
Published in IET Computers & Digital Techniques
Received on 6th October 2011
Revised on 4th May 2012
doi: 10.1049/iet-cdt.2011.0132

ISSN 1751-8601

FPGA accelerator for floating-point matrix
multiplication
Ž. Jovanović V. Milutinović
School of Electrical Engineering, University of Belgrade, Belgrade, Bulevar Kralja Aleksandra 73, Serbia

Abstract: This study treats architecture and implementation of a field-programmable gate array (FPGA) accelerator for double-
precision floating-point matrix multiplication. The architecture is oriented towards minimising resource utilisation and
maximising clock frequency. It employs the block matrix multiplication algorithm which returns the result blocks to the host
processor as soon as they are computed. This avoids output buffering and simplifies placement and routing on the chip. The
authors show that such architecture is especially well suited for full-duplex communication links between the accelerator and
the host processor. The architecture requires the result blocks to be accumulated by the host processor; however, the authors
show that typically more than 99% of all arithmetic operations are performed by the accelerator. The implementation focuses
on efficient use of embedded FPGA resources, in order to allow for a large number of processing elements (PEs). Each PE
uses eight Virtex-6 DSP blocks. Both adders and multipliers are deeply pipelined and use several FPGA-specific techniques
to achieve small area size and high clock frequency. Finally, the authors quantify the performance of accelerator implemented
in Xilinx Virtex-6 FPGA, with 252 PEs running at 403 MHz (achieving 203.1 Giga FLOPS (GFLOPS)), by comparing it to
double-precision matrix multiplication function from MKL, ACML, GotoBLAS and ATLAS libraries executing on Intel
Core2Quad and AMD Phenom X4 microprocessors running at 2.8 GHz. The accelerator performs 4.5 times faster than the
fastest processor/library pair.

1 Introduction

Today’s field-programmable gate arrays (FPGAs) are fast and
large enough to allow hardware implementation of various
algorithms that work faster compared to their software-only
counterparts executing on general-purpose microprocessors
[1–5]. There is a plethora of research efforts regarding the
use of FPGA accelerators to speed up critical parts of
computationally intensive programs. They vary in scope
and way in which acceleration is accomplished; however,
they all rely on some kind of parallelism and their
performance is determined by the number of concurrently
working functional units.

Owing to its significance in science and engineering,
matrix multiplication methods and their optimisations are a
very often studied subject in the field of both software and
hardware design. Its inherent parallelism is especially
interesting from the aspect of various parallel and
distributed systems. FPGA-accelerated matrix multiplication
became a viable faster alternative to software
implementations from the moment when FPGA started to
offer a potentially better multiplication performance than
microprocessors, that is, when they started to include a
dedicated multiplier blocks [6].

1.1 Related work

There are several recent works that treat the problem of
performing double-precision floating-point matrix

multiplication in FPGA. Architecture by Dou et al. [7]
consists of a master processor and a linear array of P
processing elements (PEs). The master processor divides the
input matrices into tiles with dimensions Si × N and
N × Sj, respectively, and schedules them to the processing
array, which calculates one Si × Sj block of the result
before moving to the next one. Each PE contains one
multiplier and one adder, two register banks with Si/P
words of storage for storing elements of the first matrix and
two register banks with Si × Sj/P words, for storing
intermediate results. Elements of the second matrix are not
reused, and therefore not stored. The total used local
storage is M ¼ 2 × Si + 2 × Si × Sj words, and the
required input bandwidth at maximum performance is
B ¼ 2 × P/

p
M/2 floating-point operations per second

(words) per clock cycle.
Zhuo and Prasanna [8] give the comprehensive overview of

previous works on integer and single-precision matrix
multiplication in FPGA, and identify the challenges
associated with their possible expansion to double-precision
arithmetic. They then introduce two architectures and three
corresponding algorithms. The first two algorithms work
with small matrices (those which can fit into accelerator
internal memory), which allow them to achieve the optimal
latency depending on the available communication
bandwidth. Both algorithms divide input matrices into
rectangular blocks, but differ in the number of multipliers
and adders per PE and the number of required PEs for a
given size of input matrices. The third algorithm is suitable

IET Comput. Digit. Tech., pp. 1–8 1
doi: 10.1049/iet-cdt.2011.0132 & The Institution of Engineering and Technology 2012

www.ietdl.org

for larger matrices and uses the block matrix multiplication
algorithm with square blocks. It uses a linear list of PEs,
each with one multiplier and one adder, similarly to
architecture by Dou et al. [7]. However, it swaps the
execution order of the two inner loops, out of three loops
which constitute the matrix multiplication algorithm. In that
way, there is no need for two sets of registers, and for a
given local memory size M and number of PEs P, the
algorithm requires input bandwidth B ¼ 2 × P/

p
M.

Architecture by Kumar et al. [9] uses an algorithm for
scheduling input data to PEs which has the same loop
execution order as that of Zhuo and Prasanna [8]. However,
instead of a systolic array-like structure (in which every PE
communicates only with the adjacent ones), it uses
broadcast to distribute the same elements of the first matrix
simultaneously to all PEs. The elements of second and
resultant matrices are exchanged only with the adjacent
PEs, as is the case of the other two related works.

