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Abstract—This paper introduces a new approach to acceleration of nonnumeric, database, and information retrieval operations. While

traditional techniques accelerate the most time-critical high-level software constructs, we propose novel low-level primitives and

demonstrate how these primitives improve database operations. Radix sorting, hashing, and bit-vector operations are used to develop

a new class of nonnumeric algorithms—OTHER (Ordered Table Hashing and Radix sort algorithms)—based on low-level hashing

operations Init, Mark, and Scan. We have proposed and evaluated two hardware accelerators for OTHER algorithms. It is shown that a

low complexity hardware support (less than 10K transistors) can significantly improve the performance of nonnumeric operations.
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1 INTRODUCTION

CONVENTIONAL computer systems, by their very nature,
are sequential machines, supported by an arithmetic

logic unit structured for numeric computations and a
passive address-accessible memory hierarchy. The ability
to process efficiently large amounts of nonnumeric data is
crucial for many computer applications, such as database
and information retrieval. They are characterized by simple,
repetitive nonnumeric operations on a massive volume of
data where, in general, data locality is not preserved. This
incompatibility has resulted in the so-called semantic gap,
computation gap, and size gap [1].

The challenge to reduce the aforementioned gaps has

motivated a great deal of research since the mid 1970s, e.g.,

database machines (DBM) [1]. Using the processor archi-

tecture and database functionality as classification taxo-

nomies, one can distinguish three classes of database

machines: application-specific DBMs, general-purpose

DBMs, and general-purpose computers with increased

database performance. However, it has been shown that

suitable database performance can be easily achieved using

VLSI accelerators [2], [3], [4], [5], [6], [7]. The approach

proposed in this paper is based on hardware acceleration of

general purpose CPUs.
A great deal of research in the field of database

machines has focused on the development of dedicated

database architectures [1], [8], [9], [10]. Parallel to this

work, some vendors have developed general purpose
machines with database functions such as select, search,
and join integrated directly into the machine architecture
[11]. In spite of the commercial success of database
machines (hardware or software-based organizations), the
generality of the von Neumann architecture has also
motivated another approach to the efficient handling of
database systems, i.e., machine-level instructional support
for operations that can improve the performance of the
database operations (e.g., bit string manipulation instruc-
tions). For example, Intel i386/486 processors support bit
manipulation instructions [12] that can be used to
implement primitive database operations [13]. Interest-
ingly, the Teradata database machine also uses the very
same set of operations to facilitate the efficient execution
of database functions [14]. Our simulation results show
that, even in the case of a manually optimized assembly
program based on these dedicated instructions, accelera-
tion of complex bit-manipulation operations is 1.5 to
3 times compared to an equivalent C program [13].
However, in practice, the performance improvement for
database functions is much less.

Advances in VLSI technology would suggest an alter-
native approach to improve performance of the database
functions, namely, VLSI accelerators. Most of the realized
VLSI accelerators for the database environment are intended
to accelerate high-level functions, such as select [9], sort [3],
[6], and join [1]. This paper proposes an alternative to this
direction; simply put, instead of accelerating high-level
operations, we accelerate “lower-level” operations (see
Section 2.1). Conventional RISC instruction set optimization
is generally based on statistics of (mostly numeric) bench-
marks implemented using an existing instruction set. There-
fore, in most cases, it represents optimization of the existing
instruction set. Nevertheless, a different set of basic opera-
tions generates completely different execution statistics for
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the given application. Since the design of a dedicated
instruction set can hardly be economically justified, we
propose a standard, general-purpose processor core
communicating with a low-level operation accelerator.
The proposed Low Level Accelerator (LLA) can be
implemented either as an on-chip resource or an off-chip
coprocessor. Although the LLA concept is not new, to the
best of our knowledge, it has not been used extensively
for nonnumeric database operations. Order hashing
primitives resolve the semantic gap by offering a mechan-
ism to directly position every processed object in the
approximate location in the final result set. Efficient
processing of modified algorithms allows processing of
larger data sets in shorter time, providing a cost-efficient
solution for computation and size gap problems.

Section 2 addresses our general approach and its
mathematical foundation. In addition, it introduces our
basic algorithms. The set of proposed algorithms, intro-
duced in Section 2, is extended for hardware acceleration.
Analytical modeling of select, sort, and join database
operations is discussed in Section 4. The design of an
accelerator for the proposed primitive operations is intro-
duced in Section 5. Section 6 presents the simulation results
and, finally, Section 7 concludes the paper.

2 LOW-LEVEL ACCELERATION

This paper presents optimization of the cost/performance
ratio of nonnumeric database operations based on the low-
level ordered hashing primitives. Implementation hierarchy
is presented in Table 1. Standard database operations are
implemented using ordered table hashing operations that
rely on low-level hashing primitives. In the modified
algorithms, we observe some suboptimal low-level opera-
tions that offer a higher speedup through on-chip accelera-
tion. The relative share of low-level table processing
operations is up to 90 percent, as presented in Section 6
(Table 3). Consequently, we focus on an unorthodox
research direction: introduce a new set of primitive
operations, accelerate the most critical operations in this
new set of primitive operations, synthesize high-level
functions, and introduce modified algorithms for basic
database functions based on this new set of primitive
operations.

The proposed set of primitive operations is called
OTHER (Order Table Hashing and Radix sort) since it is
heavily based on a hashing technique for database opera-
tions. We implement the most frequently used database
operations, select, sort, and join, using ordered table hashing,
based on bit vector operations for effective table processing.
The low, medium, and high-level operations are described
in Sections 2.1, 2.2, and 2.3, respectively.

