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What Will You Get from Class

� Ideas about parallel processing

� Different approaches to parallel programming 
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Introduction to Parallelism

� Sequential Computing
– Single CPU executes stream of instructions.

Adapted from: http://www.llnl.gov/computing/tutorials/parallel_comp
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Introduction to Parallelism

� Parallel computing
– Partition problem into multiple, concurrent 

streams of instructions.

Classification

MPMD
Multiple Program
Multiple Data

SPMD
Single Program
Multiple Data

NowadaysFlynn’s Taxonomy (1966-now)

MIMD
Multiple Instructions
Multiple Data

MISD
Multiple Instructions
Single Data

SIMD
Single Instruction
Multiple Data

SISD
Single Instruction
Single Data

• Execution models impact the above programming model
• Traditional computer is SISD
• SIMD is data parallelism while MISD is pure task parallelism
• MIMD is a mixed model (harder to program)
• SPMD and MPMD are less synchronized than SIMD and MIMD
• SPMD is most used model, but MPMD is becoming popular
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Introduction to Parallelism

� Goal of parallel computing
– Save time - reduce wall clock time.

� Speedup -

– Solve larger problems - problems that take 
more memory than available to 1 CPU.

Reduce wall clock time

� Methods
– Parallelizing serial algorithms (parallel loops)

� Total number of operations performed changes only slightly
� Scalability may be poor (Amdahl’s law)

– Develop parallel algorithms
� Total number of operations may increase, but the running time 

decreases

� Work Complexity
– Serialization: parallel algorithm executed sequentially 

Serializing  parallel algorithm may lead to sub-optimal 
sequential complexity 
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Performance Models

� Abstract Machine Models (PRAM, BSP, and 
many, many others)
– Allow asymptotical analysis and runtime estimations
– Often inaccurate for selecting the right 

implementation/algorithm on a given architecture

� Programming Primitives Behavior
– Allow the selection of the right implementation 
– Increases programming effort

Abstract Machine

� PRAM (Parallel RAM, shared memory)
– Processors access a shared flat memory
– Performing an operation or accessing a memory 

location has cost = 1
� BSP (Bulk Synchronous Parallel, distributed 

memory)
– Computation proceeds through supersteps
– Cost of a superstep is w+hg+l
– w is the time for computing on local data
– h is the size of the largest message sent
– g and l are architectural parameters describing network 

bandwidth and latency, respectively
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Parallel Programming Models

Many languages and libraries exist for creating 
parallel applications.
Each presents a programming model to its users.

During this course, we’ll discuss criteria for evaluating a 
parallel model and use them to explore various approaches.

Charm++
UPC
STAPL
X10
Fortress
Chapel 

Linda 
MapReduce
Matlab DCE

OpenMP
Pthreads
Cilk
TBB
HPF
MPI
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Programming Models Evaluation

What should we consider when evaluating a parallel 
programming model?

– Parallel Execution Model
– Productivity
– Performance
– Portability

Table of Contents

� Introduction to Parallelism
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� Shared Memory Programming
� Message Passing Programming
� Shared Memory Models
� PGAS Languages
� Other Programming Models
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Parallel Execution Model

Operating System Kernel SchedulerKernel Threads I/O Synchronization

Memory Management

Parallelism Communication

Scheduling Load Balancing

Runtime System 

Parallel 
Programming 

Library/Language

Application

Synchronization

CommunicationParallelism Synchronization Consistency

System independent abstraction 

Consistency

User view

PPL/L view

Functional extension of the OS
in user space

Parallel I/O

PortabilityPerformanceProductivityExec  Model

Parallel Execution Model

� Parallel Programming Model (user view)
– Parallelism
– Communication
– Synchronization
– Memory consistency

� Runtime System (RTS)
– Introduction, definition and objectives
– Usual services provided by the RTS
– Portability / Abstraction

PortabilityPerformanceProductivityExec  Model
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Parallel Programming Model (user view)

� Parallelism

� Communication

� Synchronization

� Memory consistency

PortabilityPerformanceProductivityExec  Model

� User not required to be aware of the parallelism
– User writes programs unaware of concurrency

� Possible re-use previously implemented sequential algorithms
� Often minor modifications to parallelize

– User not required to handle synchronization or communication
� Dramatic reduction in potential bugs
� Straightforward debugging (with appropriate tools)

� Productivity closer to sequential programming
� Performance may suffer depending on application
� E.g. Matlab DCE, HPF, OpenMP*, Charm++*

Implicit parallelism (single-threaded view)

* at various levels of implicitness

PPM – Implicit Parallelism

PortabilityPerformanceProductivityExec  Model
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PPM – Explicit Parallelism

� User required to be aware of parallelism
– User required to write parallel algorithms

� Complexity designing parallel algorithms
� Usually impossible to re-use sequential algorithms (except for 

embarrassingly parallel ones)
– User responsible for synchronization and/or communication

� Major source of bugs and faulty behaviors (e.g. deadlocks)
� Hard to debug
� Hard to even reproduce bugs

� Considered low-level
– Productivity usually secondary
– Best performance when properly used, but huge development cost
– E.g. MPI, Pthreads

Explicit parallelism (multi-threaded view)

PortabilityPerformanceProductivityExec  Model

PPM – Mixed Parallelism

� Basic usage does not require parallelism awareness
� Optimization possible for advanced users

� Benefits from the two perspectives
– High productivity for the general case
– High performance possible by fine-tuning specific areas of the 

code

� E.g. STAPL, Chapel, Fortress

Mixed view

PortabilityPerformanceProductivityExec  Model
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PPM – Explicit Communication

� Message Passing (two-sided communication, P2P)
– User explicitly sends/receives messages (e.g., MPI)
– User required to match every Send operation with a Receive
– Implicitly synchronizes the two threads

� Often excessive synchronization (reduces concurrency)
� Non-blocking operations to alleviate the problem (e.g., MPI_Isend/Recv)

� One-sided communication
– User uses get/put operations to access memory (e.g., MPI-2, 

GASNet, Cray T3D)
– No implicit synchronization (i.e., asynchronous communication)

Explicit Communication

MPI _Send

MPI _Recv

MPI _Put

[ not hi ng]

PortabilityPerformanceProductivityExec  Model
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PPM – Explicit Communication

� Based on Message Passing
� Messages activate a handler function or method on the remote side
� Asynchronous

– No return value (no get functions)

– Split-phase programming model (e.g. Charm++, GASNet)
� Caller provides a callback handler to asynchronously process “return” value

� Synchronous
– Blocking semantic (caller stalls until acknowledgement/return is received)
– Possibility to use get functions

� Mixed (can use both) 
– E.g., ARMI (STAPL)

Explicit Communication – Active Message, RPC, RMI

PortabilityPerformanceProductivityExec  Model

PPM – Implicit Communication

� Communication through shared variables
� Synchronization is primary concern

– Condition variables, blocking semaphores or monitors
– Full/Empty bit

� Producer/consumer between threads are expressed with 
synchronizations

� Increases productivity
– User does not manage communication
– Reduced risk of introducing bugs 

Implicit Communication

PortabilityPerformanceProductivityExec  Model
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PPM – Explicit Synchronization

� Critical section / locks 
– One thread allowed to execute the guarded code at a time

� Condition variables / blocking semaphores 
– Producer/consumer synchronization
– Introduces order in the execution

� Monitors / counting semaphores 
– Shared resources management

� Barrier / Fence (global synchronization)
– Threads of execution wait until all reach the same point

� E.g., Pthreads, TBB, OpenMP

Explicit Synchronization

PortabilityPerformanceProductivityExec  Model
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PPM – Implicit Synchronization

� Hidden in communication operations (e.g., two-sided 
communication)

� Data Dependence Graph (DDG)
– PPL synchronizes where necessary to enforce the dependences
– E.g., STAPL

� Distributed Termination Detection 
– When implemented as background algorithm (e.g., in Charm++)

� Improved productivity
– Less bugs from race conditions, deadlocks …

� E.g., STAPL, Charm++, MPI-1 and GASNet (to a certain extent)

Implicit Synchronization

PortabilityPerformanceProductivityExec  Model
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PPM – Memory Consistency

Introduction to Memory Consistency

� Specification of the effect of Read and Write operations on 
the memory

� Usual user assumption : Sequential Consistency

Definition: [A multiprocessor system is sequentially consistent if] 
the result of any execution is the same as if the operations of all the 
processors were executed in some sequential order, and the 
operations of each individual processor appear in this sequence in 
the order specified by its program.

PortabilityPerformanceProductivityExec  Model

PPM – Memory Consistency

Introduction to Memory Consistency

Sequential Consistency: Don’t assume it !
� Sequential Consistency (SC)

– MIPS/SGI
– HP PA-RISC

� Processor Consistency (PC)
– Relax write�read dependencies
– Intel x86 (IA-32)
– Sun TSO (Total Store Order)

� Relaxed Consistency (RC)
– Relax all dependencies, but add fences
– DEC Alpha
– IBM PowerPC
– Intel IPF (IA-64)
– Sun RMO (Relaxed Memory Order)

Material from: Hill, M. D. 2003. Revisiting "Multiprocessors Should Support Simple Memory Consistency Models" ,
http://www.cs.wisc.edu/multifacet/papers/dagstuhl03_memory_consistency.ppt

SC

PC

Relaxed Models

Weakly Ordered 
Models

Enforce Data 
Dependences

Do NOT 
Enforce Data 
Dependences

I A- 32
SPARC TSO

I A- 64
SPARC RMO Al pha

PortabilityPerformanceProductivityExec  Model
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PPM – Memory Consistency

Introduction to Memory Consistency

/ /  Dekker ’ s al gor i t hm f or  cr i t i cal  sect i ons
/ /  I ni t i al l y  Fl ag1 = Fl ag2 = 0

/ /  Dekker ’ s al gor i t hm f or  cr i t i cal  sect i ons
/ /  I ni t i al l y  Fl ag1 = Fl ag2 = 0

P1

Fl ag1 = 1;       W( Fl ag1)
I f  ( Fl ag2 == 0)  R( Fl ag2)
/ /  cr i t i cal  sect i on
. . .

P1

Fl ag1 = 1;       W( Fl ag1)
I f  ( Fl ag2 == 0)  R( Fl ag2)
/ /  cr i t i cal  sect i on
. . .

P2

Fl ag2 = 1;       W( Fl ag2)
i f  ( Fl ag1 == 0)  R( Fl ag1)
/ /  cr i t i cal  sect i on
. . .

P2

Fl ag2 = 1;       W( Fl ag2)
i f  ( Fl ag1 == 0)  R( Fl ag1)
/ /  cr i t i cal  sect i on
. . .

Example :
Cor r ect  execut i on i f  a pr ocessor ’ s 
Read oper at i on r et ur ns 0 i f f i t s  
Wr i t e oper at i on occur r ed bef or e 
bot h oper at i ons on t he ot her  
pr ocessor .

