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1. Abstract 

This paper presents the essence of the newly emerging dataflow paradigm to computing, using the 

realities of the most recent implementations based on modern FPGA components. It sheds light on 

issues like speedup (as high as about 20 or more for a number of important applications), size reduction 

(about 20 for current implementations), and reduction of power dissipation (monthly electricity bills are 

about 20 times lower) – all that for the same production cost, compared to the existing computing 

technologies. Programming paradigm, debugging effort, and compile time are also covered. The analysis 

is based on the analytical, empirical, and anegdotical approaches. 

2. Introduction 

While MultiCore CPUs and GPUs are well known in supercomputing applications, DataFlow computing is 

only recently making inroads in this domain. DataFlow computing was popularized by a number of 

researchers in the 1980’s, especially Professors Dennis and Arvind of MIT. In the dataflow paradigm an 

application is considered as a dataflow graph of the executable actions; as soon as the operands for an 

action are valid the action is executed and the result is forwarded to the next action in the graph. 

Creating a generalized interconnection among the action nodes proved to be a significant limitation to 

dataflow realizations in the 1980s. Over the past few years the extraordinary density achieved by FPGAs 

allowed FPGA based emulations of the DataFlow machines executing the dataflow graph corresponding 

to the application. Recent successful dataflow implementations are static, synchronous with an 

emphasis on data streaming, and applications in physics, banking, datamining, and education [1, 2]. 

Further applications can be opened if combined with cloud technology [3]. 

For purposes of comparison a possible classification of supercomputer systems is given in Figure 1. The 

four major branches of the classification imply the following architectures: MultiCore, ManyCore, 

FineGrainDataFlow, and CoarseGrainDataFlow supercomputers.  
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Figure 1: A classification of supercomputer architectures.

 

 Programming of the first two architectural types follows the classical programming paradigm and the 

achieved speedups are well described in the open literature [4, 5, 6]. DataFlow machines use a different 

execution model and therefore it is generally efficient to utilize a different programming paradigm. Two 

issues are critical: the actual programming methodology used to generate the maximal speedup (for 

these applications, there is a large difference between what an experienced programmer achieves, and 

what an inexperienced one can achieve), and the overall characteristic of applications suitable for 

dataflow speedup.  

2.1. Programming a dataflow machine 

The programming models for MultiCore/ManyCore and DataFlow are different. The outcome of this 

difference is that in the first case one writes an application program in C, or another appropriate 

language, while in the second case one writes a reduced application program in C, or another 

appropriate language, plus a set of programs written in some standard language extended to generate a 

DataFlow machine (e.g. MaxCompiler, see Figure 2) or in some HDL (Hardware Description Language) to 

define the internal configuration of the DataFlow machine. 
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Figure 2: Files involved in the programming process for: (a) MultiCore/ManyCore and (b) DataFlow. The names of the blocks denote 
the block function. Host Code of DataFlow machines is a subset of the Application Code MultiCore/ManyCore, which is indicated by 
the size differences of the corresponding blocks (Courtesy of Maxeler). In this context, kernel describes one pipelined dataflow that 
takes data from input stream, processes it throughout pipeline and produces output stream with results. Manager orchestrates 
work of kernels and streams of data between kernels, memory and host CPU. Manager and kernels are compiled and hardware 
configuration is built. Configuration is then linked with host program together with run-time library and MaxelerOS in order to 
provide configuration of hardware, and streaming data to/from configured hardware.

 

Programming a dataflow application thus has two stages. The first part of the program (which builds a 

.max file configuration in Figure 2) describes a static synchronous dataflow graph for the part of the 

application to be executed on the DataFlow processing engine. The second part of the program consists 

of standard control flow code, plus calls to the static dataflow part of the program via functions.  

2.2. What applications are suitable for dataflow? 

A key question is what if any parts of a program can benefit from a Dataflow system and which cannot. 

