
VHDL --- Part I

ECE 153B --- Feb 2, 2006

Hardware Description Languages

� HDLs support top-down digital systems design

Functional Design

Register Transfer level Design

Logic Design

Circuit Design

Physical Design

Requirements

…… behavioral simulation

…… RTL simulation

…… logic sim, verification, fault sim

…… timing & circuit simulation

…… DRC, LVS, timing simulation …

VHDL --- an acronym

� VHSIC Hardware Description Language

� VHSIC == very high-speed integrated circuit

� Language focus is on interfaces

� Two complementary views

� Behavioral – does not tell much about structure

� Structural – does not give details about behavior

� VHDL allows simulation at many levels

� VHDL now an IEEE standard

� originally IEEE std-1076 in 1987, later IEEE std-1164 when std_logic types added

Behavioral & Structural Descriptions

� digital systems are about signals (0 vs. 1)

� made from components, e.g.

� gates, FF’s, muxes, decoders, counters

� components interconnected by wires

� transform inputs into outputs

Consider a Half-Adder

� a, b are inputs

� sum, carry are outputs

� xor, and are components

� with internal functions that transform their inputs to their outputs

� interconnecting everything are wires

and

xor
sum sum

carry

a
b

Half-Adder is a design “entity”

ent i t y hal f _adder i s

por t (a, b : i n bi t ;

sum, car r y : out bi t) ;

end hal f _adder ;

� VHDL is case insensitive

� Inputs and outputs are referred to as ports

� Ports are special programming objects & also they are signals

� Each must be declared to be a certain type, in this case “bit” (a signal that can be 0 or 1)

� Another possibility is bit_vector – an array or vector of bits

and

xor
sum sum

carry

a
b

IEEE 1164 9-valued logic system

don’t care-

weak 1H

weak 0L

weak unknownw

high impedance (floating)Z

forcing 11

forcing 00

forcing unknownx

uninitializedU

InterpretationValue

• Known as “std_ulogic” or “std_ulogic_vector”

Half-Adder re-written using std_ulogic

ent i t y hal f _adder i s

por t (a, b : i n st d_ul ogi c;

sum, car r y : out st d_ul ogi c) ;

end hal f _adder ;

� VHDL is case insensitive for keywords and identifiers

� Inputs and outputs are referred to as ports

� Ports are special programming objects & also they are signals

� Each must be declared to be a certain type, in this case “bit” (a signal that can be 0 or 1)

� Another possibility is bit_vector – an array or vector of bits

and

xor
sum sum

carry

a
b

A 4-to-1 multiplexer

ent i t y mux i s

por t (I 0, I 1, I 2, I 3 : i n st d_ul ogi c_vect or (7 downt o 0) ;

sel : i n st d_ul ogi c_vect or (1 downt o 0) ;

Z : out s t d_ul ogi c_vect or (7 downt o 0)) ;

end mux;

sumI0

4-to-1
I1
I2
I3

8

/

/

/

/

Z

sel
/

Entities and Architectures

ent i t y mux i s

por t (I 0, I 1, I 2, I 3 : i n st d_ul ogi c_vect or (7 downt o 0) ;

sel : i n st d_ul ogi c_vect or (1 downt o 0) ;

Z : out st d_ul ogi c_vect or (7 downt o 0)) ;

end mux;

ar chi t ect ur e behav of mux i s

- - pl ace decl ar at i ons her e (not e t hat - - i nt r oduces a l i ne comment)

begi n

- - descr i pt i on of behavi or her e

end behav;

� Once we have described an entity’s interface ports,

� we can describe its internal behavior

� Every VHDL design must have at least one entity/architecture pair

Some Common Data Types

Chardata <= ‘x’;‘a’,’b’,’2’,’$’character

msg <= “MEM:” & addr;array of charactersstring

Q <= ‘1’ after 6 ns;7ns, 100pstime

v1 = v2 / 5.3;1.0, -1.0E5real

count <= count + 2;…, -2,-1,0,1,2, …integer

EQ <= True;True, Falseboolean

data <= “00010110”;array of bitsbit_vector

Q <= ‘1’;‘0’, ‘1’bit

ExampleValuesType

VHDL descriptions

� You can write VHDL to describe a part …
� by behavior (allows simulation of HOW & WHAT)

