VHDL --- Part |

ECE 153B --- Feb 2, 2006

"
Hardware Description Languages

m HDLs support top-down digital systems design

Requirements

1y
Functional Design | behavioral simulation
Il
Register Transfer level Design| RTL simulation
1l
Logic Design | logic sim, verification, fault sim
iy
Circuit Design | timing & circuit simulation
iy
Physical Design | DRC, LVS, timing simulation ...

" JJ
VHDL --- an acronym

m VHSIC Hardware Description Language

m VHSIC == very high-speed integrated circuit

m Language focus is on interfaces

m Two complementary views
Behavioral — does not tell much about structure
Structural — does not give details about behavior
m VHDL allows simulation at many levels
m VHDL now an IEEE standard
originally IEEE std-1076 in 1987, later IEEE std-1164 when std_logic types added

Behavioral & Structural Descriptions

m digital systems are about signals (O vs. 1)

m made from components, e.qg.

gates, FF’s, muxes, decoders, counters
m components interconnected by wires

transform inputs into outputs

" A
Consider a Half-Adder

) S—
:. carry

@Ry

m a, bareinputs
B Sum, carry are_outputs

m Xor, and are_components

with internal functions that transform their inputs to their outputs

m interconnecting everything are wires

" J
Half-Adder Is a design “entity”

e

sum

@Ry

entity hal f_adder is

port (a, b : in bit;
sum carry : out bit);

end hal f _adder;

m VHDL is case insensitive
m Inputs and outputs are referred to as ports
m Ports are special programming objects & also they are_signals

m Each must be declared to be a certain type, in this case “bit” (a signal that can be 0 or 1)

Another possibility is bit_vector — an array or vector of bits

" S
IEEE 1164 9-valued logic system

Value |Interpretation

U uninitialized

forcing unknown

forcing O

forcing 1

weak unknown

weak 0

X
0
1
Z high impedance (floating)
W
L
H

weak 1

- don’t care

« Known as “std_ulogic” or “std_ulogic_vector”

"
Half-Adder re-written using std_ulogic

e

sum

@Ry

entity hal f_adder is
port (a, b: in std_ulogic;

sum carry : out std ulogic);

end hal f _adder;

m VHDL is case insensitive for keywords and identifiers

m Inputs and outputs are referred to as ports

m Ports are special programming objects & also they are_signals

m Each must be declared to be a certain type, in this case “bit” (a signal that can be 0 or 1)

Another possibility is bit_vector — an array or vector of bits

"
A 4-to-1 multiplexer

4-t0-1

sel

entity nux is
port (10, 11, 12, 13 : in std ulogic_vector (7 downto 0);
sel : in std ulogic_vector (1 downto 0);

Z : out std_ulogic_vector (7 downto 0));

"
Entities and Architectures

 Once we have described an entity’s interface ports,
J we can describe its internal behavior

O Every VHDL design must have at least one entity/architecture pair

entity nmux is
port (10, 11, 12, 13 :

. in std_ul ogic_vector (7 downto 0);

sel : in std_ulogic_vector (1 downto 0);

Z : out std_ulogic_vector (7 downto 0));

end nux;

architecture behav of nmux is

- place declarations here (note that -- introduces a |line conment)
begi n

- description of behavior here

end behav;

" I
Some Common Data Types

Type Values Example

bit ‘0, ‘1 Q <=1}

bit_vector array of bits data <= “000101107;
boolean True, False EQ <= True;

integer .o -2,-1,0,1,2, ... count <= count + 2;
real 1.0, -1.0E5 vli=v2/5.3;

time 7ns, 100ps Q <=1’ after 6 ns;
character ‘a,b’, 2% Chardata <= ‘x’;

string array of characters msg <= “MEM:” & addr;

"
VHDL descriptions

m You can write VHDL to describe a part ...
by behavior (allows simulation of HOW & WHAT)

by dataflow (allows an RTL level of description)

by structure (allows composition from basic components)

"
Concurrent signal assignments -- CSAs

 We can use CSAs to specify behavior
 If an event (signal transition) occurs on a signal on the rhs of a CSA,

= The expression is evaluated and new values are scheduled for a time in the future
per the optional after clause
O The order of CSAs is not significant. They are concurrent.

architecture concur_behav of half _adder is

begi n
sum <= (a xor b) after 5 ns;
carry <= (a and b) after 5 ns;

end concur behav;

" I
A 4-to-1 multiplexer

entity nmux is

port (A, B, C, D: in std_ul ogic; g
sel : in std ulogic_vector (1 downto 0); C 4-to-1 — Y
Y : out std_ulogic); D
end nux; {
architecture mL of nmux is sel
begin
Y <= A when (sel = "00") else)
B when (sel = "01") else N _ _
C when (sel = "10") else > called a ‘conditional signal assignment’
D when (sel = "11"); » aka a ‘when/else’ statement

" A
Selected signal assignment --- with/select

4-t0-1

. . sel
architecture n2 of nmux is

begi n

wth sel sel ect

* similar to when/else but does not
B when "01%, imply priority
I
C when "10", o eyess
» must cover all possibilities else a
D when "11";