All of the three architectures are equivalent to each other
and have the same performance of 2 × P FLOPS per clock
cycle. They use the classical block matrix multiplication
algorithm, and can multiply two square matrices of order N
in N 3/P clock cycles. They have the form of a linear list of
PEs, which allows them to be scalable, that is, easily
expandable to larger devices or multiple FPGAs. The
architectures are also modular, because they treat floating-
point arithmetic blocks as modules, which can be
interchanged with modules having different implementation
or characteristics, without affecting the properties of the
architecture. Finally, all the architectures have balanced
processing power and bandwidth requirements. This
represents the optimal use of available resources, as the
computing and communication phases completely overlap.
The respective papers also discuss trade-offs between local
memory size and required communication bandwidth.
However, they do not distinguish between input and output
bandwidth and take into account only their aggregate value.
This is appropriate when communication channel is bus
based and therefore half-duplex. However, as the full matrix
multiplication has highly asymmetric traffic patterns in
inbound and outbound directions, and, as the most
backplane and network technologies transition to point-to-
point, full-duplex architectures (the notable example being
peripheral component interconnect (PCI)-express), that
leave the communication channel in outbound direction
almost unutilised.

Dou et al. [7] implement double-precision floating-point
units which are IEEE-754 [10] compliant, with the
exception of denormal number support. They use FPGAs
with 18 × 18 integer multiplier blocks, and construct a
floating-point multiplier from nine such blocks. The work
of Kumar et al. [9] is more recent and use FPGAs with
25 × 18 multipliers. In spite of that, their floating-point
multiplier design requires 13 such blocks. The level of
IEEE-754 compliance is the same as that of Dou et al. [7].
Zhuo and Prasanna [8] describe three floating-point
multiplier and adder implementations with different level of
IEEE standard compliance: the ‘fully compliant’,
‘moderately compliant’ (similar to those in [7] and [9]) and
‘least compliant’ (which, in addition to the absence of
denormal support, also lack all the rounding modes except
for ‘round towards zero’ and does not generate exceptions).
They specify the number of pipeline stages, area and clock
frequency for adders and multipliers using all three levels
of compliance. However, they do not include implementation
details and the number of used multiplier blocks.

The reported single-FPGA maximum performance figures
are 15.6 GFLOPS with 39 PEs at 200 MHz [7], 6.7
GFLOPS with 20 PEs at 170 MHz [8] and 29.8 GFLOPS
with 40 PEs at 373 MHz [9] (‘algorithm 3’, with
unspecified level of IEEE standard compliance) for large
square matrices. Although it is not possible to directly
compare the results, because they were published over a
time span of several years and use different FPGA devices,
the measured results confirm the predicted performance of
2 × P FLOPS per clock cycle for all of them. Zhuo and
Prasanna [9] report the performance of their FPGA
accelerator as ‘comparable with that of the state-of-the-art
general-purpose processors’ executing matrix-multiplication
function from Intel MKL library. However, it is not clear as
to how the results reported in the other two papers
compared to the performance of general-purpose
microprocessors from the corresponding time periods.

1.2 Essence of the proposed approach

Existing solutions to FPGA-accelerated dense matrix
multiplication problems have very similar architectures,
because they all depend on the classic block matrix
multiplications algorithm. Faster algorithms do exist [11,
12]; however, they are much more complex and generally
not suitable for hardware implementation. As there is not
much room for improvements in the architectural domain, it
is possible to achieve better performance primarily by
implementing larger number of smaller and faster floating-
point units.

This paper presents an architecture and implementation of
an FPGA accelerator for multiplication of matrices in IEEE
double-precision format, which aims to be as fast as
possible by using the following techniques, not found in
other related works:

† A block matrix multiplication architecture which returns
the result blocks as soon as they are computed and leaves
their final accumulation to the host processor. This allows
for a less constrained placement and routing on FPGA and
consequently higher clock frequency. Such architecture also
exhibits a much more symmetric communication pattern
(similar inbound and outbound bandwidth requirements),
which make it especially well suited for full-duplex
communication links. We show that the additional load
exhibited on the host processor is relatively small, as the
accelerator computes all multiplications and almost all
(n 2 1 out of n) additions.
† Implementation of floating-point units in an efficient way,
with only eight embedded FPGA 25 × 18 integer multiplier
blocks per floating-point multiplier. This allows realisation
of larger number of PEs. The floating-point units are also
deeply pipelined, which contributes to the high clock
frequency, but also in some instances reduces area, because
it allows better utilisation of embedded blocks. We show
that the latencies associated with the deeper pipelines do
not have any negative implications, as they are in any case
much smaller than the other latencies present in the system.

After presenting the accelerator architecture and
implementation, we quantify the performance gain of doing
FPGA-accelerated matrix multiplication, in comparison with
software implementations from several high-performance
libraries, executing on commodity microprocessors. We
take into account the current state of the art in both
microprocessor and FPGA technology. Modern

2 IET Comput. Digit. Tech., pp. 1–8

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cdt.2011.0132

www.ietdl.org

microprocessors perform very well, because they have high
clock frequencies, multiple cores and appropriate support in
the form of floating-point vector single instruction, multiple
data (SIMD) units. However, we show that FPGA-
accelerated matrix multiplication can still achieve several
times higher performance.