� by dataflow (allows an RTL level of description)

� by structure (allows composition from basic components)

Concurrent signal assignments -- CSAs

ar chi t ect ur e concur _behav of hal f _adder i s

begi n

sum <= (a xor b) af t er 5 ns;

car r y <= (a and b) af t er 5 ns;

end concur _behav;

� We can use CSAs to specify behavior

� If an event (signal transition) occurs on a signal on the rhs of a CSA,

� The expression is evaluated and new values are scheduled for a time in the future

per the optional after clause

� The order of CSAs is not significant. They are concurrent.

A 4-to-1 multiplexer

ent i t y mux i s

por t (A, B, C, D : i n st d_ul ogi c;

sel : i n st d_ul ogi c_vect or (1 downt o 0) ;

Y : out s t d_ul ogi c) ;

end mux;

ar chi t ect ur e m1 of mux i s

begi n

Y <= A when (sel = " 00") el se

B when (sel = " 01") el se

C when (sel = " 10") el se

D when (sel = " 11") ;

end m1;

sumA

4-to-1
B
C
D

Y

sel

called a ‘conditional signal assignment’

• aka a ‘when/else’ statement

/

Selected signal assignment --- with/select

ar chi t ect ur e m2 of mux i s

begi n

wi t h sel sel ect

Y <= A when " 00" ,

B when " 01" ,

C when " 10" ,

D when " 11" ;

end m2;

sumA

4-to-1
B
C
D

Y

sel

• similar to when/else but does not

imply priority

• must cover all possibilities else a

latch will be implied

/

Process statement

ar chi t ect ur e ar ch_name of ent i t y_name i s

begi n

pr ocess_name: pr ocess (sensi t i v i t y l i st)

l ocal decl ar at i on(s) ;

:

begi n

sequent i al st mt ;

sequent i al st mt ;

:

end pr ocess;

end ar ch_name;

• primary means by which sequential circuits are described

Any event (change) in any of these

signals causes execution of the

process

Time stands still during sequential

execution of these statements.

There is another kind of process;

without any sensitivity list. It uses

wait until (condition) or

wait for (condition) statements

Concurrent vs. Sequential Execution

Concurrent (between begin/end in architecture)

� everything happens “at once”

� no significance to stmt order

begin begin

statement

statement

statement

statement

end

statement

statement

statement

end

Sequential (between begin/end in a process)

� statements happen in sequence

Using a process to describe registers
ar chi t ect ur e r ot 2 of r ot at e i s

si gnal Qr eg : st d_l ogi c_vect or (0 t o 7) ;

begi n

r eg: pr ocess (r st , c l k) - - onl y execut e t hi s pr ocess when c l k or r st changes

begi n

i f r st = ‘ 1’ t hen - - asynchr onous r eset

Qr eg <= " 00000000" ;

el s i f (c l k = ‘ 1’ and c l k ’ event) t hen - - l eadi ng edge c l ocki ng

i f (l oad = ‘ 1’) t hen

Qr eg < dat a;

el se

Qr eg < Qr eg(1 t o 7) & Qr eg(0) ; - - r ot at e one posi t i on l ef t

end i f ;

end i f ;

end pr ocess;

Q <= Qr eg; - - concur r ent (C/ L) assi gnment happens concur r ent l y wi t h pr ocess

end r ot 2;

sum

•For synthesis, process must be structured so as to show the intended structure.