2.1 Low-Level Operations/Table Manipulation
Primitives

We decided to develop the OTHER algorithms based on the
order-preserving hashing technique because of the ability of
hashing to reduce the search space and, hence, to derive
more efficiency [15]. Commonly, the results of select
database operations must be sorted. Therefore, instead of
scattering the records across the hashing table, we use the
order-hashing functions and the Address Calculation Sort
Method [3], [16], [17] to order the records in a logical
fashion in the hash table. Finally, the collision processing
overhead among the duplicate and synonym keys (records
with different key values, generating the same hash value)
is reduced by using the logic identifier of each record. The
logic identifier uniquely represents each record based on its
relative position within the processed data set. This allows a
unique correspondence between the record position and its
position in collision sets [18], [19], [20]. Moreover, instead of
maintaining a separate pointer in the list of collisions [3],
the logic identifier itself can be used as a pointer to the next
member of the list of collisions. In the proposed algorithms,
the logic identifier is implemented simply as a record
counter during the initial processing phase. Table 2
summarizes the notation used in this section.

Formally, assume we have an unordered set of N objects A

A ¼ ai 1 � i � Njf g ð1Þ

and an ordered hashing function # generating values in a
domain D2 with maximum cardinality M,

# aið Þ ¼ #j 1 � j �Mj
� 	

: ð2Þ

The hash function # preserves the order of objects in set
A such that, for every pair fai; ajg and a given relation �
between objects, we have

ai � aj ) # aið Þ� # aj
ÿ �

; � 2 <;¼; >f g; i 6¼ j; 1 � i; j � N:
ð3Þ

Let S be an ordered hashing table

S ¼ si 0 � i � q; 1 � q �Mjf g ð4Þ

and C be a set of synonyms

C ¼ ci 0 � i � Nc; 0 � Nc � Njf g: ð5Þ

Members of sets S and C can be object identifiers or
pointers to objects. We consider each record to be identified
by its relative position within a block of records in the main
memory. As a result, sets S and C can be realized as vectors
of logic identifiers and, therefore, si and ci are equivalent to
S½i� and C½i�, respectively. This approach allows efficient
computer implementation using sort array S and collision
array C. For example, if the objects ai represent numbers,
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according to (2), a trivial implementation of the hashing

function is to use #ðaiÞ ¼ ai and i as the object identifier.

Therefore, ai is used as an index of table entry ðS½ai�Þ, where

the object identifier i is written, while all other synonyms

with the same hash value are written into collision table C.

An example of this implementation is provided in

Section 3.3. However, if the object ai is represented using

m bits, we need an ordered hashing table S of 2m entries

and the collision table C of Nc entries.
The ordering process requires two basic operations for

every processed object:

. Mark, to write the object identifier into the ordered
hashing table S and link synonyms with the same
hash value using collision table C.

. Scan, to retrieve the next object identifier in the
sorted order.

Successive calls of operation Scan generate a set of object

identifiers with hash values between given limits in the

sorted order:

	 ¼ S #j
� �

LowLimit � #j � HighLimit; S #j
� ��� 6¼ �

� 	
:

ð6Þ

We use three low-level primitive operations in the

proposed middle and high-level algorithms:

. TableInit initializes the entries in the hash table by
means of “null pointers” (Algorithm LL-1).

. Mark operation MMarkð#; a; iÞ performs hashing of the
ith object ðaiÞ using hash function #ða; iÞ. Marking is
a three-phase process: First, the hash value of the
current partition of the key (#ðaiÞ) is calculated, then
the logic identifier of the key (i) is written into the
hash table S, and, finally, the logic identifier is linked
into the list of synonyms C (Algorithm LL-2). In our
research, the hashing function is implemented in
software to extract log M bits from the processed
key. Additional acceleration and a smaller number
of collisions can be achieved using a hardware-based
hashing function [21]. Programmable hashing func-
tion can be easily integrated as a part of the
accelerator.

. Scan operations generate the next ordered identifier
from the hashing table, satisfying the condition that
the hash value is between the given limits. Two types
of scan functions are distinguished: GetFirst generates
the identifier of the first key larger than a given
partition value and GetNext continues the search from
the current table position (Algorithms LL-3 and LL-4,
respectively).

Algorithm LL-1. TableInit

TableInit() {

for (i=0; i < M; i++) {

/* Write “null pointer” to every table entry */

S[i]=�;

}

Algorithm LL-2. Mark

Markð#; a; iÞ; {

/* Calculate hash value of the current partition of
the key */

p ¼ #ðaÞ;
if ( S½p� ¼¼ � ) { /* Table entry is free */

/* record is the only member of E-class, write

“end_of_list” to table C */

C½i� ¼ �;

S½p� ¼ i; }

else { /* Table entry is occupied */
/* link previous identifier from the hash table

in the collision table */

C½i� ¼ S½p�;
S½p� ¼ i; }

}

Algorithm LL-3. GetFirst

GetFirst(StartScan) {

i=StartScan;

while (ðS½i� ¼¼ �Þ && ði <¼MÞ) {
/* Search for the first nonempty table entry */

iþþ;

if ði <¼MÞ
/* Nonempty entry found */

return(i);
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else
/* End of scan */

return(�);

}

}

Algorithm LL-4. GetNext

GetNext(i, EndScan) {
while (ðS½i� ¼¼ �Þ && ði <¼ EndScanÞ) {

/* search for nonempty table entry */

iþþ;

if ði <¼ EndScanÞ
/* Nonempty entry found */

return(i);

else

/* End of scan */
return(�);

}

}

2.2 Ordered Table Hash Algorithms

Low-level primitives TableInit, Mark, and Scan perform
ordered hashing of individual objects (database attribute
values). Medium-level procedures comprise the low-level
procedures and perform ordering of all objects in input
set A. The most important problem of hash-based algo-
rithms is resolution of synonyms [22]. Collisions are linked
to comprise a set called the equivalence class or E-class.