� Relaxed consistency : buffer write operations 
– Breaks Sequential Consistency
– Invalidates Dekker’s algorithm

– Write operations delayed in buffer

Material from & further reading: Adve, S. V. and Gharachorloo, K. 1996. Shared Memory Consistency Models: A Tutorial. Computer 29, 12 (Dec. 1996), 
66-76. DOI= http://dx.doi.org/10.1109/2.546611

PortabilityPerformanceProductivityExec  Model

PPM – Memory Consistency

� Improve performance
– Reduce the ordering requirements
– Reduce the observed memory latency (hides it)

� Common practice 
– Compilers freely reorder memory accesses when there are no 

dependences
– Prefetching  
– Transparent to the user

Relaxed Memory Consistency Models

PortabilityPerformanceProductivityExec  Model
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RTS – Introduction

� Software layer
– Linked with the application
– Executes in user space

� Provides applications with functionalities
– Missing in the Operating System and drivers
– More advanced/specialized than the OS counterpart

PortabilityPerformanceProductivityExec  Model

RTS – Definition*

Functional extension of the Operating System in user 
space

– No precise definition available
– Fuzzy functional boundary between RTS and OS

� Services are often a refined or extended version of the OS
� Functional redundancy with OS services

� Avoid entering Kernel space 
� Provide reentrancy
� E.g., threading, synchronization, scheduling …

– Widely variable set of provided services
� No minimum requirements 
� No limit on the amount of functionality

*Non-formal, short definition

PortabilityPerformanceProductivityExec  Model
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RTS – Objectives

Objectives of RTS for Parallel Programming Languages/Libraries:

– Enable portability
� Decouple the PPL from the system
� Exploit system-specific optimized features (e.g., RDMA, Coprocessor)

– Abstract complexity of large scale heterogeneous 
systems to enable portable scalability

� Provide uniform communication model
� Manage threading, scheduling and load-balancing

� Provide parallel I/O and system-wide event monitoring 

– Improve integration between application and system
� Use application runtime information

� Improve RTS services (e.g., scheduling, synchronization)

� Adaptive selection of specialized code

PortabilityPerformanceProductivityExec  Model

RTS – Provided Services

� Common RTS provide a subset of the following (not limited to)
– Parallelism 

� Type of parallelism (API)

� Threading Model (underlying implementation)

– Communication
– Synchronization
– Consistency
– Scheduling
– Dynamic Load Balancing

– Memory Management
– Parallel I/O

� Some functionalities are only provided as a thin abstraction 
layer on top of the OS service

PortabilityPerformanceProductivityExec Model
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RTS – Flat Parallelism

� All threads of execution have the same status
– No parent/child relationship

� Threads are active during the whole execution
� Usually constant number of threads of execution

� Well adapted for problems with large granularity
� Difficult to achieve load-balance for non-embarrassingly 

parallel applications
� E.g. MPI

Parallelism types – Flat Parallelism

PortabilityPerformanceProductivityExec  Model

RTS – Nested Parallelism

� Parallelism is hierarchal
– Threads of execution can spawn new threads to execute their task
– Exploits multiple levels of parallelism (e.g. nested parallel loops)

� Good affinity with heterogeneous architectures (e.g. 
clusters of SMPs)*
– Allows the exploitation of different levels of granularity

� Natural fit for composed parallel data structures*
– E.g. p_vect or < p_l i s t < Type > >

� E.g. OpenMP, Cilk, TBB

Parallelism types – Nested Parallelism

* Also for dynamic parallelism.

PortabilityPerformanceProductivityExec  Model
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RTS – Dynamic Parallelism

� Threads of execution are dynamically created whenever 
new parallelism is available
– Exploits any granularity of parallelism available
– Necessary to achieve scalability for dynamic applications

� Improves load-balancing for dynamic applications
– Work stealing
– Thread migration

� Parallelism can be dynamically refined (e.g. mesh 
refinement*)

� E.g. STAPL, Charm++, AMPI, Chapel

* Can also be achieved by redistributing the data.

Parallelism types – Dynamic Parallelism

PortabilityPerformanceProductivityExec  Model

RTS – Threading Models (1:1)

1:1 threading model: (1 user-level thread mapped onto 1 kernel thread)

– Default kernel scheduling
� Possibility to give hints to scheduler (e.g., thread priority 

levels)
� Reduced optimization opportunities

– Heavy kernel threads
� Creation, destruction and swapping are expensive
� Scheduling requires to cross into kernel space

– E.g., Pthreads

PortabilityPerformanceProductivityExec  Model
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RTS – Threading Models (M:1)

M:1 threading model: (M user-level threads mapped onto 1 kernel thread)

– Customizable scheduling 
� Enables scheduler-based optimizations (e.g. priority 

scheduling, good affinity with latency hiding schemes)

– Light user-level threads
� Lesser threading cost

� User-level thread scheduling requires no kernel trap

– Problem: no effective parallelism
� User-level threads’ execution serialized on 1 kernel thread
� Often poor integration with the OS (little or no communication)
� E.g., GNU Portable Threads

PortabilityPerformanceProductivityExec  Model

RTS – Threading Models (M:N)

M:N threading model: (M user-level threads mapped onto N kernel threads)

– Customizable scheduling 
� Enables scheduler-based optimizations (e.g. priority scheduling, 

better support for relaxing the consistency model …)

– Light user-level threads
� Lesser threading cost

� Can match N with the number of available hardware threads : no kernel-
thread swapping, no preemption, no kernel over-scheduling …

� User-level thread scheduling requires no kernel trap

� Perfect and free load balancing within the node
� User-level threads are cooperatively scheduled on the available kernel 

threads (they migrate freely).

– E.g., PM2/Marcel

PortabilityPerformanceProductivityExec  Model
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RTS – Communication

� Systems usually provide low-level communication primitives
– Not practical for implementing high-level libraries
– Complexity of development leads to mistakes

� Often based on other RTS libraries 
– Layered design conceptually based on the historic ISO/OSI stack
– OSI layer-4 (end-to-end connections and reliability)  or layer-5 (inter-

host communication)
– Communication data is not structured
– E.g., MPI, Active Message, SHMEM

� Objective: Provide structured communication
– OSI layer-6 (data representation) – data is structured (type)
– E.g., RMI, RPC

PortabilityPerformanceProductivityExec  Model

RTS – Synchronization

� Systems usually provide low-level synchronization 
primitives (e.g., semaphores)
– Impractical for implementing high-level libraries
– Complexity of development leads to mistakes

� Often based on other RTS libraries 
– E.g., POSIX Threads, MPI …

� Objective: Provide appropriate synchronization primitives
– Shared Memory synchronization

� E.g., Critical sections, locks, monitors, barriers …

– Distributed Memory synchronization
� E.g., Global locks, fences, barriers …

PortabilityPerformanceProductivityExec  Model
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RTS – Consistency

� In shared memory systems
– Use system’s consistency model
– Difficult to improve performance in this way

� In distributed systems: relaxed consistency models 
– Processor Consistency

� Accesses from a processor on another’s memory are sequential
� Limited increase in level of parallelism

– Object Consistency
� Accesses to different objects can happen out of order
� Uncovers fine-grained parallelism

� Accesses to different objects are concurrent

� Potential gain in scalability

PortabilityPerformanceProductivityExec  Model

RTS – Scheduling

� Available for RTS providing some user-level threading 
(M:1 or M:N)

� Performance improvement
– Threads can be cooperatively scheduled (no preemption)
– Swapping does not require to cross into kernel space

� Automatically handled by RTS

� Provide API for user-designed scheduling

PortabilityPerformanceProductivityExec  Model
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RTS – Dynamic Load Balancing

� Available for RTS providing some user-level threading 
(M:1 or M:N)

� User-level threads can be migrated
– Push: the node decides to offload part of its work on another
– Pull: when the node idles, it takes work from others (work 

stealing)

� For the M:N threading model
– Perfect load balance within the node (e.g., dynamic queue 

scheduling of user-level threads on kernel threads)
– Free within the node (I.e., no additional cost to simple 

scheduling)

PortabilityPerformanceProductivityExec  Model

RTS – Memory Management

� RTS often provide some form of memory management
– Reentrant memory allocation/deallocation primitives
– Memory reuse
– Garbage collection
– Reference counting

� In distributed memory
– Can provide Global Address Space 

� Map every thread’s virtual memory in a unique location

– Provide for transparent usage of RDMA engines

PortabilityPerformanceProductivityExec  Model
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RTS – Parallel I/O

� I/O is often the bottleneck for scientific applications 
processing vast amounts of data

� Parallel applications require parallel I/O support
– Provide abstract view to file systems
– Allow for efficient I/O operations
– Avoid contention, especially in collective I/O

� E.g., ROMIO implementation for MPI-IO

� Archive of current Parallel I/O research: 
http://www.cs.dartmouth.edu/pario/

� List of current projects: 
http://www.cs.dartmouth.edu/pario/projects.html

PortabilityPerformanceProductivityExec  Model

RTS – Portability / Abstraction

� Fundamental role of runtime systems
– Provide unique API to parallel programming libraries/languages
– Hide discrepancies between features supported on different 

systems

� Additional layer of abstraction
– Reduces complexity
– Encapsulates usage of low-level primitives for communication and 

synchronization

� Improved performance
– Executes in user space
– Access to application information allows for optimizations

PortabilityPerformanceProductivityExec  Model
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Productivity
� Reduce time to solution

– Programming time + execution time

� Reduce cost of solution

� Function of:
– problem solved P
– system used S
– Utility function U

( , , )P S UΨ = Ψ

PortabilityPerformanceProductivityExec  Model

Utility Functions
� Decreasing in time.

� Extreme example: 
deadline driven

� Practical 
approximation: 
staircase
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Simple Example
� Assume deadline-driven 

Utility and decreasing 
Cost

� Max productivity 
achieved by solving 
problem just fast enough 
to match deadline

� Need to account for 
uncertainty

��
�

�
��
�
�
��
��
��
��
�
��

PortabilityPerformanceProductivityExec  Model

Programming Model Impact
� Features try to reduce development time

– Expressiveness
– Level of abstraction
– Component Reuse
– Expandability
– Base language
– Debugging capability
– Tuning capability
– Machine model
– Interoperability with other languages

� Impact on performance examined separately

PortabilityPerformanceProductivityExec  Model
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Expressive

Definition from http://lml.ls.fi.upm.es/~jjmoreno/expre.html

Programming model’s ability to express solution in:

� The closest way to the original problem formulation

� A clear, natural, intuitive, and concise way

� In terms of other solved (sub)problems

PortabilityPerformanceProductivityExec  Model

Level of Abstraction

� Amount of complexity exposed to developer

MATLAB

STAPL

C

% a and b ar e mat r i ces
c = a *  b;

/ /  a and b ar e mat r i ces
Mat r i x<doubl e> c = a *  b;

/ *  a and b ar e mat r i ces * /
doubl e c[ 10] [ 10] ;
i nt i ,  j ,  k ;
f or ( i nt i =0;  i <10;  ++i )  {

f or ( i nt k=0;  k<10;  ++k)  {
f or ( i nt j =0;  j <10;  ++j )  {

c [ i ] [ j ]  += a[ i ] [ k ] * b[ k ] [ j ] ;
}

}
}

Le
ve

l o
f A

bs
tr

ac
tio

n

PortabilityPerformanceProductivityExec  Model
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Component Reuse

� Goal: Increase reuse to reduce development time

� Programming model provides component libraries

p_vect or <doubl e> x( 100) ;
p_vect or <doubl e> y( 100) ;

p_gener at e( x,  r and) ;
p_gener at e( y,  r and) ;

doubl e r esul t  = p_i nner _pr oduct ( x, y) ;

STAPL pContainers and pAlgorithms

PortabilityPerformanceProductivityExec  Model

Expandable

� Programming model provides a subset of 
components needed for a parallel application. 