. latch will be implied

R

" A
Process statement

 primary means by which sequential circuits are described

Any event (change) in any of these

signals causes execution of the
begin process

architecture arch_nane of entity _nane is

process_nane: process (sensitivity list)

| ocal decl aration(s);

Time stands still during sequential

begi n execution of these statements.
N

sequential stnt;

sequential stnt; -
There is another kind of process;

without any sensitivity list. It uses
wait until (condition) or
walit for (condition) statements

end process:;

end arch_nane;

"
Concurrent vs. Sequential Execution

begin begin
4
—> statement]| statement
]!
—> statement —>| statement
]!
V= statement = statement
V 4
end statement
4
end
Concurrent (between begin/end in architecture) Sequential (between begin/end in a process)
= everything happens “at once” m statements happen in sequence

m no significance to stmt order

" S
Using a process to describe registers

architecture rot2 of rotate i s

signal @eg : std_logic_vector (0 to 7);

begi n
reg: process (rst, clk) -- only execute this process when clk or rst changes
begi n

if rst ='1 then -- asynchronous reset

Q@ eg <= "00000000";

elsif (clk =1 and clk’event) then -- |l eadi ng edge cl ocki ng
if (load = “1") then
Q eg < data;
el se
Qeg < Qeg(lto 7)) & Qeg(0); -- rotate one position left
end if;
end if;

end process;

Q<= Qeg; -- concurrent (C/L) assignnent happens concurrently with process

end rot2;

*For synthesis, process must be structured so as to show the intended structure.

" S
Elements of the language

m Signals
Objects that connect concurrent elements
All ports are signals
m Variables
Objects used to store intermediate values between seq statements
Only allowed in processes & functions always local
m Constants

Assigned a value once (when declared) does not change
m Constant countlimit : integer := 255;
s Constant msg : string := “This is a string”;

s Constant myaddr : bit_vector (15 downto 0) := X"FOFO0”;

m Literals (next slide)

"
Literals

m Explicit data values that are assigned to objects or used in expressions
m Character literals --- 1 char ASCII values enclosed in single quotes
AL S g
m String literals --- one or more ASCII characters in double quotes
“testing, 1-2-3” , “This is a string of characters --- i.e. a string literal”

m Bit-string literals --- special string literals to represent binary, octal, hex

B”"01101111” ---- 8-bit binary literal
0"7602" -----mmmmmm- 3 x4 =12 bits in octal
X"1CF2" mmmmmmmeeeee 16-bit hexadecimal literal

m Numeric literals --- decimal integers and reals
50 -12.9 1.6E10 2.45E-10

m Based literals
2#100010001# 16#FFCC# 2#101.00#E10

m Physical literals — representing physical quantities like time, voltage, current, distance

300 ns, 900 ps, 40 ma, 16v -- always a numeric part and a unit specification

" S
Types and Sub-Types

Scalar types

m represent a single value

Composite types

m represent a collection of values (e.g. arrays, records)
Access types

= ala pointers, providing references to objects

File types

m reference types (typically files on disk) that contain a sequence of values

Scalar Types

bit ‘1,0 Only two possibilities
boolean True, False

integer -231 — (231-1) 32-bit, signed integer
character ‘a, b, '@, ...

real floating-point number

severity level

NOTE, WARNING, ERROR,
FAILURE

Only used in the report section
of an assert statement

time

100 ns

Units: fs,ps,ns,us,ms,sec,min,hr

Enumerated & Composite Types

— Enumerated Type
* Ordered scalar subtype used to describe high-level desiugn concepts

symbolically
 type states is (ldle, Readl, Read2, Witel, Refresh,
d eanup) ;
— Composite Types
bit vector |"0010001" 1-D array of bit
string “simulation fail" array of character
record any col lection of values |user-def’d conposite
obj ect

" S
Record Types

Type data_ in is
record

Cl kEnable : std | oqic;

Din : std logic _vector (15 downto 0);

Addr : integer range 0 to 255;

CS : std loqic;

end record;

signal test_rec : data_in :=(‘0, "1001011011110011", 165, '1’);
or

test _rec.d kEnable <= ‘0’;

Operators

and, or, nand, nor, not, Xor, xnor

Combine any bit or boolean types

Ordering any scalar or discrete array types

Any numeric type (& is concatenate)

Mult/div, etc. but not for synthesis

sl | srl sla sra rol r or

L: any 1-D array type with bits or booleans

R: integer

" A
Attributes

« Attributes are always applied to a prefix, in this case the CLK signal

wait until CLK="1" and CLK event and CLK |l ast_value = ‘0’ ;

List of attributes

‘Left | eft nost el enent i ndex of bit array’ Left
“Ri ght Ri ght nost el enent index of bit _array’ Ri ght
“Hi gh Upper bound of a type or subtype
‘Low Lower bound of a type or subtype

“Ascendi ng | Boolean (True if type has
ascendi ng range)

“Length Nunber of elenents in an array