2 Accelerator architecture

The accelerator consists of a linear list of multiplier–adder
PEs, with memories for buffering input (and possibly
output) data spread equally across all PEs (Fig. 1).
Although the PE connection pattern in the form of a tree is
also possible [13], the linear list has the advantage of a
much more regular structure, which allows simpler routing
between PEs and consequently the higher clock frequency.
After the initial latency, a list of n PEs multiply two
n-element vectors in one clock cycle, or two square
matrices of order n in n2 clock cycles. The initial latency
consists of the time necessary to fill the input buffers and
the time necessary to fill the pipelines of multipliers and
adders. All the subsequent loading of input data overlap
with computation on previously loaded data, and all the
pipelines of arithmetic units are constantly full. The linear
list architecture can also extend to multiple FPGAs. In that
case, the number of parallel arithmetic operations and the
required communication bandwidth increase linearly with
the number of FPGA nodes.

Let X and Y be matrices with dimensions p × q and q × r,
respectively, where p, q, r ≥ n. Matrix X consists of i × j and
matrix Y consists of j × k blocks of order n, where i ¼ ⌈p/n⌉,

j ¼ ⌈q/n⌉ and k ¼ ⌈r/n⌉. (we pad the right and bottom of the
matrices with zeros as necessary, in order to have integer
number of blocks.) It is possible to multiply the matrices X
and Y by performing matrix multiplication and addition
operation only between the blocks. The result matrix R,
with dimensions p × r, consists of i × k blocks. We now
consider two multiplication algorithms, one suitable for
accelerator architecture shown in Fig. 1a and the other for
accelerator architecture shown in Fig. 1b. We refer to the
blocks of matrices X, Y and R as Xuv, Yvw, Ruw,
respectively, where u [{1, . . . , i}, v [{1, . . . , j} and
w [{1, . . . , k}.

Algorithm 1: The host computer consecutively sends to the
accelerator the blocks of input matrices which correspond to
the one complete result block, before starting to send the
input data for calculation of the next result block. It starts
with the input blocks used to compute the result block R11:
X11 and Y11, X12 and Y21, . . . , X1j and Yj1 and so on, and
in total sends b(1)

in = 2 × i × j × k input blocks. For the
same time period, the accelerator sends back b(1)

out = i × k
result blocks. The ratio of input to output traffic is
s(1) = b(1)

in /b(1)
out = 2 × j. This algorithm does not require that

the host computer takes part in computation. However, its
drawback is the relatively large bandwidth requirement in
host-accelerator direction and highly asymmetric traffic
pattern.

Algorithm 2: The host computer starts with sending block X11

and then sends all the blocks which should be multiplied with
it: Y11, Y12, . . . , Y1k. The multiplication continues with block

Fig. 1 Two variants of a FPGA accelerator for matrix multiplication, organised as a linear list of n PEs

Each PE consists of a multiplier, adder and BRAMs X and Y for storing input data. In variant a, there are also BRAMs R for storing intermediate results, connected
as a circular FIFO. Memories X store rows of the first and memories Y columns of the second operand matrix. In each clock cycle, accelerator performs
n multiplications, n 2 1 product accumulations and multiplies two n × n matrices in n2 clock cycles. The input matrices can be the blocks of larger matrices
In variant
a The FIFO R facilitates the multiplication of block matrices by storing a block of the result, until the accelerator multiplies and accumulates all the corresponding
input blocks. There is also an additional adder for that purpose. FIFO’s total size is n2 elements and in each clock cycle elements rotate to the left. When the
multiplication of the last block completes, the multiplexer MX allows the FIFO contents to be shifted out and sent to the host computer
b Accelerator immediately returns elements of multiplied matrices without buffering. In the case of block matrix multiplication, it relies on the host computer to
add together matrices representing parts of a resultant matrix block. This variant has the advantage of being simpler and easier to place and route and also uses less
BRAM resources

IET Comput. Digit. Tech., pp. 1–8 3
doi: 10.1049/iet-cdt.2011.0132 & The Institution of Engineering and Technology 2012

www.ietdl.org

X21: Y1k is reused and the row of Y enters the accelerator in the
opposite direction: Y1k21, . . . , Y11. The procedure repeats in
the same way for all j rows of X and the corresponding j
columns of Y. The result of multiplying consecutive input
blocks does not represent parts of the same result block.
For that reason, the accelerator cannot add them together
(and does not have a FIFO buffer R and an additional adder
for that purpose), but instead sends them immediately to the
host computer. The host computer must add the each
received partial result block to the previously received part
of the same result block. These additions take place
simultaneously with the results received and, as we later
show, constitute only a small fraction of all arithmetic
operations. In total, the host computer sends

b(2)
in = (1 + k + (1 + k − 1) × (i − 1)) × j = (i × k + 1) × j

input blocks and for the same time period receives

b(2)
out = i × j × k output blocks. The ratio of input to output

traffic is s(2) = b(2)
in /b(2)

out = 1 + 1/(i × k). The worst case,
s(2) ¼ 2, occurs for i ¼ 1 and k ¼ 1. However, as i or k
increase, s(2) decreases rapidly and limi,k�1s(2) ¼ 1.
Therefore for a sufficiently large i or k, this algorithm has
almost equal bandwidth requirements in both directions.