There are two major factors that can determine this: (1) as described above, it must be possible to 

describe a static dataflow graph that represents the program (i.e. the inner body of a loop), (2) the 

computational density and amount of data in the program must be sufficient. That is best explained 

using Figure 3. In the case of Multi/Many Core systems, more operations means the higher slope of solid 



line (since more instructions take more time to execute), while for DataFlow system, it remains same 

until there is no enough area for dataflow implementation (since the dataflow hardware generates 

some number of results per clock cycle regardless of the number of operations, better explained in 

sections 4.2 and 4.3). 
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Figure 3: Graphical representation of execution of a loop on three architecture types. It is assumed that there is only one loop, in which 
iterations are composed of sequential code, and there are no data dependencies between two different loop iterations. On the horizontal axis 
are input data (discrete scale), while the time is on the vertical axis. One vertical line represents execution of one loop iteration. (a) The 
MultiCore execution model: NcoresCPU – number of available cores in the MultiCore, TclkCPU – clock period of the MultiCore, TCPU – execution time 
on the MultiCore, the case of one loop iteration; (b) The ManyCore execution model: NcoresGPU – number of available cores in the ManyCore, 
TclkGPU period of clock in the ManyCore, TGPU – one iteration execution time on the ManyCore; (c) Dataflow execution model: NDF – number of 
implemented dataflows, TclkDF – period of clock for a Dataflow system, TDF – latency of Dataflow pipeline.

Ways in which a DataFlow system exploits available parallelism are similar to those seen in 

multiprocessors: by pipelining operations and by using multiple cores to work in parallel. There are two 

main differences. The first one is that the pipeline is made by concatenating all operations from one 

loop iteration, so it can be up to several orders of magnitude deeper than those in processors. The 

second one is that the number of cores (a core is one implementation of a dataflow graph) is 

determined at compile time, making the best possible utilization of the available on-chip area. An 

application can benefit from a DataFlow system only if it has enough data parallelism to keep all 

pipelines fully utilized. This is usually the case with loops that process all elements of some array in the 

same manner, without any dependency between iterations of the loop. 

 

 



3. Comparing Total Cost of Ownership 

3.1. Electricity Bills 

Power usage is a major supercomputer consideration. To frame this as a question: in what timeframe 

does the electricity usage bills equal the initial supercomputer investment? Table 1 includes data from 

the websites of three reputable manufacturers of MultiCore, ManyCore, and FPGA (FPGA is most often 

used to implement DataFlow) and two real case studies. For this comparison, power consumption (P) 

and operating frequency (f), are relates as: 

P = C x U2 x f 

where: 

U – Operating Voltage, and 

C – A technology type and system size related constant. 

As a frequency of modern DataFlow systems, based on FPGA, is almost an order of magnitude lower 

than the frequency of the same sized MultiCore and ManyCore systems it is expected that the electricity 

usage of DataFlow system will be one order of magnitude lower than of the other two architectures. 

Lower monthly electricity bills are desirable, but for an end user it is much more important what will 

he/she get for his/her money. Comparing same sized systems, with the lower working frequency, the 

DataFlow system consumes approximately one order of magnitude less energy. If a DataFlow system 

outperforms a MultiCore system by one order of magnitude, then the difference in GFLOPS/$ is two 

orders of magnitude. As the performances of the DataFlow and ManyCore systems are comparable (see 

Table 1), the difference in GFLOPS/$ stays approximately one order of magnitude, in favor of DataFlow 

system. 

Within a chip, energy is dissipated on calculations (energy spent on area where calculations are done) or 

energy is dissipated on orchestration of data calculations (energy spent on the rest of the area). Now the 

ratio of the area directly useful for calculations to the rest of area is the largest for DataFlow 

architectures, we expect that DataFlow systems are the most energy efficient. One contra argument is 

that a system with X times slower clock requires X times more area for the same amount of calculations 

per second, leading to conclusion that FPGA is more efficient only if its area directly useful for 

calculations is more than X times larger than the same area in a chip with a faster clock. Table 1 shows 

that this is true for modern systems. 