� Expansion enabled by:
– Transparent components
– Compositional construction 

PortabilityPerformanceProductivityExec  Model
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Component Transparency

� Opaque objects hide implementation details
– raises level of abstraction
– makes expansion difficult

� Transparent components
– allow internal component reuse
– example of working in programming model

i nt mai n( )  {
pt hr ead_t t hr ead;
pt hr ead_at t r _t at t r ;
/ /  …

}

t empl at e<cl ass T>

cl ass p_ar r ay :  publ i c p_cont ai ner _i ndexed<T> {

t ypedef p_cont ai ner _i ndexed<T> base_t ype;

s i ze_t  m_si ze;
/ / …

} ;

PortabilityPerformanceProductivityExec  Model

Component Composition
Build a new component using building blocks.

t empl at e<t ypename Vi ew>
bool p_next _per mut at i on( Vi ew& vw)  {

…
r ever se_vi ew<Vi ew> r vw( vw) ;
i t er 1 = p_adj acent _f i nd( r vw) ;
…
i t er 2 = p_f i nd_i f ( r vw,  s t d: : bi nd1st ( pr ed,  * i t er 1) ) ;
…
p_r ever se( r vw) ;
r et ur n t r ue;

}

PortabilityPerformanceProductivityExec  Model
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Programming Language
� Programming model language options:

– provide a new language
– extend an existing language
– provide directives for an existing language
– use an existing language

component  Hel l oWor l d
expor t  Execut abl e

r un( ) =do
pr i nt  " Hel l o,  wor l d! \ n“

end
end 

Fortress
ci l k voi d hel l o( )  {

pr i nt f ( “ Hel l o,  wor l d! \ n” ) ;
}

i nt mai n( )  {
spawn hel l o( ) ;
sync;

}

Cilk

PortabilityPerformanceProductivityExec  Model

Providing a new language

� Advantage
– Complete control of level of abstraction
– Parallel constructs embedded in language

� Disadvantage
– Compiler required for every target platform
– Developers must learn language

component  Hel l oWor l d
expor t  Execut abl e

r un( ) =do
pr i nt  " Hel l o,  wor l d! \ n“

end
end 

Fortress

PortabilityPerformanceProductivityExec  Model
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Extending a language

� Advantage
– Developers have less to learn
– Complete control of level of abstraction
– Parallel constructs embedded in syntax

� Disadvantage
– Compiler required for every target system
– Limited by constraints of base language

ci l k voi d hel l o( )  {
pr i nt f ( “ Hel l o,  wor l d! \ n” ) ;

}
i nt mai n( )  {

spawn hel l o( ) ;
sync;

}

PortabilityPerformanceProductivityExec  Model

Directives for a language
� Advantage

– Developers have less to learn
– Parallel constructs easily expressed in directives
– Use available compilers if needed (no parallelization)
– Specialized not necessarily needed on system

� Disadvantage
– Compiler required for every target system
– Higher levels of abstraction can’t be achieved
– Limited by constraints of base language
– No composition

#pr agma omp par al l el  f or
f or ( i nt i =0;  i <N;  ++i )  {

C[ i ]  = A[ i ] * B[ i ] ;
}

PortabilityPerformanceProductivityExec  Model
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Library for a language

� Advantage
– Developers learn only new API
– Compilers available on more systems

� Disadvantage
– Limited by constraints of base language

i nt mai n( )  {
pt hr ead_t t hr ead;
pt hr ead_at t r _t at t r ;
pt hr ead_at t r _i ni t ( &at t r ) ;

pt hr ead_cr eat e( &t hr ead,  &at t r ,  
hel l o,  NULL) ;

}

voi d*  hel l o( voi d* )  {
pr i nt f ( “ Hel l o,  wor l d! \ n” ) ;
pt hr ead_exi t ( NULL) ;

}

PortabilityPerformanceProductivityExec  Model

Debuggable

STAPL, TBB, 
Pthreads, MPI, 
OpenMP

Leverage standard tools available on 
platform (e.g., gdb, totalview)

Interoperability
with standard 
tools

MPI, Charm++provides hooks for tools to log state 
during execution

Tracing

Charm++provides proprietary tools that utilize 
extra runtime information

Built-in

Programming environments provide many options for
debugging parallel applications.

PortabilityPerformanceProductivityExec  Model
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Defect Management
� Reduce Defect Potential

– Programming style reduces likelihood of errors
– Use of container methods reduces out-of-bounds accesses

� Provide Defect Detection
– Components support options to detect errors at runtime
– E.g., PTHREAD_MUTEX_ERRORCHECK enables detection of 

double-locking and unnecessary unlocking  

cl ass t bb_wor k_f unct i on {
voi d oper at or ( ) ( const  bl ocked_r ange<si ze_t >& r )  {

f or ( si ze_t  i  = r . begi n( ) ;  i  ! = r . end( ) ;  ++i )
C[ i ]  = A[ i ] * B[ i ] ;

}
} ;

PortabilityPerformanceProductivityExec  Model

Tunability

Programming environments support application optimization 
on a platform using:

� Performance Monitoring
– Support measuring application metrics

� Implementation Refinement
– Support for adaptive/automatic modification of application
– Manual mechanisms provided to allow developer to implement 

refinement

PortabilityPerformanceProductivityExec  Model
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Performance Monitoring

� Built-in support
– Environment’s components instrumented
– Output of monitors enabled/disabled by developer
– Components written by developer can use same instrumentation 

interfaces

� Interoperable with performance monitoring tools
– Performance tools on a platform instrument binaries

PortabilityPerformanceProductivityExec  Model

Implementation Refinement
� Adjust implementation to improve performance

– distribution of data in a container
– scheduling of iterations to processors

� Adaptive/Automatic
– Monitors performance and improves performance without developer 

intervention
– Example: Algorithm selection in STAPL

� Manual mechanisms
– Model provides methods to allow developer adjustment to improve 

performance
– Example: Grain size specification to TBB algorithms

PortabilityPerformanceProductivityExec  Model
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Machine Model
� Programming models differ in the amount and type of 

machine information available to user
– TBB, Cilk, OpenMP: user unaware of number of threads
– MPI: user required to write code as a function of the machine in

order to manage data mapping

� Programming as a function of the machine
– Lowers level of abstraction
– Increases programming complexity

PortabilityPerformanceProductivityExec  Model

Interoperability with other models
� Projects would like to use multiple models

– Use best fit for each application module
– Modules need data from one another

� Models need flexible data placement requirements
– Avoid copying data between modules
– Copying is correct, but expensive

� Models need generic interfaces
– Components can interact if interfaces meet requirements
– Avoids inheriting complex hierarchy when designing new 

components

PortabilityPerformanceProductivityExec  Model



40

Table of Contents

� Introduction to Parallelism
� Introduction to Programming Models

– Parallel Execution Model
� Models for Communication
� Models for Synchronization
� Memory Consistency Models
� Runtime systems

– Productivity
– Performance
– Portability

� Shared Memory Programming
� Message Passing Programming
� Shared Memory Models
� PGAS Languages
� Other Programming Models

Performance

� Latency Management

� Load Balancing

� Creating a High Degree of Parallelism

PortabilityPerformanceProductivityExec  Model



41

Performance - Memory Wall

Complex memory hierarchies greatly affect parallel execution.  
Processing elements may share some components 
(e.g., L1/L2 caches, RAM), but usually not all.

Parallelism exacerbates the effects of memory latency.

• Contention from centralized components. 
• Non uniform latency caused by distributed components.

Desktop Core2Duo
Private L1 Cache
Shared  L2 Cache

Shared Centralized UMA SGI Origin
Private L1 Cache
Private  L2 Cache

Shared, Distributed NUMA
Linux Cluster

Private L1 Cache
Private  L2 Cache

Private, Distributed NUMA

PortabilityPerformanceProductivityExec  Model

Performance - Memory Contention

The extent to which processes access the same location 
at the same time.

� Types of contention and mitigation approaches.
– False sharing of cache lines.

� Memory padding to cache block size. 
– ‘Hot’ memory banks.

� Better interleaving of data structures on banks. 
– True Sharing.

� Replication of data structure.
� Locked refinement (i.e., distribution) for aggregate types.

� Most models do not directly address contention.

PortabilityPerformanceProductivityExec  Model
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Performance - Managing Latency

There are two approaches to managing latency.

� Hiding - tolerate latency by overlapping a memory 
accesses with other computation. 
– User Level
– Runtime System

� Reducing - minimize latency by having data near 
the computation that uses it.

PortabilityPerformanceProductivityExec  Model

Hiding Latency - User Level

Model has programming constructs that allow user to make 
asynchronous remote requests.

� Split-Phase Execution (Charm++)
Remote requests contain address of return handler.

cl ass A {                        c l ass B {
f oo( )  {                          xyz( Ret ur n r et )  {

B b;                             …

b. xyz( &A: : bar ( ) ) ;                r et ( 3) ;

}                                }                            
bar ( i nt x)  {  … }              } ;

} ;

� Futures
Remote requests create a handle that is later queried.

f ut ur e<doubl e> v( f oo( ) ) ;    / / t hr ead spawned t o execut e f oo( )

… / / do ot her  unr el at ed wor k

doubl e r esul t  = v. wai t ( ) ;   / / get  r esul t  of  f oo( )

PortabilityPerformanceProductivityExec  Model
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Hiding Latency - Runtime System

Runtime system uses extra parallelism made 
available to transparently hide latency.

e.g., Multithreading (STAPL / ARMI)
pRange can recursively divide work (based on user defined 
dependence graph) to increase degree of parallelism.  ARMI 
splits and schedules work into multiple concurrent threads.

PortabilityPerformanceProductivityExec  Model

Performance - Latency Reduction

Data placement (HPF, STAPL, Chapel)
Use knowledge of algorithm access pattern to place all data 
for a computation near executing processor.

I NTEGER,  DI MENSI ON( 1: 16) : :  A, B

! HPF$ DI STRI BUTE( BLOCK)  : :  A

! HPF$ ALI GN WI TH A : :  B

Work placement (STAPL, Charm++)
Migrate computation to processor near data and return final 
result.  Natural in RMI based communication models.

PortabilityPerformanceProductivityExec  Model
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Load Balancing

Keep all CPUs doing equal work.
Relies on good work scheduling.

� Static (MPI)
Decide before execution how to distribute work.

� Dynamic (Cilk, TBB)
Adjust work distribution during execution.

– Requires finer work granularity (> 1 task per CPU)
Some models change granularity as needed (minimize overhead).

– Work Stealing
Allow idle processors to ‘steal’ queued work from busier 
processors.

PortabilityPerformanceProductivityExec  Model

Enabling a High Degree of Parallelism

Parallel models must strive for a high degree of 
parallelism for maximum performance.

Makes transparent latency hiding easy.

Enables finer granularity needed for load balancing.

PortabilityPerformanceProductivityExec  Model
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Portability

� Language versus Library

� Runtime System 
– Interchangeable
– Virtualization
– Load balancing
– Reliance on specific machine features

� Effects of exposed machine model on portability

� I/O Support
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Language versus Library

� Models with specialized language require a compiler to be 
ported and sometimes additional runtime support.

– Cray’s Chapel, Titanium, Sun’s Fortress.

� Library approaches leverage standard toolchains, and 
often rely on widely available standardized components. 

– STAPL requires C++, Boost, and a communication subsystem 
(MPI, OpenMP Pthreads).

– MPI requires communication layer interfaceand command wrappers 
(mpirun) to use portable versions (MPICH or LamMPI).  
Incremental customization can improve performance.

Portabil ityPerformanceProductivityExec  Model

Runtime System 

� Interchangeable
Runtime system (e.g., threading and communication 
management) specific to model or is it modular?

� Processor Virtualization
How are logical processes mapped to processors? 
Is it a 1:1 mapping or multiple processes per processor?