Definition 1. The equivalence class or E-class Ej is the
collection of ai such that

Ej ¼ ai # aið Þ ¼ #j
��� 	

;

where

#j < #jþ1; 1 � j < q; 1 � q �M:

All members of the equivalence class must be processed to
resolve collisions and make final order within the class. This is
usually performed in software using algorithms with fast
sorting of small sets, such as the List Insertion Sort method
(LIS) [22]. The equivalence class consisting of only one object
is called final and requires no further processing. Based on the
key size and available main memory, the order-preserving
hashing function can be applied to the whole key or a key
partition for partial ordering. Similarly to radix sorting, the
sorting starts from the most significant position of the key.
Keys are sorted by recursive use of ordered hashing and the
LIS sort. Partitions involved in radix sort are not always taken
from the absolute start of the key; rather, we can start from the
most distinctive part of the keys.

The efficiency of hash-based algorithms critically depends
on the quality of the hash function and the number of
collisions it generates. The worst-case performance, when all
the keys are hashed into the same table entry, traditionally
creates fear of hashing. It has been shown that the hash
function can achieve analytical performance with real-life
data [21]. If the hash function generates all hash values with
equal probability, then the number of collisions can be
approximated using Poisson distribution [23]. The number of

single member E-classes (final classes without collisions) Nf

after processing N keys using a table of size M is

Nf ¼ N eÿN=M; ð7Þ

while the number of occupied entries in hash tableNm will be

Nm ¼Mð1ÿ eÿN=MÞ: ð8Þ

According to (7) and (8), when a large hash table is used
(M >> N), almost all E-classes are final (Nf � N). This
means that the result of the initial sorting phase contains a
sorted list with a small number of collisions, requiring
further sorting. On the other hand, for small hash tables
(M << N), Nf is small and the average problem size is
reduced from N to N=M. This is particularly important for
operations with nonlinear execution time, such as sorting
(with OðNlogNÞ complexity). In conclusion, a large hash
table decreases problem size and collision processing time
at the expense of increased table processing time and larger
memory requirements.

OTHER algorithms link members of E-classes using the
logic identifier of each record. In this way (similar to the
techniques proposed in [22], [24]), there is no need to
maintain additional pointers. Consequently, according to
Algorithm LL-2, the equivalence class could be defined
recursively as

Ej ¼ S j½ �; C S j½ �½ �; C C S j½ �½ �½ �; . . .f g;
S j½ �; C i½ � 6¼ �; i ¼ 1::N:

ð9Þ

The first element of the Ej (S[j]) is called the header. This
is the only element stored in hash table S and it is used to
access all the other members of the E-class stored and linked
in the collision table. According to Definition 1 and (3), the
set of the equivalence classes is also ordered. Therefore, let
us define an ordering function F that generates an ordered
set of E-classes:

F A; #ð Þ ¼ E1; E2; . . . ; Ej; . . . ; Eq

ÿ �
; 1 � q �M: ð10Þ

If the hashing function cannot be applied to the whole
key value, the key values can be partitioned and the
aforementioned hash-based sort algorithm can be applied,
recursively. Formally, let us assume the following partition-
ing of key ai into L partitions:

ai ¼ ai1 ai2 . . . ail . . . aiL ; l ¼ 1::L: ð11Þ

When partitioning is used, a low-level Mark operation is
applied to the current key partition: Markð#; a; i; kÞ per-
forming hashing on the kth partition of the ith key ðaikÞ
using hash function #. Ordering function F is applied
recursively:

F A; # aið Þð Þ ¼ F F F A; # ai1ð Þð Þ; # ai2ð Þð Þ; . . . ; # aiLð Þð Þ: ð12Þ

It can be seen that, after l partitions, even for a small hash
table, the average problem size is reduced at least from N to
nl, where nl is the average length of list of synonym keys.
After l partitions, the average E-class length nl is equal to

nl ¼
N

Ml
; l ¼ 1::L: ð13Þ
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In the case of sorting, according to (13), the
complexity of the algorithm OðNlogNÞ is decreased to
OðNÞ þOðnl logðnlÞÞ, where nl is the average E-class length
after processing l partitions. In this case, even a suboptimal
algorithm, such as List Insertion Sort (LIS) [22] can be used
to sort synonym keys. Our measurements on the DEC Alpha
workstation indicate that the LIS is the most efficient
solution for sorting E-classes of up to 27 collisions.

Algorithm ML-1 presents the general E-class processing
procedure. It orders all members of the E-class with the kth
key partition between LowLimitk and HighLimitk. This is
the major medium-level building block for the OTHER

algorithms. The result of the Scan operation (set 	) is
pushed on the stack for further processing. For example, the
ordered select algorithm (Algorithm ML-2) will repeatedly
call on the E-class processing. The ordered select procedure
is composed of three major blocks:

. The initial loading performs the highest level
ordering and creates an initial set of E-classes from
the original set ðFðA; #ðai1ÞÞ.