Let Bin and Bout be, respectively, necessary input and
output communication bandwidth, expressed as number of
floating-point words transferred per clock cycle. The total
bandwidth is BHD ¼ Bin + Bout in the case of half-duplex
and BFD ¼ max{Bin,Bout} in the case of full-duplex
communication link. If the block order is n and the total
communication time is Tcomm clock cycles, the total number
of blocks transferred during the time Tcomm is, for input and
output directions, half-duplex and full-duplex links,
respectively: bin, bout, bHD, bFD, where Bin ¼ bin × n2/
Tcomm, Bout ¼ bout × n2/Tcomm, BHD ¼ bHD × n2/Tcomm and
BFD ¼ bFD × n2/Tcomm. For Algorithm 1, b(1)

HD = 2 × i × j ×
k and b(1)

FD = 2 × i × j × k. For Algorithm 2, b(2)
HD = (i × k +

1) × j + i × j × k = (2 × i × k + 1) × j and b(2)
FD = (i × k +

1) × j. When utilising half-duplex links, both the algorithms

have approximately equal bandwidth requirements, b(1)
HD ≃

b(2)
HD. When utilising a full-duplex link, Algorithm 2 require

b(1)
FD/b(2)

FD = 2 × i × k/(i × k + 1) = 2/s(2) times less
bandwidth. For k ¼ 1, there is no bandwidth reduction.
However, for a sufficiently large k, Algorithm 2 reduces the
required bandwidth almost by a factor of two. The rest of
this paper discusses Algorithm 2 and the corresponding
accelerator architecture shown in Fig. 1b.

Before the matrix multiplication starts, the host computer
must send to the accelerator the initial n2 elements of X11

and n2 elements of Y11 blocks (these 2 × n2 elements are
distributed as 2 × n elements in each of n PEs). It takes the
next n2 clock cycles to multiply the two blocks. During that
time, the accelerator loads n2 elements of matrix Y21 and
multiplication continues according to Algorithm 2. If the
new blocks keep coming at the same rate, all the multiplier
and adder pipelines work without stopping. The accelerator
produces one element of the result block in each clock
cycle. The initial latency before producing first result
Ti is equal to the time necessary to load initial data and
latency through n multipliers and n 2 1 adders,
Ti ¼ 2 × n2 + dm × n + da × (n 2 1), where dm and da are,
respectively, multiplier and adder latencies. The value of Ti

is implementation dependent and we further discuss it in
Section 4.

The accelerator with clock frequency f performs n
multiplications and n 2 1 additions in each clock cycle and

therefore the total of P ¼ (2 × n 2 1) × f FLOPS. The one
remaining addition is done on the host processor, which, in
total, performs 1/n of all additions. However, the more
useful measure of accelerator performance is the time
necessary to multiply two matrices of a given size.
According to Algorithm 2, the accelerator can multiply
matrices X and Y in Tcomp ¼ i × j × k × n2 clock cycles,
or Tcomp × f s. According to the equations for BHD and
BFD, Tcomm ¼ bHD × n2/BHD ¼ (2 × i × k + 1) × j × n2/

BHD and Tcomm ¼ bFD × n2/BFD ¼ (i × k + 1) × j × n2/
BFD. As communication and computation phases overlap,
we can calculate the required communication bandwidth
BHD and BFD from the relation Tcomm ¼ Tcomp.

BHD ¼ (2 × i × k + 1) × j/(i × j × k) and BFD ¼ (i × k +
1) × j/(i × j × k) words per clock cycle.

In order to compare the proposed architecture to the works
that assume square matrices, we now analyse the case when
i ¼ j ¼ k. The expressions for the required bandwidth
become: BHD ¼ (2 × k3 + k)/k3 and BFD ¼ (k3 × k)/k3. The
worst case, BHD ¼ 3 and BFD ¼ 2 occur for k ¼ 1. This is
expected, as in that case input data do not represent blocks
of larger matrices and there is no potential for data reuse.
However, for k ¼ 2, bandwidth requirements are already
much lower, at BHD ¼ 2.25 and BFD ¼ 1.25 words per
clock cycle, and limk�1BHD ¼ 2, limk�1BFD ¼ 1.

Algorithm 1 is equivalent to the third algorithm from [8]
and algorithms from [7] and [9] when they use minimal
local memory size of V(k2) words. They have the constant
bandwidth requirements of BHD ¼ 3 and BFD ¼ 2 words per
clock cycle. All the related papers further pursue the idea of
data reuse by allowing lower input traffic at the expense of
larger input buffers. For memory of size M words, and P
PEs, they require

p
M/P times lower bandwidth in input

direction. This leads to more complex block scheduling
algorithms, which use more logic and memory resources.
That, in turn, limits the number of PEs that can be
implemented on a chip, and also has negative impact on
maximum achievable clock frequency. In contrast to this
approach, our Algorithm 2 reuse input blocks exactly to the
extent needed to perfectly balance traffic in both directions.
Thus, it is able to optimally utilise full-duplex links and has
a relatively simple architecture. This simplicity, together
with an efficient implementation of floating-point units,
allows us to place more PEs on a chip than previously
possible and consequently achieve better performance.

3 Implementation of floating-point units

When utilising embedded multipliers and memories, FPGAs
use about 20 times more transistors for the same amount of
logic than standard-cell-based application-specific integrated
circuit (ASIC)s [14]. The difference is even larger in
comparison with integrated circuits based on full-custom
design (such as commodity microprocessors). As a
consequence, the clock speed of FPGAs is typically an
order of magnitude lower than that of microprocessors and
the only way to accomplish better performance is by using
relatively high level of parallelism. It is desirable to
implement as many functional units as possible and at the
same time maximise their clock frequency.