Language / Library

Runtime / Communication Layer

Operating System
These Lines Often Get Blurred…

Portabil ityPerformanceProductivityExec  Model
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Runtime System 

� Load Balancing
Support for managing processor work imbalance?  
How is it implemented?

� Reliance on Machine Features
Runtime system require specific hardware support?  
Can it optionally leverage hardware features?

Language / Library

Runtime / Communication Layer

Operating System
These Lines Often Get Blurred…

Portabil ityPerformanceProductivityExec  Model

Effects of Parallel Model

What effect does the model’s level of abstraction 
have in mapping/porting to a new machine?

– Does it hide the hardware’s model (e.g., memory 
consistency) or inherit some characteristics?  
Portability implications?

– Is there interface of machine characteristics for 
programmers?  Optional use (i.e., performance tuning) or 
fundamental to code development?

Portabil ityPerformanceProductivityExec  Model
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Support for I/O

Some parallel models specifically address 
I/O, providing mechanisms that provide an 
abstract view to various disk subsystems.

ROMIO - portable I/O extension included with MPI 
(Message Passing Interface).

Portabil ityPerformanceProductivityExec  Model
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Shared Memory Programming

� Smaller scale parallelism (100’s of CPUs)

� Single system image

� Thread-based

� Threads have access to entire shared memory
– Threads may also have private memory 

Shared Memory Programming

� No explicit communication
– Threads write/read shared data

– Mutual exclusion used to ensure data 
consistency

� Explicit Synchronization
– Ensure correct access order

– E.g., don’t read data until it has been written
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Example - Matrix Multiply
f or ( i nt i =0;  i <M;  ++i )  {

f or ( i nt j =0;  j <N;  ++j )  {

f or ( i nt k=0;  k<L;  ++k)  {

C[ i ] [ j ]  +=

A[ i ] [ k] * B[ k] [ j ] ;

}

}

}

One way to parallelize is to
compute each row
Independently.
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� Allows explicit parallelization of loops
– Directives for Fortran and C/C++
– Limited support for task parallelism

� Vendor standard
– ANSI X3H5 standard in 1994 not adopted
– OpenMP standard effort started in 1997
– KAI first to implement new standard 

OpenMP

Materials from http://www.llnl.gov/computing/tutorials/openMP/

#pr agma omp par al l el  f or
f or ( i nt i =0;  i <N;  ++i )  {

C[ i ]  = A[ i ]  + B[ i ] ;
}

The OpenMP Model
Execution Model

– Explicitly parallel

– Single-threaded view

– SPMD

– Implicit data distribution

– Nested parallelism support

– Relaxed consistency within parallel sections
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The OpenMP Model
Productivity

– Provides directives for existing languages
– Low level of abstraction
– User level tunability
– Composability supported with nesting of critical sections 

and parallel loops 

Performance
– Load balancing

� optional selection of runtime scheduling policy

– Scalable parallelism
� Parallelism proportional to data size

The OpenMP Model
Portability

– Directives allow use of available compilers
� Application compiles and runs, but no parallelization

– Supports processor virtualization
� N:1 mapping of logical processes to processors

– Load balancing
� optional selection of runtime scheduling policy

– No reliance on system features
� can utilize specialized hardware to implement Atomic update
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OpenMP Thread Management

� Fork-Join execution model

� User or developer can specify thread count
– Developer’s specification has priority
– Variable for each parallel region
– Runtime system has default value

� Runtime system manages threads
– User/developer specify thread count only
– Threads “go away” at end of parallel region

Master Thread

PR1: 5 threads

PR1: 6 threads

PR1: 4 threads

OpenMP Thread Management

� Determining number of threads
– omp_set_num_threads(int) function
– OMP_NUM_THREADS environment variable
– Runtime library default

� Threads created only for parallel sections
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Creating Parallel Sections

� Parallel for

� Options
– Scheduling Policy
– Data Scope Attributes

� Parallel region

� Options
– Data Scope Attributes

#pr agma omp par al l el  f or  \
shar ed( a, b, c, chunk)  \
pr i vat e( i )  \
schedul e( st at i c, chunk)

f or  ( i =0;  i  < n;  i ++)  
c[ i ]  = a[ i ]  + b[ i ] ;  

#pr agma omp par al l el
{

/ /  Code t o execut e
}  

Data Scope Attributes

assigns same value to variables declared as 
thread private

Copy in

reduction performed on variable at end of 
parallel region

Reduction

specifies default scope for all variables in 
parallel region

Default

variables shared by all threads in teamShared

variables are private and value from last loop 
iteration or section is copied to original object

Last Private

variables are private and initialized with value 
of original object before parallel region

First Private

variables are private to each thread Private
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OpenMP Synchronization

� Mutual exclusion by critical sections

� Atomic update

#pr agma omp par al l el  
{  

/ /  …
#pr agma omp cr i t i cal
sum += l ocal _sum 

}

#pr agma omp par al l el  
{  

/ /  …
#pr agma omp at omi c
sum += l ocal _sum 

}

• Named critical sections
•unnamed sections treated as one

•Critical section is scoped 

•Specialized critical section

•May enable fast HW implementation

•Applies to following statement

OpenMP Synchronization

� Barrier directive
– Thread waits until all others reach this point

– Implicit barrier at end of each parallel region

#pr agma omp par al l el  
{  

/ /  …
#pr agma omp bar r i er
/ /  …

}
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OpenMP Scheduling
� Load balancing handled by runtime scheduler

� Scheduling policy can be set for each parallel loop

No block size specified.  Runtime system determines iteration 
assignment during loop execution.

Runtime

Block size is proportional to number of unassigned iterations 
divided by number of threads.  Minimum block size can be set.

Guided

Create blocks of size chunk and assign to threads during loop 
execution. Threads request a new block when finished 
processing a block.  Default chunk is 1.

Dynamic

Create blocks of size chunk and assign to threads before loop 
begins execution.  Default chunk creates equally-sized blocks.

Static

Scheduling Policies

OpenMP Matrix Multiply
#pr agma omp par al l el  f or
f or ( i nt i =0;  i <M;  ++i )  {

f or ( i nt j =0;  j <N;  ++j )  {
f or ( i nt k=0;  k<L;  ++k)  {

C[ i ] [ j ]  +=
A[ i ] [ k] * B[ k] [ j ] ;

}
}

}
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OpenMP Matrix Multiply

#pr agma omp par al l el  f or
f or ( i nt i =0;  i <M;  ++i )  {

#pr agma omp par al l el  f or
f or ( i nt j =0;  j <N;  ++j )  {

f or ( i nt k=0;  k<L;  ++k)  {
C[ i ] [ j ]  +=

A[ i ] [ k] * B[ k] [ j ] ;
}

}
}

� Parallelizing two loops
– Uses nested parallelism support
– Each element of result matrix computed independently

OpenMP Matrix Multiply

f or ( i nt i =0;  i <M;  ++i )  {
f or ( i nt j =0;  j <N;  ++j )  {

#pr agma omp par al l el  f or
f or ( i nt k=0;  k<L;  ++k)  {

#pr agma omp cr i t i cal
C[ i ] [ j ]  +=

A[ i ] [ k] * B[ k] [ j ] ;
}

}
}

� Parallelizing inner loop
– Inner loop parallelized instead of outer loop

� Minimizes work in each parallel loop – for illustration purposes only
– Multiple threads contribute to each element in result matrix
– Critical section ensures only one thread updates at a time
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OpenMP Matrix Multiply

#pr agma omp par al l el  f or  \
schedul e( dynami c)
f or ( i nt i =0;  i <M;  ++i )  {

f or ( i nt j =0;  j <N;  ++j )  {
f or ( i nt k=0;  k<L;  ++k)  {

C[ i ] [ j ]  +=
A[ i ] [ k] * B[ k] [ j ] ;

}
}

}

� Use dynamic scheduling of iterations
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Pthreads

� Specification part of larger IEEE POSIX standard
– POSIX is the Portable Operating System Interface
– Standard C API for threading libraries

� IBM provides Fortran API

– Introduced in 1995

� Explicit threading of application
– User calls functions to create/destroy threads

Materials from http://www.llnl.gov/computing/tutorials/pthreads/

The Pthreads Model

� Execution Model
– Explicit parallelism
– Explicit synchronization

� Productivity
– Not a primary objective
– Library for existing language
– Low level of abstraction
– Uses opaque objects – prevents expansion
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The Pthreads Model

� Performance
– No attempts to manage latency
– Load balancing left to OS
– Developer responsible for creating high degree of 

parallelism by spawning threads

� Portability
– Library widely available

Pthreads Thread Management

� User creates/terminates threads

� Thread creation
– pt hr ead_cr eat e

– Accepts a single argument (void *)

� Thread termination
– pt hr ead_exi t

– Called from within terminating thread
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Pthreads Synchronization
Mutual Exclusion Variables (mutexes)

pt hr ead_mut ex_t mut exsum;  
voi d * dot _pr oduct ( voi d * ar g)  {

…
pt hr ead_mut ex_l ock ( &mut exsum) ;  
sum += mysum;
pt hr ead_mut ex_unl ock ( &mut exsum) ;
…

}
i nt mai n( )  {

pt hr ead_mut ex_i ni t ( &mut exsum,  NULL) ;  
…
pt hr ead_mut ex_dest r oy( &mut exsum) ;

}  

•Mutexes must be initialized before use
•Attribute object can be initialized to enable error checking

Pthreads Synchronization
Condition Variables
� Allows threads to synchronize based on value of 

data

� Threads avoid continuous polling to check 
condition

� Always used in conjunction with a mutex
– Waiting thread(s) obtain mutex then wait

� pthread_cond_wait() function unlocks mutex
� mutex locked for thread when it is awakened by signal

– Signaling thread obtains lock then issues signal
� pthread_cond_signal() releases mutex
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Condition Variable Example

pt hr ead_mut ex_t mt x;  
pt hr ead_cond_t cv;  

i nt mai n( )  {
…
pt hr ead_mut ex_i ni t ( &mt x,  NULL) ;
pt hr ead_cond_i ni t ( &cv,  NULL) ;
…
pt hr ead_cr eat e( &t hr eads[ 0] ,  &at t r ,  

i nc_count ,  ( voi d * ) &t hr ead_i ds[ 0] ) ;
pt hr ead_cr eat e( &t hr eads[ 1] ,  &at t r ,  

i nc_count ,  ( voi d * ) &t hr ead_i ds[ 1] ) ;
pt hr ead_cr eat e( &t hr eads[ 2] ,  &at t r ,  

wat ch_count ,  ( voi d * ) &t hr ead_i ds[ 2] ) ;
…
}

Two threads update a counter
Third thread waits until counter reaches a threshold

Condition Variable Example

voi d * i nc_count ( voi d * i dp)  {
…
f or  ( i =0;  i <TCOUNT;  ++i )  {

pt hr ead_mut ex_l ock( &mt x) ;
++count ;
i f  ( count  == LI MI T)

pt hr ead_cond_si gnal ( &cv) ;
pt hr ead_mut ex_unl ock( &mt x) ;
…

}
…
}

voi d * wat ch_count ( voi d * i dp)  {
…
pt hr ead_mut ex_l ock ( &mt x) ;
whi l e ( count  < COUNT_LI MI T)  {

pt hr ead_cond_wai t ( &cv,  &mt x) ;
}
pt hr ead_mut ex_unl ock( &mt x) ;
…
}

pthread_cond_broadcast() used if multiple threads waiting on signal

Incrementing Threads Waiting Thread
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Pthreads Matrix Multiply
i nt t i ds[ M] ;
pt hr ead_t t hr eads[ M] ;
pt hr ead_at t r _t at t r ;
pt hr ead_at t r _i ni t ( &at t r ) ;
pt hr ead_at t r _set det achst at e(

&at t r ,
PTHREAD_CREATE_JOI NABLE) ;

f or  ( i =0;  i <M;  ++i )  {
t i ds[ i ]  = i ;
pt hr ead_cr eat e( &t hr eads[ i ] ,  
&at t r ,  wor k,  ( voi d * )  &t i ds[ i ] ) ;

}

f or  ( i =0;  i <M;  ++i )  {
pt hr ead_j oi n( t hr eads[ i ] ,  NULL) ;

}

voi d*  wor k( voi d*  t i d)  {
f or ( i nt j =0;  j <N;  ++j )  {

f or ( i nt k=0;  k<L;  ++k)  {
C[ t i d] [ j ]  +=

A[ t i d] [ k ] * B[ k] [ j ] ;
}

}
pt hr ead_exi t ( NULL) ;

}

References
OpenMP
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Pthreads

http://www.llnl.gov/computing/tutorials/pthreads

"Pthreads Programming". B. Nichols et al. O'Reilly 
and Associates. 