 



Table 1 Declared and measured performance data for three representative systems of presented architectures. 

 Intel Core i7-870 NVidia C2070 Maxeler MAX3 

0. Type MultiCore ManyCore FineGrainDataFlow 

Declared data [7, 8, 9] 

1. Working frequency (MHz) 2930 1150 150 

2. Declared performance (GFLOPs) 46.8 1030 450 

3. Declared normalized speedup 1 22 9.6 
 

Measured on Bond Option [10] 

4. Execution time (s) 476 58 50.3(*) 

5. Normalized measured speedup 1 8.2 9.5 

6. Measured power consumption 
      of the system (W) 

183 240(**) 87(**) 

7. Normalized energy for the system 19.9 3.2 1 
 

Measured on 3D European Option [11] 

8. Execution time (s) 145 11.5 9.6(*) 

9.Normalized measured speedup 1 12.7 15.1 

10. Measured power consumption 
      of the system (W) 

149 271(**) 85(**) 

11. Normalized energy for the system 26.5 3.8 1 

(*) – Showed results are for reduced precision that is large enough to give the same result SP or DP 

floating point. 

(**) – Power consumption of the whole system: CPU+GPU card or CPU+Max3 card. 

Let us consider three systems, such as those mentioned in Table 1, but scaled so that they have the 

same performance. Let us suppose that electricity bills reach initial investment of MultiCore in N years 

(N is a small integer). The data from Table 1 (rows 7 and 11) lead to the conclusion that one can expect 

that with ManyCore the same electricity bill is generated in about 6*N to 7*N years, and with DataFlow 

in about 20*N to 26*N years. Obviously, the smaller the N, the advantage of the DataFlow technology is 

more significant. 

3.2. Space Costs 

The second major supercomputer economic question is how large is the investment into the space to 

host a supercomputer? The space required for a particular computer is a function of (a) the required 

performance, (b) the performance of each individual compute unit and (c) the space required for each 

unit. (c) is determined not just by the physical size of the compute unit but also the power dissipation 

which limits the amount of resource that can be packed into a small area and still effectively cooled. 

 



Let us suppose that we have 3 systems: 

 The first one composed of 1U CPU server with 16 cores, 

 The second one composed of 1U GPU server with CPUs and 2 GPU, and 

 The third one composed of 1U MPC-X1000 with 8 MAX3 cards. 

Assuming that the size of the third system is 40 units, that fits in a standard rack, Table 2 shows 

performance of the third system and required size of the first and the second systems with the same 

performance as the third system (size normalization is also done relative to the third system). The 

performance data, taken from Table 1, are used to scale the first two systems to match the performance 

of the third system. Here we imply the kind of parallel applications specified in the caption of Figure 3 

(those that are ideally scalable). 

Table 2. Size comparison of systems with the same performance. 

 1U CPU server 
with 16 cores 

1U GPU server 
with CPU and 2 GPU 

1U MPC-X1000 
with 8 MAX3 cards 

System sizes based on declared maximal performances 

Required size (RU) 769 70 40 

Normalized size 19.2 1.7 1 

System sizes based on performances on Example 1 (Bond Option) 

Required size (RU) 757 184 40 

Normalized size 18.9 4.6 1 

System sizes based on performances on Example 2 (3D European Option) 

Required size (RU) 1208 192 40 

Normalized size 30.2 4.8 1 

 
One can conclude from Table 2 that the same performing system based on GPU would require several 

times more space than the one based on MAX3 cards. The CPU based server is inferior in size to both 

GPU and MAX3 based servers. 

In reality, performance does not scale linearly, but there are some problems that 

are embarrassingly parallel where the previous analysis gives a realistic overview. 