Design techniques for optimal design of arithmetic circuits
in FPGA differ significantly from the techniques used in
ASIC very large scale integration (VLSI) design [15]. The
reason for this is fixed structure and scarcity of general
logic resources in FPGAs. For example, multipliers based

4 IET Comput. Digit. Tech., pp. 1–8

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cdt.2011.0132

www.ietdl.org

on large compressor trees and two-path floating-point adders
implemented in FPGAs use too much logic and offer low
clock frequency. At the same time, they might not use
specialised resources present in modern FPGAs, such as
embedded multiplier–adder blocks and fast carry chains.
Optimal design of arithmetic circuits in FPGA require
careful consideration of space/time trade-offs and the
unique features of FPGA technology.

3.1 Design considerations

The accelerator is implemented using Xilinx XC6VSX475T
FPGA, because of its large number of embedded multipliers
(2016). We report resource utilisation and speed
measurements as simulated with this device. However, it
should also be pointed out that this FPGA does not exist in
the fastest (23) speed grade, which imposes an additional
limit to the maximal achievable clock frequency.

3.2 Addition/subtraction

To perform a two-operand floating-point addition/subtraction,
it is necessary to assure that both operands have the same
exponent by right shifting the mantissa of the smaller one
and increasing its exponent accordingly, add the mantissas
if they have the same sign (effective addition), or subtract
the smaller mantissa from the larger otherwise (effective
subtraction). Sign of the result is equal to the sign of the
larger mantissa. It may then be necessary to normalise the
result by shifting it one place to the right (in the case of
effective addition) or upto n places to the left (in the case
of effective subtraction), where n is the width of the
mantissa. Finally, it is necessary to round the result
according to the chosen rounding mode. We use this,
‘classic’ algorithm for floating-point addition, because it has
the minimal resource requirements. Variants which use dual
data paths, leading zero prediction and rounding before final
normalisation offer lower latency at the cost of much
greater complexity [16]. They are commonly used in
microprocessors and other designs requiring low latency,
but they are not practical for FPGA implementation.

The floating-point adder consists of da ¼ 10 pipeline
stages, A1–A10. In stage A1, we compare mantissas and
calculate exponent difference, which determine the number
of places the smaller mantissa should be shifted to the right.
In order to compute correctly rounded results (as defined in
[10]), we extend the right side of the operands with three
additional bits (guard, round and sticky bit, respectively),
which are initially zero. In stage A2, there are three levels
of logic, each implementing a funnel shifter. The usual

approach is to use six shifters, in order to perform a 32-,
16-, 8-, 4-, 2- and 1-bit shifts. However, the six-input
look-up table (LUT) architecture of the target FPGA allows
combining two shifts in the same look-up table (LUT), thus
reducing the number of required logic levels. We logically
or together all the bits which are shifted out and keep them
as the rightmost (sticky) bit. In stage A3, mantissas are
swapped if necessary, in order to assure that the first
mantissa is always the larger one. We perform the addition/
subtraction with ripple-carry adder which uses one LUT per
result bit and a dedicated fast carry-propagation chain.
Although the adder is very efficient in terms of used
resources, its propagation delay increases linearly with
operand size [17] and with 56-bit operands, it becomes a
clock-limiting factor. Since, for this purpose, low logic
count and high clock speed are more important than low
latency, we spread the adder through two pipeline stages,
A4 and A5 (Fig. 2b). Stages A6 and A7 contain the leading
zero counter. It functions by computing the logic or of the
adjacent 4-bit groups of the result and then repeating the
same procedure on the resultant bits (which correspond to
the 16-bit groups in the original result). The calculated
values represent the contiguous groups of 4 and 16 zeros in
the result. By priority encoding them, it is possible to
determine the number of leading zeros. Stage A8 contains
the normalisation left shift. The rounding addition takes
place in the stages A9 and A10 (with adder split according
to Fig. 2b).

The adder supports operations with subnormal numbers.
The resource utilisation is 871 LUTs and 1022 flip-flops
and the achieved clock frequency is 509.94 MHz.

3.3 Multiplication

To perform a floating-point multiplication of two operands, it
is necessary to multiply their mantissas, add exponents and
calculate the result sign as xor of operand signs. The most
complex part is the multiplication of the mantissas. In the
case of IEEE double-precision format, mantissas are 53 bits
wide and their efficient (both in area and speed)
multiplication on FPGA requires the use of embedded
multiplier–adder blocks. In Xilinx Virtex-5 and Virtex-6
devices, these blocks are called DSP48E and DSP48E1,
respectively, and contain a 25 × 18-bit signed multiplier
(24 × 17-bit unsigned), followed by a 48-bit adder with
17-bit shifter before its other input.

There are several ways to use DSP48E/E1 blocks as ‘tiles’,
parts of a larger multiplication parallelogram [18]. Each block
compute one partial product and add it together with a part of
previously computed result. We propose the design shown in

Fig. 2 Using smaller adders to implement a larger one

a Carry-select approach, often used in ASICs, assume that multiplexer complexity and propagation delay is much lower than that of an adder. However, in a
FPGA, both multiplexer and a ripple-carry adder use one LUT per bit
b Simple ripple-carry adder divided into two pipeline stages achieves the same performance, while using approximately two times less resources

IET Comput. Digit. Tech., pp. 1–8 5
doi: 10.1049/iet-cdt.2011.0132 & The Institution of Engineering and Technology 2012

www.ietdl.org

Fig. 3, to maximise the use of internal 48-bit adders for
accumulating partial products. Variant (a) uses fewer
DSP48E/E1 blocks, but more LUTs. Because of the overall
availability of logic resources in the target device, we use
variant (b).