"Programming With POSIX Threads". D. Butenhof. 
Addison Wesley 
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Message Passing Model

� Large scale parallelism (up to 100k+ CPUs)

� Multiple (possibly heterogeneous) system images

� Distributed memory
– Nodes can only access local data
– Application (User) responsible for:

� Distributing data

� Redistributing  data (when necessary)

� Maintaining memory coherent
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Message Passing Model

� Explicit communication
– Two-sided P2P:

� Communication initiated on one side requires matching action on the 
remote side

� E.g. MPI_Send – MPI_Recv

– One-sided P2P:
� Communication is initiated on one side and no action is required on the 

other

� E.g. MPI_Get/Put, gasnet_get/put ...

� Implicit synchronization with two-sided communication
– The matching of communication operations from both sides ensures

synchronization

Message Passing Model

� Objectives of the model
– Enabling parallelization on highly scalable hardware
– Support for heterogeneous systems
– Often coarse-grained parallelism

� Main issues
– Communication
– Synchronization
– Load balancing
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Projects of Interest

� Message Passing Interface (MPI)
– De facto standard for this model
– Deemed low level and difficult to program
– Two-sided and one-sided communication

� Charm++
– Asynchronous Remote Method Invocation (RMI) communication
– Split-phase programming model

� No synchronous communication
� Caller provides a callback handler to asynchronously process “return” value
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Message Passing Interface (MPI)

� 1980s – early 1990s
– Distributed memory, parallel 

computing develops
– Many incompatible software tools 
– Usually tradeoffs between 

portability, performance, functionality 
and price

� Recognition of the need for a 
standard arose. 

Material from: http://www.llnl.gov/computing/tutorials/mpi/

Message Passing Interface (MPI)

� Standard based on the consensus of the MPI Forum
– Not sanctioned by any major standards body
– Wide practical acceptance
– No effective alternative to date

� First draft of the MPI-1 standard presented at Supercomputing 1993

� Current standard MPI-2 developed between 1995 and 1997

� Standardization committee open to all members of the HPC community

Further reading and standard documents: http://www.mpi-forum.org/
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Message Passing Interface (MPI)

� Objectives
– High performance and scalability
– Portability
– Productivity is not an objective (actually it was)

� Used as communication layer for higher-level libraries
– Often for more productivity-oriented libraries
– ISO/OSI layer-5 interface

� Communication is reliable and sessions are managed internally

� Data is not structured

MPI: Specification, not Implementation

� Language Independent Specification (LIS)
� Library implementations of MPI vary in:

– Performance
� Target or rely on specific hardware (RDMA, PIM, Coprocessors …)

� Provide load-balancing and processor virtualization (e.g., AMPI)

– Functionality
� Support for parallel I/O

� Support for multithreading within MPI processes

� Standard provides language bindings for Fortran, C and C++
� Implementations usually provide APIs for C, C++ and Fortran
� Project implementations for Python, OCaml, and Java
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MPI – Programming Model
Execution Model

– Explicitly parallel
� Programmer responsible for correctly identifying parallelism and for 

implementing parallel algorithms using MPI constructs
� Multi-threaded view

– SPMD

– Explicit data distribution

– Flat parallelism
� Number of tasks dedicated to run a parallel program is static

– Processor Consistency (one-sided communication)

MPI – Programming Model
Productivity

– Not a principal objective
� Low level of abstraction
� Communication is not structured (marshalling done by the user)

Performance
– Vendor implementations exploit native hardware features 

to optimize performance

Portability
– Most vendors provide an implementation

� E.g., Specialized open source versions of MPICH, LAM or OpenMPI

– Standard ensures compatibility
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MPI – Program Structure

General program structure Communicators and groups
• Collection of processes that may communicate
• Unique rank (processor ID) within communicator
• Default communicator: MPI_COMM_WORLD

Materials from: http://www.llnl.gov/computing/tutorials/mpi/

MPI – Point to Point Communication

Types of Point-to-Point Operations: 

� Message passing between two, and only two, different MPI tasks
– One task performs a send operation

– The other task matches with a receive operation

� Different types of send/receive routines used for different purposes 
– Synchronous send 

– Blocking send / blocking receive 

– Non-blocking send / non-blocking receive 

– Buffered send 

– Combined send/receive 

– "Ready" send 

� Any type of send can be paired with any type of receive 

� Test and Probe routines to check the status of pending operations

Material from: http://www.llnl.gov/computing/tutorials/mpi/
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MPI – Point to Point Communication

Blocking vs. Non-blocking

� Most routines can be used in either blocking or non-blocking mode

� Blocking communication routines
– Blocking send routines only return when it is safe to reuse send buffer

� Modifications to send buffer will not affect data received on the remote side
� Data already sent 
� Data buffered in a system buffer

– Blocking send calls can be synchronous 
� Handshaking with the receiver

– Blocking send calls can be asynchronous 
� System buffer used to hold the data for eventual delivery to the receiver

– Blocking receive calls only return after the data has arrived and is ready for use by 
the program

Materials from: http://www.llnl.gov/computing/tutorials/mpi/

MPI – Point to Point Communication

Blocking communication example

Materials from: http://www.llnl.gov/computing/tutorials/mpi/

#i ncl ude " mpi . h"  
#i ncl ude <st di o. h> 

i nt mai n( i nt ar gc, char * ar gv[ ] )  {  
i nt numt asks ,  r ank,  dest ,  sour c e,  r c,  count ,  t ag=1;  
char  i nmsg,  out msg=' x ' ;  
MPI _St at us St at ;  

MPI _I ni t ( &ar gc, &ar gv) ;  
MPI _Comm_si z e( MPI _COMM_WORLD,  &numt asks) ;  
MPI _Comm_r ank( MPI _COMM_WORLD,  &r ank) ;  

i f ( r ank == 0)  {  
dest = 1;  
sour ce = 1;  
r c = MPI _Send( &out ms g,  1,  MPI _CHAR,  des t ,  t ag,  MPI _COMM_WORLD) ;  
r c = MPI _Recv( &i nmsg,  1,  MPI _CHAR,  sour ce,  t ag,  MPI _COMM_WORLD,  &St at ) ;  

}  
el se i f ( r ank == 1)  {  

dest = 0;  
sour ce = 0;  
r c = MPI _Recv( &i nmsg,  1,  MPI _CHAR,  sour ce,  t ag,  MPI _COMM_WORLD,  &St at ) ;  
r c = MPI _Send( &out ms g,  1,  MPI _CHAR,  des t ,  t ag,  MPI _COMM_WORLD) ;  

}  

r c = MPI _Get _count ( &St at ,  MPI _CHAR,  &count ) ;  
pr i nt f ( " Task %d:  Recei ved %d char ( s)  f r om t ask %d wi t h t ag %d \ n" ,  

r ank,  count ,  St at . MPI _SOURCE,  St at . MPI _TAG) ;

MPI _Fi nal i ze( ) ;  
}

#i ncl ude " mpi . h"  
#i ncl ude <st di o. h> 

i nt mai n( i nt ar gc, char * ar gv[ ] )  {  
i nt numt asks ,  r ank,  dest ,  sour c e,  r c,  count ,  t ag=1;  
char  i nmsg,  out msg=' x ' ;  
MPI _St at us St at ;  

MPI _I ni t ( &ar gc, &ar gv) ;  
MPI _Comm_si z e( MPI _COMM_WORLD,  &numt asks) ;  
MPI _Comm_r ank( MPI _COMM_WORLD,  &r ank) ;  

i f ( r ank == 0)  {  
dest = 1;  
sour ce = 1;  
r c = MPI _Send( &out ms g,  1,  MPI _CHAR,  des t ,  t ag,  MPI _COMM_WORLD) ;  
r c = MPI _Recv( &i nmsg,  1,  MPI _CHAR,  sour ce,  t ag,  MPI _COMM_WORLD,  &St at ) ;  

}  
el se i f ( r ank == 1)  {  

dest = 0;  
sour ce = 0;  
r c = MPI _Recv( &i nmsg,  1,  MPI _CHAR,  sour ce,  t ag,  MPI _COMM_WORLD,  &St at ) ;  
r c = MPI _Send( &out ms g,  1,  MPI _CHAR,  des t ,  t ag,  MPI _COMM_WORLD) ;  

}  

r c = MPI _Get _count ( &St at ,  MPI _CHAR,  &count ) ;  
pr i nt f ( " Task %d:  Recei ved %d char ( s)  f r om t ask %d wi t h t ag %d \ n" ,  

r ank,  count ,  St at . MPI _SOURCE,  St at . MPI _TAG) ;

MPI _Fi nal i ze( ) ;  
}
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MPI – Point to Point Communication

Blocking vs. Non-blocking

� Non-blocking communication routines
– Send and receive routines behave similarly 

� Return almost immediately

� Do not wait for any communication events to complete
� Message copying from user memory to system buffer space 
� Actual arrival of message

– Operations "request" the MPI library to perform an operation 
� Operation is performed when its requirements are met (e.g., message arrives)

� User cannot predict when that will happen

– Unsafe to modify the application buffer until completion of operation
� Wait and Test routines used to determine completion

� Non-blocking communications primarily used to overlap computation with 
communication and exploit possible performance gains

Material from: http://www.llnl.gov/computing/tutorials/mpi/

MPI – Point to Point Communication

Non-blocking communication example

Materials from: http://www.llnl.gov/computing/tutorials/mpi/

MPI _Request r eqs [ 4] ;  
MPI _St at us s t at s [ 4] ;  

pr ev = r ank- 1;  
nex t  = r ank+1;  
i f  ( r ank == 0)  pr ev = numt asks - 1;  
i f  ( r ank == ( numt asks - 1) )  next  = 0;  

MPI _I r ecv( &buf [ 0] ,  1,  MPI _I NT,  pr ev,  t ag1,  MPI _COMM_WORLD,  &r eqs[ 0] ) ;  
MPI _I r ecv( &buf [ 1] ,  1,  MPI _I NT,  nex t ,  t ag2,  MPI _COMM_WORLD,  &r eqs[ 1] ) ;  

MPI _I send( &r ank,  1,  MPI _I NT,  pr ev,  t ag2,  MPI _COMM_WORLD,  &r eqs[ 2] ) ;  
MPI _I send( &r ank,  1,  MPI _I NT,  nex t ,  t ag1,  MPI _COMM_WORLD,  &r eqs[ 3] ) ;  