. The second phase orders the set of E-classes,
satisfying the selection criterion. For optimal accel-
eration, only Lopt partitions are processed and single
member E-classes are placed directly to the result
stack. We can represent this as FðA; #ðailÞÞ,
2 � l � Lopt.

. Finally, in the third phase, the remaining short
lists are processed online during the creation of the
final result.

Algorithm ML-1. E-class processing

int Process_E_class(Header,k) {

/* Initialize the hashing table to process kth

partition of key */

TableInit();

/* Start from the E-class header */

i = Header;

do {
/* Hash and link kth partition of ith key */

Markð#; a; i; kÞ;
/* Get the next member of E-class, linked in

the collision table */

i = C[ i ];

} while (i ! ¼ � );/* for all members of E-class */

i ¼ GetFirstðLowLimitkÞ;
/* Find the first key larger than kth partition of

LowLimit in the hashing table */

if (i ¼¼ �) then

/* Return “nothing to select” status */

return(1);

else {

/* Push i on the result stack */

push( i );

do {
/* Search the hashing table for the next

member of E-class, smaller than kth

partition of HighLimit */

i ¼ GetNextði; HighLimitkÞ;
/* Push i on the result stack */

push( i );
} while (i ! ¼ � );/* for all members of E-class */

return(0) ; /* Return OK status */

}

}

Algorithm ML-2. Ordered Select

int OrderedSelect(LowLimit, HighLimit) {

/*** 1. Initial loading */

/* Initialize the hashing table to process the set as

the initial E-class */

TableInit();

/* Hash and link the first partition of ith key */

for (i=0; i<N; i++)
Markð#; a; i; 1Þ;

/* Order keys starting from the lowest value */

i ¼ GetFirstðLowLimit1Þ;
if (ði ¼¼ �Þ || (i > HighLimit))

/* Return “nothing to select” status */

return(1);

push_TR( i );

/* Push i on the temporary result stack */
push_TR( i )

/* Scan the hashing table */

do {

/* Search for the next member of E-class */

i ¼ GetNextði;HighLimit1Þ;
/* Push i on the temporary result stack */

push_TR( i );

} while ði ! ¼ �Þ; /* For all members of the E-class */

/*** 2. Ordered hashing is used to process

optimal number of partitions - Lopt */

/* Partition processing */

for (k=2; k<=Lopt; k++) {

do {

/* Pop i from the temporary result stack */

pop_TR( i );
if (C[i] == � ) then

/* Final E-class, no duplicates

push identifier on the final

result stack */

push_FR(i);

else

/* Process E-class */

Process_E_class(i,k);
} while(i ! ¼ �);

}

/*** 3. Process unprocessed E-classes */

do {

/* Pop i from the temporary result stack */

pop_TR( i );

if (C[i] == � )
/* Final E-class, no duplicates push

identifier on the final result stack */

push_FR(i);

else
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/* Process E-class using the List
Insertion Sort algorithm */

Software_E_class_processing(i);

} while(i != � );

return(0); /* Return OK status */

}

2.3 Database Operations

We present implementation of the most frequently used
database operations using ordered table hashing opera-
tions. Without loss of generality, we assume a relational
database model [25]. For example, consider the relation
schema:

Employee(EmployeeID, FirstName, LastName, HireDate,

Salary)

Invoice(Invoice, CustomerID, EmployeeID, Date, Amount)

Database queries are declared using standard query
language SQL [26]. We provide here examples of select,
multiple select, sort, and join database operations. The select
database operation selects a set of objects satisfying given
conditions. Very often, the output of the select operation must
be ordered on the value of some attribute. For example,
selecting and sorting all employees hired after 1 January 1999,
could be performed with the following SQL query:

Query 1: SELECT LastName, FirstName, HireDate

FROM Employees

WHERE HireDate > #1-JAN-1999#

ORDER BY HireDate;

Sometimes select must satisfy multiple criteria. In the first
example, Query 1 can be changed to find all employees
hired after 1 January 1999, with a salary less than $45,000.00.
In that case, the WHERE clause will be changed as follows:

WHERE HireDate > #1-JAN-1999# AND Salary<45,000.00

Another important database operation is joining infor-
mation from two relations. This operation is called join. For
example, Query 2 represents selection of all invoices made
by employee Smith, ordered by date.

Query 2: SELECT Employees.LastName, Invoice.Date,

Invoice.Amount

FROM Employees INNER JOIN Invoice ON

Employees.EmployeeID = Invoice.EmployeeID

WHERE Employees.LastName=’Smith’

ORDER BY Invoice.Amount

A search for a specific record is accelerated using an
index, although use of an index introduces an additional
processing overhead. We use an ordered table hashing to
select and sort fields without building an index over
attribute values.

The generality of the OTHER algorithms allows us to
decompose complex database operations into a set of
primitive operations. As indicated earlier, hashing is often
used to perform this decomposition. For the remainder of this
paper (for the sake of simplicity without loss of generality),
we assume an ideal hashing function with uniform distribu-
tion of hash values that can be approximated by the Poisson
distribution. It should be noted that, in the proposed

algorithms, the single element E-classes do not require further

processing. Therefore, it is desirable to generate as many

single element E-classes as possible as early as possible during

the course of operations. Moreover, note that, in the final

stage, the proposed algorithms simply process many short

lists of elements, regardless of the size of the original problem.

In other words, our algorithms decompose the original

problem into a set of smaller problems determined by the

number of collisions made by the hashing function. Problem

decomposition is significant for operations with nonlinear

execution time, such as sorting.
The E-class processing algorithm can be used to

synthesize most of the database operations and even

introduce some additional optimization. We present the

most important applications in the following subsections.