The floating-point multiplier consists of dm ¼ 17 pipeline
stages, M1–M17. The relatively large number of stages is
necessary because DSP48E/E1 blocks require two clock
cycles in order to execute multiplication and addition at full
speed. For that purpose, they have internal pipeline registers
after both multiplier and adder. We use blocks VII and VIII
as 5 × 24-bit multipliers, and the other six blocks (I, II, III,
IV, V and VI) as 24 × 17-bit multipliers. In stage M1, we
calculate the exponent and sign of the result and also the
partial product corresponding to block VII and the partial
products which do not use DSP blocks (the dark-coloured
areas in Fig. 3b). Multiplications corresponding to blocks I
and VIII take place in stage M3 and those corresponding to
blocks II, III, IV, V and VI in stages M5, M7, M9, M11 and
M13, respectively. The adder in each block accumulates the
parts of the result which are located above and to the right
from it (as in Fig. 3b) and calculated in previous stages.
Those additions take place in stages M2, M4, M6, M8,
M10, M12 and M14. Because the rightmost 52 bits of the
complete 106-bit product are necessary only to calculate the
sticky bit, we can or them together as soon as they are
computed. In stage M15, we normalise the result mantissa
and compute the rounding digit. If we assume that input
numbers are normal (most significant bit (MSB) ¼ 1), the
multiplication result can be either normal, or may require a
single normalisation left shift. The rounding takes place in
the stages M16 and M17 (using a two-stage adder as in
Fig. 2b).

The resource utilisation is 447 LUTs and 520 flip-flops and
the achieved clock frequency is 492.12 MHz. The described
multiplier works only with normal operands. It is relatively
easy to add support for subnormal numbers by placing
leading zero counters and left shifters on multiplier inputs
(to pre-normalise the mantissas), whereas increasing the
exponents width from 11 to 17 bits (since ⌈log2(53)⌉ ¼ 6).
It is also necessary to add a right shifter in the last stage to
accommodate for a possible result mantissa conversion to
subnormal format. The cost of this additional logic (if we
implement it as described in Section 3.2) is 727 LUTs and
635 flip-flops. We do not implement the subnormal number
support, because of the limited space in the target device.
Instead, we treat all subnormal input values as zeros.

4 Numerical results and discussion

Considering the size of the target device, there are n ¼ 252
PEs in the accelerator. Each PE uses eight DSP48E1 blocks
and four 36-kb Block RAMs. The two of them implement

buffers X and the other two buffers Y. Each X or Y buffer in
each PE can store 4n ¼ 1008 unpacked double-precision
floating-point numbers. Although the capacity of 2n entries
would be sufficient for double-buffering (the accelerator
works with one input block while it receives another), we
use 4n entries to fully utilise the BRAM resources available
in the target device. The larger input buffers allow for an
easier amortisation of communication speed variations, thus
reducing the chance for buffer underflow condition, which
would inevitably result in pipeline stall.

The total resource utilisation (excluding PCI-express-
related logic) is 290 556 LUTs, 433 692 flip-flops, 2016
DSP48E1 blocks and 1008 RAMB36E1 blocks. With
automatic placement and routing and ‘balanced design goal’
options, Xilinx ISE tool chain achieves the clock frequency
of 161 MHz. To obtain better results, we manually floor-
plan and partition the whole design, in order to group
together the resources used by individual PEs and precisely
position the PEs relative to each other. Although the PEs do
not form a circular array (ring), we ‘fold’ their linear
structure in half, so that PE1 and PEn are physically
adjacent and located next to the control unit. The achieved
clock frequency of the accelerator is f ¼ 403.87 MHz. This
corresponds to the performance of p ¼ (2 × 252 2 1) ×
0.40387 ¼ 203.1 GFLOPS. It should be noted that we
obtained these results using simulation of the target FPGA
device. Owing to the factors outside the FPGA, such as
communication or software latencies, the performance on the
actual hardware could be lower. However, similar works,
which do include a real-world performance figures (such as
[8]), show that this slowdown is typically not significant.

If we consider equation for initial latency Ti, and take into
account that n ¼ 252, dm ¼ 17, da ¼ 10, we can see that the
first term 2 × n2 ¼ 127 008 is much larger than the sum of
the other two: dm × n + da × (n 2 1) ¼ 6794. This means
that it is possible to use deeply pipelined adders and
multipliers, virtually without affecting the total latency.

The target device has an integrated PCI-express 2.0 8×
endpoint that can be used for communication with the host
computer. Its bandwidth of 4 GB/s in each direction, with
accelerator clock frequency of 403 MHz and 64-bit floating-
point words, is equal to BFD ¼ 4096/403/8 ¼ 1.27 word per
clock cycle. Considering square matrices of order k × n
(k [N) and equation for BFD, k must be at least 2, in order
for this communication link to not limit the accelerator
performance. The simulated execution times are given in
Table 1.