Elements of the language

� Signals

� Objects that connect concurrent elements

� All ports are signals

� Variables

� Objects used to store intermediate values between seq statements

� Only allowed in processes & functions …. always local

� Constants

� Assigned a value once (when declared) …. does not change

� Constant countlimit : integer := 255;

� Constant msg : string := “This is a string”;

� Constant myaddr : bit_vector (15 downto 0) := X”F0F0”;

� Literals (next slide)

Literals
� Explicit data values that are assigned to objects or used in expressions

� Character literals --- 1 char ASCII values enclosed in single quotes

� ‘A’, ‘$’, ‘g’

� String literals --- one or more ASCII characters in double quotes

� “testing, 1-2-3” , “This is a string of characters --- i.e. a string literal”

� Bit-string literals --- special string literals to represent binary, octal, hex

� B”01101111” ---- 8-bit binary literal

� O”7602” ------------ 3 x 4 = 12 bits in octal

� X”1CF2” ------------- 16-bit hexadecimal literal

� Numeric literals --- decimal integers and reals

� 5.0 -12.9 1.6E10 2.45E-10

� Based literals

� 2#100010001# 16#FFCC# 2#101.00#E10

� Physical literals – representing physical quantities like time, voltage, current, distance

� 300 ns, 900 ps, 40 ma, 16 v -- always a numeric part and a unit specification

Types and Sub-Types

� Scalar types

� represent a single value

� Composite types

� represent a collection of values (e.g. arrays, records)

� Access types

� ala pointers, providing references to objects

� File types

� reference types (typically files on disk) that contain a sequence of values

Scalar Types

Units: fs,ps,ns,us,ms,sec,min,hr100 nstime

Only used in the report section

of an assert statement

NOTE, WARNING, ERROR,

FAILURE
severity level

floating-point numberreal

‘a’, ‘b’, ‘@’, …character

32-bit, signed integer-231 – (231-1)integer

True, Falseboolean

Only two possibilities‘1’, ‘0’bit

Enumerated & Composite Types

– Enumerated Type
• Ordered scalar subtype used to describe high-level desiugn concepts

symbolically
• t ype st at es i s (I dl e, Read1, Read2, Wr i t e1, Ref r esh,

Cl eanup) ;

– Composite Types

user - def ’ d composi t e

obj ect

any col l ect i on of val uesr ecor d

ar r ay of char act er" s i mul at i on f ai l "st r i ng

1- D ar r ay of bi t" 0010001"bi t _vect or

Record Types

Type dat a_i n i s

r ecor d

Cl kEnabl e : st d_l ogi c;

Di n : st d_l ogi c_vect or (15 downt o 0) ;

Addr : i nt eger r ange 0 t o 255;

CS : st d_l ogi c;

end r ecor d;

si gnal t est _r ec : dat a_i n : = (‘ 0’ , " 1001011011110011" , 165, ‘ 1’) ;

or

t est _r ec. Cl kEnabl e <= ‘ 0’ ;

Operators

L: any 1-D array type with bits or booleans

R: integer

sl l sr l s l a sr a r ol r or

Mult/div, etc. …. but not for synthesis* / mod r em * * abs

Any numeric type (& is concatenate)+ - &

Ordering any scalar or discrete array types= / = < <= > >=

Combine any bit or boolean typesand, or , nand, nor , not , xor , xnor

Attributes
• Attributes are always applied to a prefix, in this case the CLK signal

wai t unt i l CLK=‘ 1’ and CLK’ event and CLK’ l ast _val ue = ‘ 0’ ;

List of attributes

Bool ean (Tr ue i f t ype has

ascendi ng r ange)

‘ Ascendi ng

Lower bound of a t ype or subt ype‘ Low

Upper bound of a t ype or subt ype‘ Hi gh

Number of el ement s i n an ar r ay‘ Lengt h

bi t _ar r ay’ Ri ghtRi ght most el ement i ndex of‘ Ri ght

bi t _ar r ay’ Lef tl ef t most el ement i ndex of ‘ Lef t