2.3.1 Select

The select database operation is performed as an ordered

selection between limits Select(LowLimit, HighLimit). Two

types of selection operations are considered: 1) SelectUnique,

where records with keys equal to a predefined value are

selected, and 2) SelectRange, where a list of records with keys

in a predefined range of values are generated. Naturally,

conventional hash-based algorithms can be used to perform

the SelectUnique function. For the SelectRange function, after

the initialization and creation of the hash table, we select only

the records with keys within the specified range during the

scan phase. For example, Query 1 can be implemented using

an ordered select (Algorithm ML-2) on the key HireDate as

Select(#1-JAN-1999#,1).
Unfortunately, long keys require prohibitively large

tables. Therefore, as mentioned earlier, keys are divided

into L partitions and the above sequence of operations is

performed, recursively, on generated E-classes within the

generated range. The following results are the natural by-

products of the Select operation:

. The operation generates a sorted (partially sorted)
result. This could accelerate the execution of the
other operations (e.g., aggregation) in the query. In
most queries (such as Query 1), it is a desirable
feature.

. The result of a select operation can be generated by
using a few key partitions.

. The same initial hash table can be used to generate
the results for multiple select operations. For
example, in the modified Query 1, we can apply an
ordered selection Select(0, 45,000.00) on the result of
Select(#1-JAN-1999#, 1).

2.3.2 Minimum/Maximum

The minimum and maximum values in the processed set

are obtained by processing only the lowest/highest-order

E-classes on every key partition, respectively. The modified

E-class processing algorithm uses only the result of

GetFirst(0) in ascending order for the minimum and

GetFirst(M) in descending order for the maximum, for

every key partition ail, 1 � l � L.
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2.3.3 Sorting

Sorting is performed as an ordered selection in the whole

domain of hash values D2—Selectð0;M ÿ 1Þ on every key

partition. Formally, it can be represented as F ðHireDate; #Þ.
The sort operation can be accelerated in two ways:

. Accelerate sorting by generating the E-class based on
the most significant partition of the keys and then
applying a traditional sort algorithm on the elements
of each E-class or

. Recursively, apply the E-class algorithm on the
members of the generated E-classes based on various
key partitions.

2.3.4 Duplicate Elimination

If we execute E-class processing on all partitions of the key,

all objects in the collision table will be duplicates. Therefore,

set 	 retrieved in the last Scan operation represents the set

of objects without duplicate values.

2.3.5 Join

General � join, where f<;�;¼;�; >g, is performed as an

ordered selection over both relations. Joining of the two

relations A and B can be represented as F ðA [B; #Þ.

3 EXTENDING THE OTHER ALGORITHMS USING BIT

VECTOR PRIMITIVES

Bit vectors are often used to perform or accelerate

nonnumeric operations [8], [27]. Furthermore, the literature

has also addressed the application of bit vector operations

in distributed systems as a means of reducing the

communication cost [28]. As a consequence, the OTHER

algorithms are extended by the application of bit vectors as

a processing aid to improve performance.
The set of values generated by the hashing function # on

objects ai, #ðaiÞ ¼ #i can be represented using a bit vector:

c0; c1; . . . ; cj; . . . ; cMÿ1; cj 2 0; 1f g 8 0 � j �M ÿ 1;

ð16Þ

where

cj ¼ 1; 8 0 � j �M ÿ 1; if and only if #i ¼ j:

Elements of a bit vector can be accessed in two modes:

address access and associative access. The basic OTHER

algorithms can be extended by bit vectors and bit vector

operations. For example, the hash table is assumed to have

an associated bit vector of the same cardinality. Each entry

in the hash table has a corresponding bit in the bit vector

that represents its status (ith bit =1 indicates that the ith

entry in the hash table is occupied). This allows the entries

in the hash table to be initialized and scanned rapidly.
The ability of bit vector operations to improve perfor-

mance also allows one to process larger hash tables. This

further reduces the number of collisions and the cardinality of

collision sets and, hence, accelerates the proposed algorithms.

Bit vectors can be organized and operated as a flat file or,

alternatively, as a hierarchical structure. In the hierarchical

structure, a W-ary tree structure is organized to allow fast

associative access. This organization is of particular interest
when one is dealing with large, sparse bit vectors.

3.1 Flat Bit Vector Organization

In this organization, a bit vector of N bits is realized as a
collection of dN=We words of length W. Each bit b is then
referenced by a word number Cb ¼ bb=Wc and a relative
displacement p within Cb, where p ¼ bÿ ðbb=Wc�WÞ. The
density of a bit vector is defined as fn ¼ n=N , where n is the
number of marked bits in a bit vector of lengthN . Associative
access to the flat bit vector may require, in the worst case,
Nacc ¼ Cb number of accesses. For a small fn, the bit vector
scan is inefficient. As a result, we introduce a hierarchical
organization to represent and access the bit vector.

3.2 Hierarchical Bit Vector Organization

In the case of sparse bit vectors, the hierarchical organiza-
tion allows fast associative access. It is organized as a W-ary
tree over the original bit vector. The height of the tree is
defined as

LMax ¼ logW Nd e: ð17Þ

The fast associative access comes at the expense of more
memory space. The total amount of memory needed to
represent the hierarchical structure is

Ch
b ¼

XLMax

i¼0

Ci
b ¼

WLMax ÿ 1

W ÿ 1
: ð18Þ

And, the maximum number of memory references needed
for an associative access is

Nh
acc ¼ 2 � LMaxÿ 1ð Þ: ð19Þ

It should be noted that the hierarchical organization
requires ðLMaxÿ 1Þ more memory references during the
Mark phase operation.