{  
/ /  do some wor k
/ /  wor k wi l l  over l ap wi t h pr ev i ous communi cat i on

}  

MPI _Wai t al l ( 4,  r eqs,  st at s) ;  

MPI _Request r eqs [ 4] ;  
MPI _St at us s t at s [ 4] ;  

pr ev = r ank- 1;  
nex t  = r ank+1;  
i f  ( r ank == 0)  pr ev = numt asks - 1;  
i f  ( r ank == ( numt asks - 1) )  next  = 0;  

MPI _I r ecv( &buf [ 0] ,  1,  MPI _I NT,  pr ev,  t ag1,  MPI _COMM_WORLD,  &r eqs[ 0] ) ;  
MPI _I r ecv( &buf [ 1] ,  1,  MPI _I NT,  nex t ,  t ag2,  MPI _COMM_WORLD,  &r eqs[ 1] ) ;  

MPI _I send( &r ank,  1,  MPI _I NT,  pr ev,  t ag2,  MPI _COMM_WORLD,  &r eqs[ 2] ) ;  
MPI _I send( &r ank,  1,  MPI _I NT,  nex t ,  t ag1,  MPI _COMM_WORLD,  &r eqs[ 3] ) ;  

{  
/ /  do some wor k
/ /  wor k wi l l  over l ap wi t h pr ev i ous communi cat i on

}  

MPI _Wai t al l ( 4,  r eqs,  st at s) ;  
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MPI – Point to Point Communication

Order and Fairness
� Message Ordering 

– Messages do not overtake each other
� If a sender sends two messages (Message 1 and Message 2) in succession to 

the same destination, and both match the same receive, the receive operation 
will receive Message 1 before Message 2.

� If a receiver posts two receives (Receive 1 and Receive 2), in succession, and 
both match the same message, Receive 1 will receive the message before 
Receive 2.

– Ordering is not thread-safe
� If multiple threads participate in the communication, no order is guaranteed

� Fairness of Message Delivery
– No fairness guarantee

� Programmer responsible for preventing operation starvation

– Example: task 0 sends a message to task 2. However, task 1 sends a 
competing message that matches task 2's receive. Only one of the sends 
will complete. 

Material from: http://www.llnl.gov/computing/tutorials/mpi/

MPI – Point to Point Communication

Buffering when tasks are out of sync

� If a receive operation is not ready, sent data is buffered
– On receiving side, sending side or both

� User can manage buffering memory on sending side

Material from: http://www.llnl.gov/computing/tutorials/mpi/
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MPI – Collective Communication

� All or None
– Must involve all processes in the scope of the used communicator 
– User responsible to ensure all processes within a communicator 

participate in any collective operation

� Types of Collective Operations
– Synchronization (barrier)

� Processes wait until all members of the group reach the synchronization point

– Data Movement 
� Broadcast, scatter/gather, all to all

– Collective Computation (reductions) 
� One member of the group collects data from the other members and performs 

an operation (e.g., min, max, add, multiply, etc.) on that data

Material from: http://www.llnl.gov/computing/tutorials/mpi/

MPI – Collective Communication

Programming Considerations and Restrictions

� Collective operations are blocking

� Collective communication routines do not take message 
tag arguments

� Collective operations within subsets of processes 
– Partition the subsets into new groups 
– Attach the new groups to new communicators 

� Can only be used with MPI predefined data types 
– Not with MPI Derived Data Types

Material from: http://www.llnl.gov/computing/tutorials/mpi/
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MPI – Matrix Multiply (master task)

#def i ne NRA 15 / /  Number  of  r ows i n mat r i x A
#def i ne NCA 25 / /  Number  of  col umns i n A
#def i ne NCB 10 / /  Number  of  col umns i n B
#def i ne TAG 0     / /  MPI  communi c at i on t ag
/ /  Dat a st r uct ur es
doubl e A[ NRA] [ NCA] ; / /  mat r i x A t o be mul t i pl i ed
doubl e B[ NCA] [ NCB] ; / /  mat r i x B t o be mul t i pl i ed
doubl e C[ NRA] [ NCB] ; / /  r esul t  mat r i x C

#def i ne NRA 15 / /  Number  of  r ows i n mat r i x A
#def i ne NCA 25 / /  Number  of  col umns i n A
#def i ne NCB 10 / /  Number  of  col umns i n B
#def i ne TAG 0     / /  MPI  communi c at i on t ag
/ /  Dat a st r uct ur es
doubl e A[ NRA] [ NCA] ; / /  mat r i x A t o be mul t i pl i ed
doubl e B[ NCA] [ NCB] ; / /  mat r i x B t o be mul t i pl i ed
doubl e C[ NRA] [ NCB] ; / /  r esul t  mat r i x C

avgNumRows = NRA/ numWor ker s;
r emai ni ngRows = NRA%numWor ker s;
of f set         = 0;
f or  ( dest = 1;  dest <= numWor ker s ;  ++dest )  {

r ows = ( dest <= r emai ni ngRows)  ? avgNumRows + 1 :  avgNumRows ;
MPI _Send( &of f set ,  1,  MPI _I NT,  dest ,  TAG,  MPI _COMM_WORLD) ;
MPI _Send( &r ows,  1,  MPI _I NT,  des t ,  TAG,  MPI _COMM_WORLD) ;
count  = r ows  *  NCA;
/ /  Send hor i zont al  s l i ce of  A
MPI _Send( &A[ of f set ] [ 0] ,  count ,  MPI _DOUBLE,  dest ,  TAG,  MPI _COMM_WORLD) ;  
/ /  Send mat r i x B
count  = NCA *  NCB;
MPI _Send( &B,  count ,  MPI _DOUBLE,  dest ,  TAG,  MPI _COMM_WORLD) ;
of f set  += r ows;

}

avgNumRows = NRA/ numWor ker s;
r emai ni ngRows = NRA%numWor ker s;
of f set         = 0;
f or  ( dest = 1;  dest <= numWor ker s ;  ++dest )  {

r ows = ( dest <= r emai ni ngRows)  ? avgNumRows + 1 :  avgNumRows ;
MPI _Send( &of f set ,  1,  MPI _I NT,  dest ,  TAG,  MPI _COMM_WORLD) ;
MPI _Send( &r ows,  1,  MPI _I NT,  des t ,  TAG,  MPI _COMM_WORLD) ;
count  = r ows  *  NCA;
/ /  Send hor i zont al  s l i ce of  A
MPI _Send( &A[ of f set ] [ 0] ,  count ,  MPI _DOUBLE,  dest ,  TAG,  MPI _COMM_WORLD) ;  
/ /  Send mat r i x B
count  = NCA *  NCB;
MPI _Send( &B,  count ,  MPI _DOUBLE,  dest ,  TAG,  MPI _COMM_WORLD) ;
of f set  += r ows;

}

• Initialization

• Distribute
data to 
workers

f or ( i  = 1;  i  <= numwor k er s;  ++i ) {
sour ce = i ;
MPI _Recv( &of f set ,  1,  MPI _I NT,  s our ce,  TAG,  MPI _COMM_WORLD,  &st at us) ;
MPI _Recv( &r ows,  1,  MPI _I NT,  sour ce,  TAG,  MPI _COMM_WORLD,  &st at us) ;
count  = r ows  *  NCB;
MPI _Recv( &C[ of f set ] [ 0] ,  count ,  MPI _DOUBLE,  sour ce,  TAG, MPI _COMM_WORLD, &st at us) ;

}

f or ( i  = 1;  i  <= numwor k er s;  ++i ) {
sour ce = i ;
MPI _Recv( &of f set ,  1,  MPI _I NT,  s our ce,  TAG,  MPI _COMM_WORLD,  &st at us) ;
MPI _Recv( &r ows,  1,  MPI _I NT,  sour ce,  TAG,  MPI _COMM_WORLD,  &st at us) ;
count  = r ows  *  NCB;
MPI _Recv( &C[ of f set ] [ 0] ,  count ,  MPI _DOUBLE,  sour ce,  TAG, MPI _COMM_WORLD, &st at us) ;

}

• Wait for 
results from
workers

Common t o bot h mast er  
and wor ker  pr ocesses

Common t o bot h mast er  
and wor ker  pr ocesses

MPI – Matrix Multiply (worker task)

sour ce = 0;
MPI _Recv( &of f s et ,  1,  MPI _I NT,  sour ce,  TAG,  MPI _COMM_WORLD,  &st at us) ;
MPI _Recv( &r ows ,    1,  MPI _I NT,  sour ce,  TAG,  MPI _COMM_WORLD,  &st at us) ;
/ /  Recei ve hor i zont al  s l i ce of  A
count  = r ows *  NCA;
MPI _Recv( &A,  c ount ,  MPI _DOUBLE,  s our ce,  TAG,  MPI _COMM_WORLD,  &st at us) ;
/ /  Recei ve mat r i x B
count  = NCA *  NCB;
MPI _Recv( &B,  c ount ,  MPI _DOUBLE,  s our ce,  TAG,  MPI _COMM_WORLD,  &st at us) ;     

sour ce = 0;
MPI _Recv( &of f s et ,  1,  MPI _I NT,  sour ce,  TAG,  MPI _COMM_WORLD,  &st at us) ;
MPI _Recv( &r ows ,    1,  MPI _I NT,  sour ce,  TAG,  MPI _COMM_WORLD,  &st at us) ;
/ /  Recei ve hor i zont al  s l i ce of  A
count  = r ows *  NCA;
MPI _Recv( &A,  c ount ,  MPI _DOUBLE,  s our ce,  TAG,  MPI _COMM_WORLD,  &st at us) ;
/ /  Recei ve mat r i x B
count  = NCA *  NCB;
MPI _Recv( &B,  c ount ,  MPI _DOUBLE,  s our ce,  TAG,  MPI _COMM_WORLD,  &st at us) ;     

• Receive data
from master

/ /  Comput e t he usual  mat r i x mul t i pl i cat i on on t he sl i ce of  mat r i x A and mat r i x B
f or ( k = 0;  k < NCB;  ++k )  {

f or ( i  = 0;  i  < r ows;  ++i )  {
C[ i ] [ k]  = 0. 0;
f or ( j  = 0;  j  < NCA;  ++j )  {

C[ i ] [ k]  += A[ i ] [ j ]  *  B[ j ] [ k ] ;
}

}
}

/ /  Comput e t he usual  mat r i x mul t i pl i cat i on on t he sl i ce of  mat r i x A and mat r i x B
f or ( k = 0;  k < NCB;  ++k )  {

f or ( i  = 0;  i  < r ows;  ++i )  {
C[ i ] [ k]  = 0. 0;
f or ( j  = 0;  j  < NCA;  ++j )  {

C[ i ] [ k]  += A[ i ] [ j ]  *  B[ j ] [ k ] ;
}

}
}

dest i nat i on = 0;
MPI _Send( &of f s et ,  1,  MPI _I NT,  des t i nat i on,  TAG,  MPI _COMM_WORLD) ;
MPI _Send( &r ows ,  1,  MPI _I NT,  dest i nat i on,  TAG,  MPI _COMM_WORLD) ;
count  = r ows *  NCB;
/ /  Send hor i zont al  s l i ce of  r esul t  mat r i x C comput ed on t hi s node
MPI _Send( &C,  c ount ,  MPI _DOUBLE,  dest i nat i on,  TAG,  MPI _COMM_WORLD) ;

dest i nat i on = 0;
MPI _Send( &of f s et ,  1,  MPI _I NT,  des t i nat i on,  TAG,  MPI _COMM_WORLD) ;
MPI _Send( &r ows ,  1,  MPI _I NT,  dest i nat i on,  TAG,  MPI _COMM_WORLD) ;
count  = r ows *  NCB;
/ /  Send hor i zont al  s l i ce of  r esul t  mat r i x C comput ed on t hi s node
MPI _Send( &C,  c ount ,  MPI _DOUBLE,  dest i nat i on,  TAG,  MPI _COMM_WORLD) ;