 

 

4. Elaboration of the Conditions when DataFlow is Superior 

Choosing between accelerators requires a good understanding of the possible candidate architectures 

and how they achieve speed-up. For this reason, analytic models of these accelerators are useful for 

comparisons. This paper concentrates, between other criterions, on comparison of accelerator 

performances through analysis of the relationship between execution time and problem size. 

 



4.1 Existing Solutions to Be Compared 

For the purpose of comparison, we introduce three models of execution. Exact modeling is almost 

impossible because of many factors. Instead, we simplify models, so one can group several parameters 

into one, find out how parameters influence the execution time, and show circumstances under which 

one architecture has an advantage over another. 

4.2 Axioms, Conditions, and Assumptions 

In Figure 3, three drawings are given that represent execution time of iterations of some loop. We 

assume that the loop body contains only sequential code. On the horizontal axis is input data per 

iteration, and on vertical axis is time. 

This analysis does not target all kinds of programs. Instead, it takes into consideration only those 

programs that have a lot of data parallelism concentrated in one or several nested loops, intended for 

processing of all elements of some n-dimensional data structure (n is a natural number). Further, this 

one or these several nested loops are referred to as Data Parallel Region, or just DPR. Usually 

accelerators speed-up one DPR at a time, and because of that, in the further analysis, we consider only 

one DPR, not the whole program. In the case of more than one DPR, the same applies for each DPR. 

The size of machine code DPR is relatively small compared to the rest of the program, but it represents 

the most time consuming part of the program. Assuming a MultiCore, typical execution times of DPRs 

that are of interest for this analysis span from several minutes (or more likely from several hours) to 

several days. The DPRs with shorter execution time are not of interest, because they are executed fast 

enough on MultiCore. 

Further, we introduce one simplification without loss of generality. We suppose that all DPRs include 

only one loop. This is possible because the set of nested loops can always be replaced with an equivalent 

code that includes only a single loop, using a technique called coalescing. 

4.3 Analysis  

Let us suppose that a single iteration of only loop in DPR is composed of sequential code only and that 

the bandwidth to/from memory is large enough to fulfill all requests without introducing additional 

latency. Later we analyze the effect of branch inclusion and limited memory bandwidth. 

Let the number of operations in a single iteration of a loop be NOPS, and the number of iterations N. 

Further, assume a parameter CPICPU that represents the ratio between average time spent per operation 

on one core and the clock period of MultiCore (this is the standard CPI definition slightly modified, so 

that DataFlow architectures can be encompassed, as well). Parameters CPIGPU and CPIDF are the same 



ratios for the ManyCore and DataFlow, respectively. Using these parameters and those shown in Figure 

3, we calculate execution times of a single iteration (TCPU, TGPU and TDF) and execution times of the whole 

loop (tCPU, tGPU and tDF), for these three systems, as follows: 

(a) TCPU = NOPS * CPICPU*TclkCPU 

 tCPU =  N * TCPU / NcoresCPU 

        =  N * NOPS * CPICPU*TclkCPU / NcoresCPU , 

 

(b) TGPU = NOPS * CPIGPU*TclkGPU  

 tGPU =  N * TGPU / NcoresGPU 

        =  N * NOPS * CPIGPU*TclkGPU / NcoresGPU , 

 

(c) For this system, it is important to consider relation between the capacity of the chip expressed 

as a maximum number of operations that can fit on the chip (NCAP) and the size of dataflow 

graph expressed as a number of operations in the graph (NOPS). There are two cases to consider: 

 

1) The chip can contain one or more instances of the graph  (NCAP >= NOPS): 

TDF =  NDEPTH * CPIDF * TclkDF 

 tDF = TDF + (N – NDF) / NDF * TclkDF  

       = NDEPTH * CPIDF * TclkDF + (N – NDF) / NDF * TclkDF  

where NDF  (number of implemented graphs) is [NCAP/NOPS], and NDEPTH is depth of dataflow graph 

(NDEPTH <= NOPS). 