In order to compare the accelerator performance to that of
microprocessors, we measure the time necessary to execute a
double-precision matrix multiplication function from four
highly optimised BLAS libraries with randomly generated
square matrices on two different computers with
comparable microprocessors. Both microprocessors are

Fig. 3 Implementing 53 × 53 bit unsigned integer multiplier using Virtex-5 DSP48E or Virtex-6 DSP48E1 blocks

a With six DSP48E/E1 blocks and mon LUTs
b With eight DSP48E/E1 blocks and less LUTs. Variant with 7 DSP48E/E1 blocks is also possible

6 IET Comput. Digit. Tech., pp. 1–8

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cdt.2011.0132

www.ietdl.org

manufactured in 45-nm process and belong to the same
technological generation as the 40-nm Virtex-6 FPGA. We
observe the similar performance in all processor/library
combinations (Table 1). As these measurements are used
only in order to establish a baseline software
implementation, we do not analyse the small differences
which exist between them.

It is interesting to note that when multiplying two square
matrices of order N, all of the four libraries exhibit time
complexity of order O(N 3). This indicate that they use the
classical block matrix multiplication and not some of the
faster algorithms (such as Strassen’s [11], with complexity
of O(N 2.807)). We believe that this choice is due to the
worse numerical stability of such algorithms.

In comparison with software implementations using
only one processor core (single-thread library version),
the FPGA accelerator is 20 times faster than the slowest
and 18 times faster than the fastest processor/library
combination. In comparison with software implementations
using all four processor cores (multiple-thread library
version), the FPGA accelerator is 5.6 times faster than the
slowest and 4.5 times faster than the fastest processor/
library combination.

The achieved results are consistent with the previously
published predictions, according to which FPGAs will
continue to offer better floating-point performance than
microprocessors [6]. However, we believe that with the
current generation of FPGAs and microprocessors, this gap
has reached its maximum and that it will begin to shrink in
the future. We base that prediction on the following
observations: the recently announced 28-nm Xilinx Virtex-7
FPGA family offer 1.78 times more DSP48E1 blocks
compared with Virtex-6 and also some marginal increase in
clock frequency (we do not consider other FPGA
manufacturers, such as Altera and Lattice, as they do not
offer devices of such size). At the same time, 32-nm Intel
Sandy Bridge processor offer the vector instruction set
(AVX) two times wider than the previous streaming SIMD
extensions (SSE) and also better performance per core
compared to the previous generation of processors [19].
There is currently upto 8 cores per chip (in Intel processors)
and this number will probably significantly increase in the
future [20]. This is not to say that FPGA accelerators will
not still be able to achieve better performance in the areas
for which microprocessors do not have direct support, but it
will become increasingly difficult for FPGAs to outperform
them in floating-point arithmetic.

5 Conclusion

This paper has proposed an architecture and corresponding
implementation for an FPGA-accelerated floating-point
matrix multiplication. To our knowledge, it is the first such
work to demonstrate not only comparable, but several times
faster performance than that of commodity microprocessors
from the same technological generation.

The architecture is as simple as possible, in order to
minimise resource utilisation and maximise clock frequency.
The employed block matrix multiplication algorithm sends
the result blocks to the host processor as soon as they are
computed. The consequence of this approach is that although
all multiplication and almost all additions are done in FPGA,
1/n of all additions, where n is block order, must be
performed on the host processor. However, this number is
very small: in our implementation, n ¼ 252 and 1/n ¼ 0.4%.
Because the output blocks are not buffered in the accelerator,
it generates traffic of similar intensity in both inbound and
outbound directions. This makes the architecture well suited
for full-duplex communication links. The drawback is
somewhat limited flexibility, as the block order is equal to
the number of PEs and the used internal memory size is
implicitly tied to the communication link speed. As in
related works, the performance depends on communication
link speed. However, the proposed architecture has the
advantage of requiring less bandwidth as the size of input
matrices increase. The proposed communication link is
4 GB/s PCI-express. With the available bandwidth and
considering square matrices, the full speed is achieved for
input matrices of order 2 × n and larger.

The implementation is also performance oriented and
focuses on efficient use of embedded FPGA resources.
Each PE uses eight DSP blocks, which allows for a total of
252 PEs. In comparison, a related work based on the same
size DSPs [8] requires 13 DSP blocks per PE. We have also
proposed a multiplier design with six DSP blocks (which
would equal to 336 PEs); however, it would require the
target device with more general-logic resources. Both
adders and multipliers are deeply pipelined and use several
FPGA-specific techniques to achieve small area size and
high clock frequency. They can be readily reused in any
other project related to FPGA floating-point arithmetic.

We have compared the accelerator performance with that of
high-end general-purpose microprocessors. In order for
comparison to be as objective as possible, we have
performed measurements using processors with large

Table 1 Performance of the proposed accelerator (403 MHz, 252 PEs) in comparison to software implementations on general-purpose

processors

Matr. order Time for multiplication of two square matrices, s

Our FPGA accel. Single-thread library version Four-thread library version

Processor P1 Processor P2 Processor P1 Processor P2

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

2500 0.2 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1

5000 1.3 23 23 24 24 25 24 24 25 6 6 6 6 7 6 6 7

7500 4.2 77 78 78 82 86 80 83 85 20 20 20 21 22 20 20 22

10 000 10.1 181 184 186 195 200 190 195 199 46 46 47 50 65 53 49 64

12 500 19.7 355 358 370 380 395 371 379 390 89 91 92 96 103 111 96 101

Processor P1 is Intel Core2Quad Q9550 (2.84 GHz, 12 MB cache). Processor P2 is AMD Phenom II X4 925 (2.81 GHz, 8 MB cache). Libraries

are, respectively, L1-Intel MKL, L2-GotoBLAS, L3-AMD ACML and L4-ATLAS

IET Comput. Digit. Tech., pp. 1–8 7
doi: 10.1049/iet-cdt.2011.0132 & The Institution of Engineering and Technology 2012

www.ietdl.org

amounts of cache memory and high clock frequency,
executing matrix multiplication functions from highly
optimised libraries. The FPGA accelerator achieved results
18 times better than the fastest single-core and 4.5 better
than the fastest four-core software implementation.