3.3 Example

Fig. 1 depicts an example of the OTHER sorting process on
a database where age is used as the key attribute. A hash
table S of size M ¼ 10 with its associated bit vector BV is
assumed. The key is partitioned into two parts. The order-
preserving hashing function, #, in this case simply trans-
forms a decimal digit from ASCII to its binary equivalence.
The logic identifier represents the relative record position in
the main memory, implemented as a counter. During initial
table loading, logic identifiers are written in table entries
designated by the first key partition; for instance, logic
identifier 0 is written in table entry 6 and its corresponding
bit in the bit vector is set to indicate that the cell is occupied.
Note that each entry in the hash table (S) is set to point to a
possible linked list of E-class members in table C and a
special value � indicates the end of an E-class list. Fig. 1
shows the contents of the hash table, bit vector, and
collision table after the initial loading. Application of a
scan operation on the hash table S will generate a partial
ordered list of identifiers [4, 3, 5, 0], where identifier 4
represents the head of the E-class [4, 2, 1]. Finally, the
application of our hashing technique on generated E-classes
based on the second key partition will produce the final
sorted result list.
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4 ANALYTICAL MODELING

Analytical modeling is performed to demonstrate the
acceleration of database functions when the OTHER

algorithms are employed. We assume that the basic
primitives are implemented in the hardware and the high-

level operations are synthesized based on the table and bit-
manipulation primitives defined earlier. The final result is a
list of tuple identifiers (tid) without projection and physical
relocation of tuples. Theoretically, maximum acceleration of
the proposed algorithms are given as “Zero time” Table
Processing (ZTP) performance. It is the performance of an
accelerator with infinite speed and private memory which

does not require additional system bus cycles. Therefore,
every read operation would find the result readily in the
accelerator. This section discusses performance improve-
ment of bit vector operations, as well as Select, Sort, and Join

operations.

4.1 Bit Vector Operations

Fig. 2 gives possible acceleration of bit vector operations for
the vector size of 1Mbit. Operations include vector

initialization, mark, and scan primitives. As can be seen,
hierarchical bit vector organization is more efficient than
flat organization if the table utilization is less than 1 percent.

Fig. 3 presents performance improvement. Conventional
processors perform bit-vector scans as a sequence of shift-
and-test steps, even in the case of dedicated bit operation
instructions (Intel’s X86 and Motorola’s 680X0 families).
Therefore, a software algorithm efficiently skips the empty
words of a bit vector, but must scan the whole selected
word bit by bit. The proposed accelerator performs single-
cycle bit scan operations within a processor word. As a
consequence, accelerators are the most efficient for a
moderate table load factor, when every word in the bit
vector has only a few bits marked. As can be seen from
Fig. 3, for both organizations, acceleration depends on hash-
table utilization. In addition, in both cases, certain values of
load factors offer maximum acceleration.

4.2 Select

Fig. 4 shows possible acceleration of the SelectUnique for
different key partition lengths (M) and the selectivity factor
of 1 percent, key length is assumed to be 32 bits. As
expected, performance of the select operation is heavily
dependent on the selectivity factor. Even for a ZTP
operation, performance improves only 20 to 40 percent
relative to a traditional implementation.
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Fig. 1. Application of the proposed OTHER sorting algorithm.

Fig. 2. Average number of processor cycles per key for bit vector

operations (Init, Mark, and Scan) as a function of table utilization.

Fig. 3. Accelerator performance improvement for table operations for flat

(SWF/FA) and hierarchical (SWH/HA) bit vector organization as a

function of table utilization.



4.3 Sort

Fig. 5 depicts the theoretical acceleration of the Quicksort

[22] in the case of recursive E-class processing and different

key partition lengths. Increasing the cardinality of the

database increases the number of collisions and, hence,

increases the size of E-classes and, consequently, decreases

the efficiency of their processing. Use of smaller partitions

creates smaller E-classes in subsequent passes. Theoretically,

infinite acceleration of low-level operations results in sharp

“jumps” in performance, as it can be seen in Fig. 5.
Our analytical modeling also indicates the following:

. The proposed sort method has time complexity OðNÞ
if the partition domain size is equal to the sorting table
size. The time complexity of the traditional sorting
techniques is OðNlogNÞ. However, for a smaller

table size (M << N) and application of a List
Insertion Sort (LIS) to process the final lists, the
complexity of the algorithm increases due to the
larger complexity of the LIS algorithm. If l partitions
are used in table-based preprocessing, according to
(15), the algorithm complexity is still OðNÞ þOðn2

l Þ,
where nl is the average E-class length.

. One can find an optimal table size for an underlying
database that is directly dependent on cardinality (N).

. Traditionally, hash-based algorithms can suffer from
table hot spots due to uneven distribution of hash
values-data skew. As a result, longer E-classes can be
generated. However, table-based preprocessing of
the OTHER sorting algorithm determines exactly
the length of every E-class. Therefore, the optimal
sorting algorithm could be applied to sort collisions.
Moreover, the low table processing overhead (see
Table 1) will not significantly increase the processing
time, even when all the keys are equal.

. An optimal order preserving hashing function for
different key value distributions can be found.

. The initial order of the keys plays a significant role in
existing sorting algorithms, but it is not relevant to
the performance of the OTHER sorting algorithm.
However, performance of the LIS sort, which is used
to sort collisions, is influenced by the initial order
among the keys.

