System-on-Chip Architectures

: 1]
11 Systolic arrays

Types of special-purpose computers:
1. Inflexible and highly dedicated structures

2. Structures, enabling some programmability and reconfiguration.
Arethere applications for array of simple processors on chip?

Systolic and wavefront arrays are determined by pipelining data concurrently
with the (multi)processing - data and computational pipelining.

[1 Wavefront arrays use data-driven processing capability.

[1 Systolic arrays use local instruction codes synchronized globally.
Data pipelined

through boundary Data preloaded
Processors from data bus > Data /O
Globally Systolic SIMD
synchronous| (prestored local control) (broadcasted control)
Data Wavefront MIMD
driven

(prestored local control) | (prestored local control)
Timing scheme

Definition: A systolic array is a network of processors that rhythmically compute
and pass data through the system.

Kalle Tammemae, Dept. of CE, Tallinn Technical University 2000/02 1(18)



System-on-Chip Architectures

. I
11.1 Applications

Basic matrix algorithms:

matrix-vector multiplication

matrix-matrix multiplication

solution of triangular linear systems

LU and QR decomposition (resulting triangular matrices)

preconditioned conjugate gradient (solving a set of positive definite
symmetric linear equations), etc.

In general, various DSP algorithms can be mapped to systolic arrays:
FIR, IIR, and ID convolution
Interpolation
Discrete Fourier Transform
Template matching
Dynamic scene analysis
Image resampling, etc.
umeric applications:
Data structures - stacks and queues, sorting
Graph algorithms - transitive closure, minimum spanning trees
Language recognition
Dynamic programming
Relational database operations, etc.
Kalle Tammemae, Dept. of CE, Tallinn Technical University 2000/02 2(18)

N N O I O

N O I

Non-

>

N O O I R



System-on-Chip Architectures

11.2 Basic configur ation

Memory |

> PE —» PE —>| PE —*—{ PE | PE

Data item is not only used when it is input but also reused as it moves through
the pipelines in the array.

Factors to consider:

[]

N B I

Balancing the processing and input/output bandwidths

Balancing between general-purpose and special-purpose systolic systems
Cost of implementation

Modularity and expansion capabilities

Trade-off between simplicity and complexity (capabilities of the cell)

Thoroughly investigated in eighties [IEEE Computer, Jan. 1982, July 1987].
“Systolic array” - analogy with the human circulatory system:

[]

heart == global memory,

[1 network of veins == array of processors and links.

Kalle Tammemae, Dept. of CE, Tallinn Technical University 2000/02 3(18)



System-on-Chip Architectures

[IHEEI
11.2.1 VL Sl processor arrays

Design criteria:
[J Modularity and simplicity

[1 Locality and regularity

[1 Extensive pipelineability and parallelism

[1 Efficiency and speedup

[1 Data streams in different directions.

TOPOLOGY:

Planar arrays: Linear arrays:

[1 Triangular [1 Unidirectional Linear Array
[ Square (one, two or three data-paths

(Why?))
[1 Bidirectional Linear Array
(opposite streams)

[1 Three-path communication
Linear Array

[ Hexagonal

Kalle Tammemae, Dept. of CE, Tallinn Technical University 2000/02 4(18)



System-on-Chip Architectures

11.2.2 Systolic vector-matrix multiplication

Invented by Kung and Leiserson (1978).
Let's consider vector-matrix multiplication |X| x |A| = |||, where A is nxn
matrix. In case of n=4, the multiplication can be organized using bidirectional
linear array of 7 processing elements:

y 200
- ~ - e yO > L y]_ . -
> <« X1 |- < X0 |- - < <
1301 y 210
- N > yO s s yl L > y2 >
>X2 < <X1 - - XO < < -
y802 ya11 y 220
- > Yol|» > Y1i» > Yol >
> < X2 < < X1 |- - X | -
y 233
- > Yo > Y3i» L > >
> < - < X3 |- < X2 | -

Kalle Tammemae, Dept. of CE, Tallinn Technical University [2000/02

Inner product step (ISP) cell:

yout = yin'l'xin X ain

X

out

= Xin

7 STEPS

5(18)



System-on-Chip Architectures

11.2.3 Wavefront systolic multiplication

Control unit Control unit
Processing Processing
unit unit

' '

Control unit

Processing
unit

'

Interconnect network (local)

Example of matrix-matrix multiplication:

Program| memory modules
veie ) ) second wavefront
memory # ) t , # i
Yy o ¥ .o Y .first wavefront
- el el e C
7 7 7 // // /, /
n P 77 ;
G) /ﬁl’e / //% / ’ %//
S s Y Y
© 7 ot 4 e /
o - | P o
S P iy P
% i
7 ’
g 4—7’ ,Q—»/ | >
QO {7 — 7
2 BT

Kalle Tammemae, Dept. of CE, Tallinn Technical University [2000/02

C=AxB

Decomposed into multiplication of
columns of A; and rows of B;.

