
is to handle data reusability, which
improves the Web latency. The server
cache’s primary goal is to reduce the
server node workload, and the network
cache’s primary goal is to help clients
benefit from the earlier accesses (to the
same data) by other clients sharing the
network cache. Types of locality in the
three cache subtypes are the subject of
ongoing research. Current implementa-
tions concentrate on problems in the
domain of cache management (for exam-
ple, replacement protocols) and cache
cooperation (cooperation protocols).

IAI
On the IAI level, we try to detect

reusability and use the principles of local-
ity in the systems responsible for Web-
oriented application and integration soft-
ware. The existing types of locality
depend on the specific types of software
in use. Concrete implementations differ

greatly and mainly concentrate on the
issues of importance for cache manage-
ment and cache replacement.

THE SEVEN ARTICLES I SELECTED for
this special issue (see the “In this issue”
sidebar) represent important problems
related to the seven layers of caching I
advocate in this overview.

References
1. M.V. Wilkes, “Slave Memories and

Dynamic Storage Allocation,” Trans. IEEE,
Vol. EC-14, No. 2, Apr. 1965, pp. 270–271.

2. V, Milutinovic et al., “The Split Tempo-
ral/Spatial Cache: Initial Performance
Analysis,” Proc. SCIzzl-5, Mar. 1996, pp.
72–78.

3. V. Milutinovic, A. Milenkovic, and G. Sha-
effer, “The Cache Injection Control Archi-
tecture: Initial Performance Analysis,”
Proc. Mascots ’97: Fifth Int’l Symp. Model-
ing, Analysis, and Ssimulation of Com-
puter and Telecommunications Systems,
IEEE Computer Soc. Press, Los Alamitos,
Calif., 1997, pp. 63–64.

Veljko Milutinovic is a professor of computer
engineering at the University of Belgrade. His
research interests include computer architec-
ture and design and the infrastructure for e-
business on the Internet. He received his BS,
MSc, and PhD from the University of Bel-
grade. He has been a consultant for numerous
high-tech companies in the US, the Far East,
and Europe. Contact him at vm@etf.bg.ac.yu;
http://galeb.etf.bg.ac.yu/~vm.

“Splitting the Data Cache,” by Julio Sahuquillo and Ana
Pont (p. 28) , sheds light on split spatial and temporal caches.
It is oriented to the single-processor domain, but it covers
important issues for all seven layers of caching.

“Achieving High Performance in Bus-Based Shared-Mem-
ory Multiprocessors,” by Aleksandar Milenkovic (p. 34), dis-
cusses the concept of cache injection. Again, the article pre-
sents the concept in a shared-memory multiprocessor
domain, but it applies to all higher layers of caching.

“Delta Coherence Protocols,” by Craig Williams (p.21) ,
Paul F. Reynolds, Jr., and Bronis de Supinski, describes a class
of directory coherence protocol. These delta coherence pro-
tocols are characterized by a number of features for modern
distributed shared memory systems.

In “Hierarchical Caching and Prefetching for Continuous
Media Servers” (p. 14), Stavros Harizopoulos, Costas Hariza-
kis, and Peter Triantafillou propose new caching and
prefetching algorithms for media servers with smart disks.

Their goal is to increase the maximum number of streams
that a drive can support.

“The Differences between Distributed Shared Memory
Caching and Proxy Caching,” by Juan-Carlos Cano, Ana Pont,
Julio Sahuquillo, and José-Antonio Gil (p. 39), sheds more
light on proxy caching. It revisits several relevant issues for
cache design, comparatively for proxy caches and caches in
multiprocessors (specifically DSM). The goal is to emphasize
essential differences to avoid misunderstandings and wrong
design decisions.

In “A Scalable and Efficient Cooperative System for Web
Caches” (p. 42), Jean-Marc Menaud, Valérie Issarny, and
Michel Banâtre propose a novel algorithm that enables more
accurate replacement decisions, as well as a cooperation pro-
tocol that minimizes the most relevant design requirements:
network bandwidth, processing load, and storage con-
sumption among caches.

“Cache Management in CORBA Distributed Object Sys-
tems,” by Zahir Tari, Qi Tang Lin, and Herry Hamidjaja (p. 49),
introduces a caching approach for the CORBA environment.

In this issue