. As expected, the acceleration ratio grows as the
cardinality of the database grows because of faster
processing per key and diminishing influence of
fixed table processing overhead in the case of the
OTHER algorithm. It can be seen in Fig. 5 that
theoretic acceleration increases from 10 (N ¼ 50) to
45 (N ¼ 100; 000).

4.4 Join

As in traditional database management systems, one can

perform either a hash-based join or a sort-merge join.
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Accelerated sort and hash operations accelerate the join
operation of the OTHER algorithms. The range of accelera-
tion is similar to the performance of sort operations.

5 ARCHITECTURE OF THE PROPOSED

ACCELERATOR

Our analysis showed that the table processing operations
(e.g., table initialization and table scan) in the OTHER

algorithms consumes significant amounts of processing
time. For example, in the case of sorting, 40 to 95 percent of
the processing time is due to the table processing operations
depending on the cardinality of the underlying databases.
As a result, we introduced the bit vector and bit vector
operations and attempted to accelerate these operations. In
order to accelerate the aforementioned primitives in a cost-
efficient manner, we developed an accelerator that can be
used either as an extension to the CPU or as a coprocessor.

5.1 Bit Manipulation Accelerator (BMA)

The BMA is used in conjunction with conventional random
access memory; together, they simulate an associative
memory. The proposed accelerator is designed to accelerate
three primitives, TableInit, Mark, and GetNext, as discussed
in Section 2.

As noted earlier, sparse bit vectors introduce overhead;
as a result, we introduced a hierarchical tree organization
for the bit vector. The hierarchical structure of the bit vector
offers a fast Scan and a constant number of memory
accesses per scan cycle; however, these advantages come at
the expense of increased hardware complexity of the
algorithm and a slower Mark primitive. Consequently, we
developed two types of accelerators: The Flat Accelerator
(FA) and the Hierarchical Accelerator (HA). Nevertheless,
regardless of the implementation, the CPU communicates
with the accelerator via the following set of registers, either
as a set of I/O or as memory mapped ports:

. ControlRegister (CR) is used to initialize the accel-
erator to the specific mode of operation (Init, Mark,
Scan) and to adjust the size of the bit vector.

. BitSetRegister (BSR) accepts the bit address as the
argument of the Mark primitive.

. Bit Test Register (BTR) is a one-bit read-only register,
containing the previous status of the cell which is
marked during the Mark primitive.

. Scan Register (SR) is a read-only register containing
the result of the Scan primitive (i.e., the address of
the next marked cell).

The Flat Accelerator (FA): Fig. 6a shows the block
diagram of the FA scheme. As mentioned before, a bit in the
bit vector is referred by the Word Address (WA) and the Bit
Address (BA) within the word. Bit vector scan is performed
sequentially; consequently, the address generator is realized
as a counter. The Word Scan Register (WSR) generates the
address of the marked bit within the selected word (BA)
during the scan phase. The Scan Register SR then con-
catenates WA and BA, generating a unique logical address.
The FA will not take over the system bus if there are more
marked bits in the current index word.

In contrast to the CISC implementation of bit operations,
the WSR generates the next BA in the current word during a
single cycle. Moreover, the WSR automatically clears the
marked bit in the current word to enable further scanning
within the word. The FA can scan a range of bit addresses;
this feature allows us to select the range of key values or a
set of hashed values.

The Hierarchical Accelerator (HA): In addition to the
basic functionality of the FA, the HA incorporates a more
complicated control logic, address generator, and the
scanner to allow hierarchical bit vector operations. The
block diagram of the HA is given in Fig. 6b. The scanner
contains four index registers for current words in every
level of hierarchy. The HA also contains four WSR registers
(one for every level of the hierarchy) to allow rapid
scanning through the hierarchical tree. For a 1Mbit vector
and a word length of 32-bits, this functionality allows us to
access a marked bit in fewer than six memory cycles.

Both accelerators were designed and simulated using the
TANNER standard cell VLSI package. The complexity of
the FA is 1,800 cells and the HA requires 4,300 cells in the
case of 32-bit accelerator [13].

6 SIMULATION AND COMPARATIVE ANALYSIS

Simulation results of software implementation of OTHER
algorithms are given in Table 3. The execution traces are
collected on the DEC Alpha 500au workstation with the
DEC Alpha 21164/500MHz processor and Unix 4.0d
operating system. The performance of the proposed algo-
rithm is compared with the optimized Quicksort algorithm
tuned for execution on the target system [29]. Both
algorithms sort pointers to the records rather than physi-
cally moving the records. The performance of the algorithm
using a table of size M ¼ 64K and M ¼ 1M entries is
reported. As can be concluded, OTHER algorithms achieve
significant performance improvement, even if implemented
in the software. Moreover, table processing consumes
50-95 percent of the processing time in the proposed
algorithms. Hence, efficient hardware support for table
manipulation operations should significantly improve the
performance of the proposed algorithms.