= A xBy+A,xB,+..+AyxBy

At #1 and processor (1,1):
First wave:

cfp) = cfP +ay, xby,

Second wave:

c{d) = cfP +a;,xby

6(18)



System-on-Chip Architectures

. [IHEEI
11.2.4 Implementation issues |

Design of large-purpose systems:
[0 Adding HW mechanism to reconfigure the topology and interconnection
matrix;
[J Using SW to map different algorithms into a fixed-array architecture;
[1 Combination of both.

Design and mapping techniques:
To synthesize a systolic array from the description of an algorithm, a designer
needs a through understanding of:

1. systolic computing
2. application
3. algorithm
4. technology
Granularity:
[ bit-wise
[0 word-level
[1 complete program
Extensibility:
[1 Execution the same algorithm for a problem of a larger size?

Kalle Tammemae, Dept. of CE, Tallinn Technical University 2000/02 7(18)



System-on-Chip Architectures

. [IHEEI
11.2.5 Implementation issues||

Clock synchronization:
[J Avoiding clock skews (specific layout, data flow in one direction)

[1 Self-timed system - wavefront arrays
Reliability:
Reliability of an array of processors = Reliability of processor
[J Introducing the fault-tolerant mechanisms
[ run-time testing
[J maximizing reliability while minimizing the corresponding overhead

Partitioning of large problems:
Executing a large problem without building a large systolic array.

1 Identifying and exploiting algorithm partitions (array “travels through the set
of computations of the algorithm in the right order until it “covers” all the
computations)

[ restating the problem so that the problem becomes a collection of smaller
problems.

[1 Holy grail - universal building block
[ Integration into existing systems

# of processorsin array

Kalle Tammemae, Dept. of CE, Tallinn Technical University 2000/02 8(18)



System-on-Chip Architectures

. [IHEEI
11.2.6 VL SI processor array characteristics

Timing:

Execution time - all the computations

Input time - data to processor where the first computation takes place
Output time?! - data from processor where the last computation finished
Load time - data elements to array

Unload time - resulting data elements exit the array

Total processing time

N I D I O

Systolic array algorithms:
[1 Synchronicity - asynchronous mode - wavefront, synchronous mode - SA

[1 Concurrency control - dependency between computations
[1 Granularity - simplicity of the cells first
[ Communication geometry - local interconnections

. e _ 1 S
Speedup and efficiency: S, = = E, = .
P

1. Usually, the input and output time equal to the processor array size.
Kalle Tammemae, Dept. of CE, Tallinn Technical University 2000/02 9(18)



System-on-Chip Architectures

11.3 Algorithm mapping and programming

Efficiency of systolic array implementation in VLS| depends of locality of
Interconnections.

@Igorithmic notation expressin

the recurrence and parallelism| Data Graph (DG) design
(space-time activities)

Y
VLSI hardware description or
machine code

executable array processor) Data Graph implementation

Straightforward implementation of a DG (assigning each node in DG to a PE) is
not (area) efficient.
[1 Mapping DGs to systolic arrays

[] linear assignment (projection) - nodes along a straight line are mapped to a
PE

[] linear schedule - mapping a set of parallel equitemporal hyperplanes to a set of
linearly increased time indices.

Projection hyperplanes

direction

d

s (normal vector)

Kalle Tammemae, Dept. of CE, Tallinn Technical University 2000/02 10(18)



System-on-Chip Architectures

. . 1]
11.3.1 Rulesto obtain systolic array from DG

Let's denote time index of a node s 'i.

[ s'e > 0. Here e denotes any edge in the DG. The number s'e denotes the
number of delays (Ds) on the edge of the systolic array. The schedule vector
S must obey the data dependencies of the DG,; that is, if node i depends on
the output of node j, then | must be scheduled before |.

[ s'd > 0. The projection vector d and the schedule vector s cannot be
orthogonal to each other; otherwise, sequential processing will result.

In systolic mapping, the following rules are adopted:
[ The nodes in the systolic array must correspond to the projected nodes in the
DG.

[1 The arcs in the systolic array must correspond to the projected components
of arcs in DG.

[1 The input data must be projected to the corresponding arcs in the systolic
array.

The DG is shift-invariant if the dependency arcs corresponding to all the nodes

In the index space do not change with respect to the node positions.

(Matrix multiplication, convolution, autoregressive filtering, discrete Fourier
transform, discrete Hadamard transforms, Hough transforms, least squares
solutions, sorting, perspective transforms, LU decomposition, QR decomposition
belong to class of shift-invariant algorithms)

Kalle Tammemae, Dept. of CE, Tallinn Technical University 2000/02 11(18)



System-on-Chip Architectures

. . [IHEEI
11.3.2 Example of mapping DG to a systolic array

DG for convolution-like algorithm:

RS
N
< ggg
2D
S

S - hyperplane’s normal vector
d - projection direction
D - delay

Kalle Tammemae, Dept. of CE, Tallinn Technical University 2000/02 12(18)



System-on-Chip Architectures

. [IHEEI
11.3.3 Mapping DGsto wavefront arrays

A wavefront array does not have a fixed schedule => operation is didacted by:
[1 data dependency structure;

1 initial data tokens.