Total execution time (tDF) is a sum of the time needed to get the first group of NDF results (TDF) 

and the time for the rest of results. Each next group of results require one additional cycle.  

 

2) The graph cannot fit into the chip (NCAP < NOPS): 

TDFi =  NDEPTHi * CPIDFi * TclkDF 

 tDF = sum(  ( TDFi + (N – 1) * TclkDF ) + Treconf ), for i := 1 .. NPARTS; 

       = sum( ( NDEPTHi * CPIDFi * TclkDF + (N – 1) * TclkDF ) + Treconf) , for i := 1 .. NPARTS; 

The dataflow graph is divided into NPARTS smaller graphs, where NPARTS = ceil[NOPS/NCAP]. Each one 

of them can fit into the chip. Total execution time (tDF) is a sum of times needed for 

reconfigurations of system (Treconf is time of one reconfiguration) and execution times of all 

graphs inferred from the original graph. Execution time of each particular smaller dataflow 

graph is analog to the first case where NDF = 1. 

From these equations, one can conclude that there are two parameters that describe the problem size: 

NOPS (number of operations executed on each data item) and N (number of data items). In equations (a) 

and (b), these two parameters are multiplied. As a consequence, increasing the number of operations in 



a loop iteration, in these two cases, increases the execution time of each group of Ncores iterations, and 

that linearly increases the execution time of the entire loop (NOPS and N are multiplied). In the case (c1), 

instead of NOPS, there is NDEPTH <= NOPS. In this equation, NDEPTH and N (multiplied by some constants) are 

added together. In this case, increasing NOPS and NDEPTH, but keeping NOPS <= NCAP, does not significantly 

increase execution time, only latency to the first result is increased. The case (c2) shows that the main 

limitation to high performance is the capacity of hardware used for DataFlow implementations. Today’s 

technology brings enough capacity to make DataFlow systems well performing, often faster than control 

flow systems [10, 11]. 

In order to make it clear, NDF is not a constant like NcoresCPU and NcoresGPU. It is a parameter that depends 

on the size of one implementation of dataflow graph and the size of the chip; the ratio of these two sizes 

represents the maximum value for this parameter. For smaller loop bodies we are able to decrease 

execution time on a DataFlow system by implementing additional dataflow graphs (implementing the 

same dataflow graph several times). This is true only when the assumption about the required 

bandwidth to/from memory is true. When required bandwidth reaches the available bandwidth, 

speedup becomes limited only by available bandwidth to/from memory. Does this mean that DataFlow 

is no more the best choice? If we suppose the same bandwidth to/from memory of all three 

architectures (for the chips compared, that is not entirely true, but the behavior is explained in the next 

paragraph), and if some dataflow application is limited by the available bandwidth, then no other 

architecture can perform faster because if not limited by available processing power of hardware, it is 

also limited by the available bandwidth to/from memory. This also explains the differences between 

declared and achieved performances in Table 1. The declared performances suggest that ManyCore 

achieves a better speedup for applications with a larger computation/data transfer ratio, all that at a 

higher operational price. 

One highly important property of DataFlow system in this context is that it needs same amount of data 

in each cycle. Except in several cycles at the beginning and at the end, each operation in loop body is 

executed once per cycle, but with data from different iterations. On the control flow systems, this is the 

case also; however, due to the lower level execution paradigm in DataFlow machines, overlapping of 

memory accesses and calculations is more effective. As a consequence, it is expected that the DataFlow 

system can easily utilize whole available bandwidth to/from memory, while other two architectures can 

do the same only in extreme case when available bandwidth is lower than required. 

The other influence of memory on execution time is the latency of memory accesses. In control flow 

systems, it is seen through processor’s stall time when it comes to a cache miss, possibly increasing CPI. 

In DataFlow systems, this latency is hidden by overlapping memory accesses with calculations. 