• Process data

• Send results
back to
master
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– Charm++

� Shared Memory Models 
� PGAS Languages
� Other Programming Models

Charm++

� C++ library for dynamic multithreaded applications

� Developed since 1993
– Prequel Chare Kernel developed since 1988

� Parallel Programming Laboratory at University of 
Illinois at Urbana-Champaign

� Prof. Laxmikant V. Kale

Material from: http://charm.cs.uiuc.edu/
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Charm++ – Programming Model
Execution Model

– Implicit parallelism
� Parallelism expressed at the task level (Chare)
� User unaware of concurrency

– Explicit communication
� Exclusively through asynchronous RMI (on Chare entry methods)
� User responsible for implementing packing/unpacking methods

– MPMD
– Message-driven execution
– Dynamic parallelism

� Every task is a thread
� Load-balancing with task migration

– Object Consistency model

Charm++ – Programming Model
Productivity

– Charmdebug graphical parallel debugger 
– Graphical load balance monitor
– Relatively high level of abstraction

Performance
– Split-phase communication tolerates latency
– Static and dynamic load-balancing
– Processor virtualization

Portability
– Library implemented on top of MPI
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Charm++ – Virtualization

Object-based decomposition

– Divide the computation into a large number of pieces
� Independent of the number of processors

� Preferably significantly larger than the number of processors

– Let the system map objects to processors

User  vi ew of  Char es i nt er ac t i on Sys t em vi ew of  Char es  mappi ng 

Charm++ – Chares

� Dynamically created on any available 
processor

� Can be accessed from other processors
– Chare_ID instead of Thread_ID (virtualization)

� Send messages to each other 
asynchronously

� Contain entry methods that can be invoked 
from other Chares
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Charm++ – Chares

� User only required to think of the interaction 
between chares

� Message-driven execution
– New Chares are only created as “Seed 

messages”

– Construction happens when a first message 
reaches the new Chare

Charm++ – “Hello World”

Charmc

HelloWorld.ciHelloWorld.ci

mai nmodul e hel l o {
mai nchar e mymai n {

ent r y mymai n ( CkAr gMsg * m) ;
} ;

} ;

mai nmodul e hel l o {
mai nchar e mymai n {

ent r y mymai n ( CkAr gMsg * m) ;
} ;

} ;

Generates:

• HelloWorld.decl.h

• HelloWorld.def.h

HelloWorld.CHelloWorld.C

#i ncl ude “ Hel l oWor l d. decl . h”

c l ass mymai n :  publ i c  Char e {
publ i c :

mymai n( CkAr gMsg * m)  {
ckout << “ Hel l o wor l d ! ” << endl ;
CkExi t ( ) ;

}

} ;

#i nc l ude “ Hel l oWor l d. decl . h”

c l ass mymai n :  publ i c  Char e {
publ i c :

mymai n( CkAr gMsg * m)  {
ckout << “ Hel l o wor l d ! ” << endl ;
CkExi t ( ) ;

}

} ;
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Charm++ – Chare Arrays

� Array of Chare objects
– Each Chare communicates with the next one
– More structured view than individual chares

� Single global name for the collection
� Members addressed by index
� Mapping to processors handled by the system

A
[ 1]

A
[ 0]

A
[0]

A
[1]

A
[2]

A
[3]

A
[..]User view

System view Migration

A
[ 0]

A
[ 1]

Charm++ – Dynamic Load-Balancing

� Object (Chare) migration
– Array Chares can migrate from one processor 

to another
– Migration creates a new object on the 

destination processor and destroys the original
– Objects must define pack/unpack (PUP) 

methods

� Initial load-balancing
– New Chares created on least loaded 

processors
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Charm++ – Dynamic Load-Balancing

� Centralized load-balancing
– High-quality balancing with global information
– High communication cost and latency

� Distributed load-balancing
– Same principle in small neighborhoods
– Lower communication cost 
– Global load-imbalance may not be addressed

Charm++ – Split-phase Communication

� Asynchronous communication
– Sender does not block or wait for a return
– Sender provides callback handler that will process any return value

� Efficient for tolerating latency
– No explicit waiting for data
– No stalls with sufficient parallelism
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Charm++

References

� MPI
– http://www.llnl.gov/computing/tutorials/mpi/
– http://www.mpi-forum.org/

� Charm++
– http://charm.cs.uiuc.edu/research/charm/
– http://charm.cs.uiuc.edu/papers/CharmSys1TPDS94.shtml
– http://charm.cs.uiuc.edu/papers/CharmSys2TPDS94.shtml
– http://charm.cs.uiuc.edu/manuals/html/charm++/
– https://agora.cs.uiuc.edu/download/attachments/13044/03_14charmT

utorial.ppt 
– http://charm.cs.uiuc.edu/workshops/charmWorkshop2005/slides2005/

charm2005_tutorial_charmBasic.ppt 
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� Shared Memory Models

– Cilk
– TBB
– HPF
– Chapel
– Fortress
– Stapl

� PGAS Languages
� Other Programming Models

Cilk
� Language for dynamic multithreaded applications

� Superset of C

� Developed since 1994

� Supercomputing Technologies Group at 
MIT Laboratory for Computer Science

� Prof. Charles E. Leiserson

Materials from Charles Leiserson, “Multithreaded Programming in Cilk”,
http://supertech.csail.mit.edu/cilk/ . Used with permission.
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Cilk extends C

� C elision
– Removal of Cilk keywords 

produces valid sequential 
C program

– A valid implementation of 
the semantics of a Cilk
program

ci l k i nt f i b ( i nt n)  {

i f  ( n < 2)

r et ur n n;

el se {

i nt x,  y;

x = spawn f i b ( n- 1) ;

y = spawn f i b ( n- 2) ;

sync;

r et ur n ( x+y) ;

}

}  

The Cilk Model

� Execution Model
– DAG consistency model
– Explicit Parallelism
– Explicit Synchronization

� Productivity
– Simple extension of an existing language
– No details of machine available to application
– Low level of abstraction
– No component reuse or language expansion possible
– Debug and tune using standard tools
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DAG consistency
� Vertices are tasks
� Edges are data dependencies
� Read operation can see result 

of write operation if:
– there is a serial execution order 

of the tasks consistent with the 
DAG where the read is executed 
after the write

� Successors of a task 
guaranteed to see write

� Other tasks may or may not 
see the write

Write

Write
is

visible

Write
may be
visible

The Cilk Model

� Performance
– Developer easily generates high degree of parallelism
– Work stealing runtime scheduler provides load balance

� Portability
– Source-to-source compiler provided
– Runtime system must be ported to new platforms
– Applications completely unaware of underlying system
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Cilk Thread Management

� Application completely unaware of threads
– Work split into Cilk threads

� Cilk thread is a task assigned to a processor
� Tasks scheduled to run on processors by runtime system
� “Spawn” of Cilk thread is 3-4 times more expensive than C 

function call

– Runtime system employs work stealing scheduler

Work Stealing Task Scheduler
� Each processor maintains a deque of tasks

– Used as a stack
– Small space usage
– Excellent cache reuse

� Processor steals when nothing remains in deque
– Chooses random victim
– Treats victim deque as queue
– Task stolen is usually large
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Cilk Synchronization

� Cilk_fence()
– All memory operations of a processor are committed 

before next instruction is executed.

� Cilk_lockvar variables provide mutual exclusion
– Cilk_lock attempts to lock and blocks if unsuccessful
– Cilk_unlock releases lock
– Locks must be initialized by calling Cilk_lock_init()

Cilk Matrix Multiply
ci l k voi d wor k( * A,  * B,  * C,  i ,  L,  N)  {

f or ( i nt j =0;  j <N;  ++j )  {
f or ( i nt k=0;  k<L;  ++k)  {

C[ i ] [ j ]  +=
A[ i ] [ k] * B[ k] [ j ] ;

}
}

}

voi d mat mul ( * A,  * B,  * C,  M,  L,  N)  {
f or ( i nt i =0;  i <M;  ++i )  {

spawn wor k( A,  B,  C,  i ,  L,  N) ;
}
sync;

}
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Cilk Recursive Matrix Multiply

8 multiplications of (n/2) x (n/2) matrices.
1 addition of n � n matrices.

Divide and conquer —

C11 C12

C21 C22

= �
A11 A12

A21 A22

B11 B12

B21 B22

= +
A11B11 A11B12

A21B11 A21B12

A12B21 A12B22

A22B21 A22B22

c i l k voi d Mul t ( * C,  * A,  * B,  n)  {
f l oat  * T = Ci l k_al l oca( n* n* s i zeof ( f l oat ) ) ;
h base case & partition matrices i
spawn Mul t ( C11, A11, B11, n/ 2) ;
spawn Mul t ( C12, A11, B12, n/ 2) ;
spawn Mul t ( C22, A21, B12, n/ 2) ;
spawn Mul t ( C21, A21, B11, n/ 2) ;
spawn Mul t ( T11, A12, B21, n/ 2) ;
spawn Mul t ( T12, A12, B22, n/ 2) ;
spawn Mul t ( T22, A22, B22, n/ 2) ;
spawn Mul t ( T21, A22, B21, n/ 2) ;
sync;
spawn Add( C, T, n) ;
sync;  
r et ur n;

}

c i l k voi d Mul t ( * C,  * A,  * B,  n)  {
f l oat  * T = Ci l k_al l oca( n* n* s i zeof ( f l oat ) ) ;
h base case & partition matrices i
spawn Mul t ( C11, A11, B11, n/ 2) ;
spawn Mul t ( C12, A11, B12, n/ 2) ;
spawn Mul t ( C22, A21, B12, n/ 2) ;
spawn Mul t ( C21, A21, B11, n/ 2) ;
spawn Mul t ( T11, A12, B21, n/ 2) ;
spawn Mul t ( T12, A12, B22, n/ 2) ;
spawn Mul t ( T22, A22, B22, n/ 2) ;
spawn Mul t ( T21, A22, B21, n/ 2) ;
sync;
spawn Add( C, T, n) ;
sync;  
r et ur n;

}

Matrix Multiply in Pseudo-Cilk

C = A�B
Absence of type 

declarations.
Absence of type 

declarations.
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c i l k voi d Mul t ( * C,  * A,  * B,  n)  {
f l oat  * T = Ci l k_al l oca( n* n* s i zeof ( f l oat ) ) ;
h base case & partition matrices i
spawn Mul t ( C11, A11, B11, n/ 2) ;
spawn Mul t ( C12, A11, B12, n/ 2) ;
spawn Mul t ( C22, A21, B12, n/ 2) ;
spawn Mul t ( C21, A21, B11, n/ 2) ;
spawn Mul t ( T11, A12, B21, n/ 2) ;
spawn Mul t ( T12, A12, B22, n/ 2) ;
spawn Mul t ( T22, A22, B22, n/ 2) ;
spawn Mul t ( T21, A22, B21, n/ 2) ;
sync;
spawn Add( C, T, n) ;
sync;  
r et ur n;

}

c i l k voi d Mul t ( * C,  * A,  * B,  n)  {
f l oat  * T = Ci l k_al l oca( n* n* s i zeof ( f l oat ) ) ;
h base case & partition matrices i
spawn Mul t ( C11, A11, B11, n/ 2) ;
spawn Mul t ( C12, A11, B12, n/ 2) ;
spawn Mul t ( C22, A21, B12, n/ 2) ;
spawn Mul t ( C21, A21, B11, n/ 2) ;
spawn Mul t ( T11, A12, B21, n/ 2) ;
spawn Mul t ( T12, A12, B22, n/ 2) ;
spawn Mul t ( T22, A22, B22, n/ 2) ;
spawn Mul t ( T21, A22, B21, n/ 2) ;
sync;
spawn Add( C, T, n) ;
sync;  
r et ur n;

}

C = A�B
Coarsen base cases 
for efficiency.
Coarsen base cases 
for efficiency.