We developed a simulator to evaluate the overall
performance of the proposed accelerator based on the
operation mix of typical database applications, as reported
in the literature. A MIPS-based superscalar CPU with two
instructions per cycle is used as the underlying platform
[30]. The accelerator could be implemented as the on-chip
accelerator tightly coupled to the CPU or an intelligent
off-chip bus master. We simulated the on-chip accelerator
using special read/write instructions for communication
with the accelerator; all instructions that read the result
register of the accelerator will be blocked until the results
are available. In addition, all subsequent instructions are
also blocked. We believe that out-of-order execution,
whenever possible, will further increase the performance
of OTHER algorithms, allowing useful processing while the
CPU is waiting for the result of the accelerator. Execution
capability will further increase the performance of OTHER
algorithms, allowing useful processing while the CPU is
waiting for the result from the accelerator.
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The simulator was also extended to compare and

contrast the effectiveness of the proposed accelerator

against an ideal High-Level Accelerator (HLA). We

assumed that the HLA had infinite processing speed

and internal memory. The processing time would be just

a processor time to write the set of keys and read the

result as a list of processed identifiers (tid). Theoretically,

the maximum acceleration of the proposed table hashing

algorithms was presented as “Zero time” Table Proces-

sing (ZTP) performance. It was the performance of the

accelerator with infinite speed and private memory which

does not require additional system bus cycles.
As anticipated, we found that the performance of the

accelerated system is somewhere between the software and

ideal implementation of table operations (e.g., ZTP)—Fig. 7.

The performance depends on table loading factor (N/M). If

the optimal table size is chosen, stable performance

improvement is achieved, as presented in Fig. 8. Finally,

as noted before, the HA organization offers a better
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Fig. 6. Block diagram of the proposed accelerator. (a) Flat organization. (b) Hierarchical organization (HA).

TABLE 3
Acceleration and Table Processing Overhead of OTHER Sorting Algorithm



performance when the hash tables are sparse (small table

loading factor).
The simulated cache performance of the OTHER sorting

algorithm is given in Table 4. The execution traces were

collected on the DEC Alpha 500au workstation with the

DEC Alpha 21164/500MHz processor [31] and analyzed

using the ATOM cache analysis tool [32]. The simulation

conditions were the same as explained in Section 2. The
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Fig. 7. Comparative analysis of the proposed accelerator, ideal accelerator, and a software approach.

Fig. 8. Acceleration of sort operation.

TABLE 4
Cache Performance of the OTHER Sorting Algorithm



data cache was simulated using an 8KB cache with direct
mapping and 32 byte blocks. It is clear that the OTHER
algorithm has a significantly lower number of data
references per sorted key than the Quicksort algorithm.
The best software is achieved when table size is between
N=2 and N , where N is the number of processed keys. The
data cache miss ratio is similar to that for Quicksort, even
with 4 to 8 times fewer data references.

The effect of cache memory on the performance of the
proposed accelerator architecture model was also simu-
lated. We assumed a separate two-level instruction and data
caches, with access times of one and four processor cycles,
respectively. Our simulator also assumed a main memory
access time of 16 processor cycles. Finally, it was assumed
that all instructions are fetched from the first-level cache.
This assumption was mainly due to the relatively small size
and repetitive nature of both Quicksort and the proposed
OTHER algorithm. Fig. 9 depicts the effect of the cache on
the performance of the FA accelerator with single-partition
preprocessing for the sort operation based on different
cache efficiency (table size M = 256). The relative perfor-
mance improvement for lower cache efficiency could be
explained by the lower number of data references per
sorted key and the higher locality of data access (Table 4).
However, such an advantage diminishes when large tables
are used to process a small number of keys. Since OTHER
algorithms use optimal table size, cache efficiency further
increases the relative performance advantage of the
proposed solution (Fig. 10).

We also examined the overall performance improvement
of database operations. Our testbed included select, sort, and
some typical database queries containing a mixture of
database operations [33], [34]. The choice of the ideal HLA
was due to the fact that we intended to show that our
scheme achieves a similar performance improvement at the
expense of fewer hardware resources. This can be con-
tributed to the generality and effectiveness of the OTHER
primitive operations. Fig. 7 shows the acceleration of sort
operations. Significant acceleration of select operations

could be achieved only for the ideal HLA (up to 80 percent).

The proposed accelerators do not achieve significant

performance improvement due to the simplicity and

regularity of the select operation in the software implemen-

tation (FA accelerates the select operation just for 8 percent

when N > 2; 000).
Fig. 11 presents the overall acceleration of database

queries for a typical mixture of database operations [33],

[35]. It should be noted that our simulation analysis also

shows that, for a select on multiple attributes, the OTHER

accelerator offers superior performance over the HLA.

7 CONCLUSION

Efficient handling of large databases motivated our re-

search. We intended to develop a simple and cost efficient

accelerator for a set of primitive and general nonnumeric
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Fig. 9. FA cache performance for sorting with single pass table

preprocessing.

Fig. 10. Optimal FA performance with variable table size and data cache

hit ratio 70 percent.

Fig. 11. Acceleration of database queries.



operations. As a result, the so-called OTHER primitive
operations were introduced. In addition, we demonstrated
how complex database functions could be mapped into the
OTHER primitives. Analytical and simulation studies were
reported to discuss the effectiveness of our approach. We
have shown that a comparable performance to an ideal
HLA can be achieved by using a very cost efficient
accelerator. Finally, different designs for our accelerator
were introduced and analyzed.

The proposed algorithms are very efficient, even in
software implementation. We have found that the optimal
table size for software implementation on the DEC Alpha
500au is between N=2 and N , where N is the number of
processed keys. The proposed accelerators make efficient
use of small hash tables (Fig. 9), at the expense of additional
memory area for S and C vectors.

It is surprising to find that our flat accelerator (FA),
although requiring three times fewer gates to implement
than the hierarchical accelerator (HA), in almost all cases
demonstrated a higher performance. This suggests that we
can use smaller tables and, hence, partition the keys into
smaller units, along with incorporating the FA accelerator
design.
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