In real cases, loop body sometimes contains control flow instructions. In the control flow architectures, 

these instructions have a negative influence on the execution time of the whole program, due to their 

execution time and increased CPI caused by control hazards. In DataFlow architectures every possible 

option of each control flow instruction is calculated at run time, and at the end of the flow, one of the 

calculated values is chosen. This influences only the latency for the first group of results. More 

importantly, area on the chip is not efficiently utilized, significantly reducing the effectively available 

capacity of hardware. For the most of the real applications implemented in DataFlow systems, this does 

not have any significant drawback [10, 11]. 

5. Conclusion 

The optimal approach implies a hybrid solution that includes all three architecture types: MultiCore, 

ManyCore, and DataFlow. So far, hybrid approaches would typically include only two solutions (e.g., 

Mont-Blanc Barcelona supercomputer). Our conclusion goes one step beyond and adds a third 

component: DataFlow.  

For a typical supercomputer workload mix, this means a considerable performance improvement, since 

the percentage of supercomputer code which is best dataflow-able is relatively high (e.g., [1]) and can 

bring speedups of 20-40 or even more.   

Introduction of the third component into the hybrid implies appropriate changes in the programming 

model (e.g., Ompss or [12]) and an incorporation of the dispatcher software which is able to recognize 

what is best to move to the DataFlow component of the hybrid, and how to do it. It can be implemented 

for either compile time or run time. 

 

Frame No 1: To Select or to Hybridize. 

When a supercomputer team faces a new programming challenge, the first thing to do is to decide what 

supercomputer architecture to select for the highest performance, the lowest power consumption, and 

the smallest equipment volume. An alternative is to use a hybrid machine which includes all three 

architectural types (MultiCore, ManyCore, and DataFlow) and a sophisticated software dispatcher 

(partially implemented by the programmer, partly in the compiler and partially in the operating system) 

that decides what portion of the high level language code goes to what architectures. 

 

 



Frame No 2: A Symbolic Comparison of MultiCore, ManyCore, and DataFlow  

A well known anecdotal way to compare MultiCore and ManyCore supercomputers is to compare the 

two approaches with horses and chickens that pull a load wagon. Along the same anecdotal path, one 

can compare the DataFlow approach with ants that carry load in their back-packs. Further, an analogy 

can be established between power consumption and feeding the animals, between cubic foot and 

“housing” for animals, and between speed for Big Data and running fast up a vertical wall.  

Feeding horses is much more expensive than feeding chicken, and feeding chicken is much more 

expensive than feeding ants (read “feeding” as “paying monthly electricity bills”). Electricity bills may 

double initial investments for MultiCore in only a few years, and not in many more years for ManyCore, 

while DataFlow machines need as much as a few decades for the same. 

Stables for horses can be extremely large (some supercomputer centers are even building new buildings 

for their next generation machines). Chicken houses are much smaller then stables, but much bigger 

then ant holes. The cost of placing gates across the field has two components: (a) deciding where to put 

them (higher programmer effort) and (b) physical putting at decided locations (longer compile time). 

Only ants can move fast up a vertical wall. Chicken and horses cannot. In other words, if an extremely 

large data set is crunched, the DataFlow approach is the fastest, as indicated in the non-anecdotic part 

of this paper. 

 

Frame No 3: Definition of Multi/ManyCore and Fine/CoarseGrainDataFlow 

Multi/ManyCore architectures are composed of general purpose processing cores, similar to factory 

where each worker works on everything. While MultiCore is composed of a small number of highly 

sophisticated and high speed processing cores, ManyCore is composed of a larger number of simpler 

and slower processing cores. 

At the opposite side are DataFlow architectures that process data in a manner similar to factory where 

workers are arranged in assembly line and each worker works on only one operation on each product. 

FineGrainDataFlow architectures are composed of special purpose processing elements interconnected 

to form hardware through which data will be processed. CoarseGrainDataFlow architectures are 

composed of general purpose cores and DataFlow concept is used on a software level in order to utilize 

as much as possible of a parallelism available in program. 
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