A wavefront array can be modeled by a dataflow graph (DFG).

A node is enabled when all input arcs contain tokens and all output arcs contain
empty queues.
[ o o

d - projection direction
Connection with Petri nets?

Kalle Tammemae, Dept. of CE, Tallinn Technical University 2000/02 13(18)



System-on-Chip Architectures

. 1]
11.3.4 Process of mapping DG to DFG

[1 To get shift-invariant DG (to get uniform appearance), some of boundary
nodes have to be assigned some initializing data.

[ Each input data token in the DG is mapped to a initial token on the
corresponding arc in the DFG.

[ The queue size for each DFG arc is assumed to be large enough to
accommodate the target algorithms.

[1 Wavefront design is more appealing in cases where there is timing
uncertainty among the nodes in DG.

[ Analyzing the exact performance of a wavefront array, which is data-driven
and sometimes data-dependent, is very difficult.

[1 There exists upper bound of the execution time of wavefront arrays.

Kalle Tammemae, Dept. of CE, Tallinn Technical University 2000/02 14(18)



System-on-Chip Architectures

11.3.5 Queues

Using queues is a way to implement asynchronous communication in a
wavefront array.

[1 Can be implemented in SW or in HW.

Let the DG node computation times to be data-independent. Hence, the DG can
be scheduled a priori and the minimum computation time can be determined.

[l Insufficient queue size usually results in an additional slowdown of the
computation.

Let’s suppose that DG arc a is projected to DFG arc a'. Then:
[J The scheduled completion time, t,, for the initiating node of a indicates
when the output data of the node are produced (put) on a’.

[J The scheduled completion time, t,, for the terminating node of a indicates
when the data are consumed from a’. Apparently, if 7 is the node
computation time, then t,-t;+1 represents the length of time a data token
stays in a’ and its two end nodes.

[1 The pipelining period, a, which is the time period between two consecutive
data being put on a’, can be determined from the schedule. Thus the queue
size for a’, Q, can be calculated as: Q = f(tz—t1 +T)/O(_|. This is correct
when sustained rate is equal at initiating and at terminating node.

Kalle Tammemae, Dept. of CE, Tallinn Technical University 2000/02 15(18)



System-on-Chip Architectures

. . L]
11.4 Systolic array programming

Let’s look the case with fixed interconnections between PEs and fixed queue
length for each data link. Programming a wavefront array means specifying the
sequence of operations for each PE. Each operation includes:

[1 the type of computation (addition, multiplication, division, etc.)
the input data link (north, south, east, west, or internal register),
the output data link,

an additional specification i.e. time scheduling, when an operation in PE
actually occurs (not required in wavefront array).

I I

Programming languages
[1 Occam (historically for Inmos Transputers). Multiplication example:
CHAN vertical [n*(n+1)]:
CHAN hori zontal [n*(n+1)]:
PAR i =[O0 FOR n]
PAR j =[0 FOR N|
mult (vertical[(n*i)+], vertical[(n*i)+ +1],
horizontal [(n*i)+)], horizontal [(n*(i+1))+]]):
[1 MDFL - Matrix Data Flow Language

Kalle Tammemae, Dept. of CE, Tallinn Technical University 2000/02 16(18)



System-on-Chip Architectures

: [INEEI
11.5 Architecture
The system components: /O unit Host
[J processor array(s) 1 ! Interface unit l
[1 1-D (linear), ! ! ! !
[1 2-D (mesh, hexagonal), array
0 3-D ((hyper)cube connected), 77 C%?,tirtd
U interconnect network(s) - local, ; S R ;
global, inter-array, intra-array,... ... |
[J a host computer, interface unit. i i |
Processing element components: D I DT «-— |
[1 ALU (fixed or floating point) ! ! processor |
[ memory unit . . array |
[J control unit (RISC, CISC) ¢ ¢ P ] i
[ /O unit (processing concurrently Interconnect network PP

with data transfer)

Host:
[J system monitoring, batch data storage, management, data formatting

[1 determines the schedule program for interface unit and network
[1 generates global control codes and object codes for PEs.

Kalle Tammemae, Dept. of CE, Tallinn Technical University 2000/02 17(18)



System-on-Chip Architectures

11.6 Conclusion

Why wavefront arrays?

Factor Systolic array

Wavefront array

Clock distribution Critical, but may result con-
ceptually simpler design.
Clock skew problem.

Minor problems

Processing speed Suffer when processing

times in PEs are not uniform.

Handshaking overhead.
Beneficial when processing
Is data dependent (skipping
multiplication with zero).

Programming Assignment of computa-
tions to PEs and scheduling

Only assignment of compu-
tations to PEs.

Fault tolerance: None.
[0 fabrication-time | For self-testing full array

[0 compile-time must be interrupted.
] runtime

Runtime fault tolerance (due
to data-driven behaviour).
Self-testing of a single PE is
possible.

Kalle Tammemae, Dept. of CE, Tallinn Technical University [2000/02

1

8(18)