6 References

1 Todman, T.J., Constantinides, G.A., Wilton, S.J.E., Mencer, O., Luk, W.,
Cheung, P.Y.K.: ‘Reconfigurable computing: architectures and design
methods’, IEE Proc. Comput. Digit. Tech., 2005, 152, (2), pp. 193–207

2 Buell, D., El-Ghazawi, T., Gaj, K., Kindratenko, V.: ‘High-performance
reconfigurable computing’, IEEE Comput., 2007, 40, (3), pp. 23–27

3 Herbordt, M.C., et al.: ‘Achieving high performance with FPGA-based
computing’, IEEE Comput., 2007, 40, (3), pp. 50–57

4 El-Ghazawi, T., El-Araby, E., Huang, M., Gaj, K., Kindratenko, V.,
Buell, D.: ‘The promise of high-performance reconfigurable
computing’, IEEE Comput., 2008, 41, (2), pp. 69–76

5 VanCourt, T., Herbordt, M.C.: ‘Elements of high-performance
reconfigurable computing’, Adv. Comput., 2009, 75, pp. 113–157

6 Underwood, K.: ‘FPGAs vs. CPUs: trends in peak floating-point
performance’. Proc. ACM/SIGDA 12th Int. Symp. on Field-
Programmable Gate Arrays (FPGA), Monterey, CA, USA, February
2004, pp. 171–180

7 Dou, Y., Vassiliadis, S., Kuzmanov, G.K., Gaydadjiev, G.N.: ‘64-bit
floating-point FPGA matrix multiplication’. Proc. ACM/SIGDA 13th
Int. Symp. on Field-Programmable Gate Arrays (FPGA), Monterey,
CA, USA, February 2005, pp. 86–95

8 Zhuo, L., Prasanna, V.K.: ‘Scalable and modular algorithms for floating-
point matrix multiplication on reconfigurable computing systems’, IEEE
Trans. Parallel Distrib. Syst., 2007, 18, (4), pp. 433–448

9 Kumar, V.B.Y., Joshi, S., Patkar, S.B., Narayanan, H.: ‘FPGA based
high performance double-precision matrix multiplication’,
Int. J. Parallel Program., 2010, 38, (3–4), pp. 322–338

10 IEEE Standard 754–2008: ‘Standard for Floating-Point Arithmetic’,
IEEE Computer Society, 2008

11 Strassen, V.: ‘Gaussian elimination is not optimal’, Numer. Math., 1969,
13, (4), pp. 354–356

12 Coppersmith, D., Winograd, S.: ‘Matrix multiplication via arithmetic
progressions’, J. Symb. Comput., 1990, 9, (3), pp. 251–280

13 Zhuo, L., Prasanna, V.K.: ‘High-performance designs for linear algebra
operations on reconfigurable hardware’, IEEE Trans. Comput., 2008, 57,
(8), pp. 1057–1071

14 Kuon, I., Rose, J.: ‘Measuring the gap between FPGAs and ASICs’,
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2007, 26, (2),
pp. 203–215

15 Hemmert, K.S., Underwood, K.D.: ‘Fast, efficient floating-point adders
and multipliers for FPGAs’, ACM Trans. Reconfigurable Technol. Syst.,
2010, 3, (3), p. 11:1–11:30

16 Seidel, P., Even, G.: ‘Delay-optimized implementation of IEEE floating-
point addition’, IEEE Trans. Comput., 2004, 53, (2), pp. 97–113

17 Xilinx Virtex-6 FPGA Configurable Logic Block (UG364), ver. 1.1.
Available at http://www.xilinx.com/support/documentation/user_guides/
ug364.pdf, accessed September 2009

18 Banescu, S., de Dinechin, F., Pasca, B., Tudoran, R.: ‘Multipliers for
floating-point double precision and beyond on FPGAs’, ACM
SIGARCH Comput. Archit. News, 2010, 38, (4), pp. 73–79

19 Yuffe, M., Knoll, E., Mehalel, M., Shor, J., Kurts, T.: ‘A fully integrated
multi-CPU, GPU and memory controller 32 nm processor’. Dig. Tech.
Papers 2011 IEEE Int. Solid-State Circuits Conf. (ISSCC),
San Francisco, CA, USA, February 2011, pp. 264–266

20 Patt, Y.N.: ‘Future microprocessors: What must we do differently if we
are to effectively utilize multi-core and many-core chips’, Trans.
Internet Res., 2009, 5, (1), pp. 5–9

8 IET Comput. Digit. Tech., pp. 1–8

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cdt.2011.0132

www.ietdl.org

http://www.xilinx.com/support/documentation/user_guides/ ug364.pdf
http://www.xilinx.com/support/documentation/user_guides/ ug364.pdf

	1 Introduction
	2 Accelerator architecture
	3 Implementation of floating-point units
	4 Numerical results and discussion
	5 Conclusion
	6 References