Matrix Multiply in Pseudo-Cilk

c i l k voi d Mul t ( * C,  * A,  * B,  n)  {
f l oat  * T = Ci l k_al l oca( n* n* s i zeof ( f l oat ) ) ;
h base case & partition matrices i
spawn Mul t ( C11, A11, B11, n/ 2) ;
spawn Mul t ( C12, A11, B12, n/ 2) ;
spawn Mul t ( C22, A21, B12, n/ 2) ;
spawn Mul t ( C21, A21, B11, n/ 2) ;
spawn Mul t ( T11, A12, B21, n/ 2) ;
spawn Mul t ( T12, A12, B22, n/ 2) ;
spawn Mul t ( T22, A22, B22, n/ 2) ;
spawn Mul t ( T21, A22, B21, n/ 2) ;
sync;
spawn Add( C, T, n) ;
sync;  
r et ur n;

}

c i l k voi d Mul t ( * C,  * A,  * B,  n)  {
f l oat  * T = Ci l k_al l oca( n* n* s i zeof ( f l oat ) ) ;
h base case & partition matrices i
spawn Mul t ( C11, A11, B11, n/ 2) ;
spawn Mul t ( C12, A11, B12, n/ 2) ;
spawn Mul t ( C22, A21, B12, n/ 2) ;
spawn Mul t ( C21, A21, B11, n/ 2) ;
spawn Mul t ( T11, A12, B21, n/ 2) ;
spawn Mul t ( T12, A12, B22, n/ 2) ;
spawn Mul t ( T22, A22, B22, n/ 2) ;
spawn Mul t ( T21, A22, B21, n/ 2) ;
sync;
spawn Add( C, T, n) ;
sync;  
r et ur n;

}

C = A�B

Submatrices are 
produced by pointer 
calculation, not 
copying of elements.

Submatrices are 
produced by pointer 
calculation, not 
copying of elements.

Also need a row-
size argument for 
array indexing.

Also need a row-
size argument for 
array indexing.

Matrix Multiply in Pseudo-Cilk
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c i l k voi d Mul t ( * C,  * A,  * B,  n)  {
f l oat  * T = Ci l k_al l oca( n* n* s i zeof ( f l oat ) ) ;
h base case & partition matrices i
spawn Mul t ( C11, A11, B11, n/ 2) ;
spawn Mul t ( C12, A11, B12, n/ 2) ;
spawn Mul t ( C22, A21, B12, n/ 2) ;
spawn Mul t ( C21, A21, B11, n/ 2) ;
spawn Mul t ( T11, A12, B21, n/ 2) ;
spawn Mul t ( T12, A12, B22, n/ 2) ;
spawn Mul t ( T22, A22, B22, n/ 2) ;
spawn Mul t ( T21, A22, B21, n/ 2) ;
sync;
spawn Add( C, T, n) ;
sync;  
r et ur n;

}

c i l k voi d Mul t ( * C,  * A,  * B,  n)  {
f l oat  * T = Ci l k_al l oca( n* n* s i zeof ( f l oat ) ) ;
h base case & partition matrices i
spawn Mul t ( C11, A11, B11, n/ 2) ;
spawn Mul t ( C12, A11, B12, n/ 2) ;
spawn Mul t ( C22, A21, B12, n/ 2) ;
spawn Mul t ( C21, A21, B11, n/ 2) ;
spawn Mul t ( T11, A12, B21, n/ 2) ;
spawn Mul t ( T12, A12, B22, n/ 2) ;
spawn Mul t ( T22, A22, B22, n/ 2) ;
spawn Mul t ( T21, A22, B21, n/ 2) ;
sync;
spawn Add( C, T, n) ;
sync;  
r et ur n;

}

C = A�B

c i l k voi d Add( * C,  * T,  n)  {
h base case & partition matrices i
spawn Add( C11, T11, n/ 2) ;
spawn Add( C12, T12, n/ 2) ;
spawn Add( C21, T21, n/ 2) ;
spawn Add( C22, T22, n/ 2) ;
sync;
r et ur n;

}

c i l k voi d Add( * C,  * T,  n)  {
h base case & partition matrices i
spawn Add( C11, T11, n/ 2) ;
spawn Add( C12, T12, n/ 2) ;
spawn Add( C21, T21, n/ 2) ;
spawn Add( C22, T22, n/ 2) ;
sync;
r et ur n;

}C = C + T

Matrix Multiply in Pseudo-Cilk
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� Other Programming Models
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Threading Building Blocks

� C++ library for parallel programming

� STL-like interface for library components
– Algorithms accept Ranges that provide access to 

Containers

� Initial release by Intel in August 2006

� Strongly influenced by Cilk, STAPL, and others

Intel® Threading Building Blocks
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The TBB Model
� Execution Model

– Implicit parallelism
– Mixed synchronization

� Locks provided for mutual exclusion
� Containers provide safe concurrent access

� Productivity
– Library for an existing language

� Provides components for reuse

– Few details of machine available to developer
– Higher level of abstraction
– Timing class provided in library for manual tuning
– Designed to be interoperable with OpenMP and Pthreads

The TBB Model

� Performance
– Algorithms attempt to generate high degree of parallelism
– Same work stealing algorithm as Cilk for load balance

� Portability
– Library implementation must be ported to new platforms
– Currently requires x86 architecture
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TBB Thread Management

� Developer mostly unaware of threads
– Can specify the desired thread count at TBB initialization
– Runtime system defaults to single thread per processor

� Developer creates tasks instead of threads
– Tasks mapped to threads by runtime scheduler as in Cilk
– TBB algorithms attempt to generate many tasks

� TBB runtime system handles management of 
threads used to process tasks

TBB Synchronization
Task synchronization

� Tasks are logical units of computation

� Tasks dynamically create new tasks
– Split-join model applied to child tasks
– Parent task may specify a task to be executed when all 

child tasks complete (explicit continuation)
– Parent task may block and wait on children to complete 

before it finishes (implicit continuation)
� Cilk threads use this model

� TBB algorithms generate and manage tasks
– Use continuations to implement execution pattern
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TBB Synchronization
Concurrent Containers

� Allow threads to access data concurrently

� Whole-container methods
– Modify entire container
– Must be executed by a single task

� Element access methods
– Multiple tasks may perform element access/modification
– Containers use mutexes as needed to guarantee 

consistency

TBB Synchronization
Low-level Synchronization Primitives

� Atomic template class provides atomic operations
– Type must be integral or pointer
– read, write, fetch-and-add, fetch-and-store,

compare-and-swap operations provided by class

� Mutexes use scoped locking pattern
– lock released when variable leaves scope
– initialization of variable is lock acquisition

{
/ /  myLock const r uct or  acqui r es l ock on myMut ex
M: : scoped_l ock myLock(  myMut ex ) ;
. . .  act i ons t o be per f or med whi l e hol di ng t he l ock . . .
/ /  myLock dest r uct or  r el eases l ock on myMut ex
}
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TBB Synchronization
Low-level Synchronization Primitives

Multiple threads can hold lock if reading.  
Writing thread must have exclusive lock on 
mutex

Reader-Writer
Mutex

Threads acquire lock on mutex in the order 
they request it.

Queuing Mutex

Thread busy waits until able to acquire lockSpin Mutex

Implements mutex concept using underlying 
OS locks (e.g., pthread mutexes)

Mutex

TBB Matrix Multiply

t ask_schedul er _i ni t  i ni t ;
par al l el _f or (

bl ocked_r ange<si ze_t >( 0, M, 1) ,  
wor k( A, B, C, L, M)

) ;

cl ass wor k {
/ / dat a member s A, B, C, L, N

publ i c :
voi d oper at or ( ) ( const  bl ocked_r ange<si ze_t >& r )  const  {

f or ( i nt i  = r . begi n( ) ;  i  ! = r . end( ) ;  ++i )  {  
f or ( i nt j =0;  j <N;  ++j )  {

f or ( i nt k=0;  k<L;  ++k)  {
C[ i ] [ j ]  += A[ i ] [ k] * B[ k] [ j ] ;

}
}

}
}

} ;

Grainsize parameter 
determines how many 
iterations will be executed by 
a thread at once.
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TBB Parallel Sum
cl ass sum {

f l oat *  a;
publ i c :

f l oat  sum;

voi d oper at or ( ) ( const  bl ocked_r ange<si ze_t >& r  )  {
f or ( si ze_t  i =r . begi n( ) ;  i ! =r . end( ) ;  ++i )

sum += a[ i ] ;
}

voi d j oi n( sum& ot her )  {  sum += ot her . sum;  }
} ;

f l oat  Par al l el SumFoo( f l oat a[ ] ,  si ze_t  n)  {
sum sum_f unc( a) ;
par al l el _r educe( bl ocked_r ange<si ze_t >( 0, n, 1) ,  sum_f unc) ;
r et ur n sum_f unc. sum;

}

Table of Contents

� Introduction to Parallelism
� Introduction to Programming Models
� Shared Memory Programming
� Message Passing Programming
� Shared Memory Models

– Cilk
– TBB
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– Fortress
– Stapl

� PGAS Languages
� Other Programming Models
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HPF - High Performance Fortran

� History
– High Performance Fortran Forum (HPFF) coalition founded in 

January 1992 to define set of extensions to Fortran 77
– V 1.1 Language specification November, 1994
– V 2.0 Language specification January, 1997

� HPF
– Data Parallel (SPMD) model
– Specification is Fortran 90 superset that adds FORALL statement 

and data decomposition / distribution directives

* Adapted from presentation by Janet Salowe - http://www.nbcs.rutgers.edu/hpc/hpf{1,2}/

The HPF Model

� Execution Model
– Single-threaded programming model
– Implicit communication
– Implicit synchronization
– Consistency model hidden from user

� Productivity
– Extension of Fortran (via directives)
– Block imperative, function reuse
– Relatively high level of abstraction
– Tunable performance via explicit data distribution
– Vendor specific debugger
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The HPF Model

� Performance
– Latency reduction by explicit data placement
– No standardized load balancing, vendor could implement

� Portability
– Language based solution, requires compiler to recognize
– Runtime system and feature vendor specific, not modular
– No machine characteristic interface
– Parallel model not affected by underlying machine
– I/O not addressed in standard, proposed extensions exist 

HPF - Concepts

� DISTRIBUTE - replicate or decompose data

� ALIGN - coordinate locality on processors

� INDEPENDENT - specify parallel loops

� Private - declare scalars and arrays local to a 
processor
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Data Mapping Model

� HPF directives - specify data object allocation
� Goal - minimize communication while maximizing 

parallelism
� ALIGN - data objects to keep on same processor
� DISTRIBUTE - map aligned object onto processors
� Compiler - implements directives and performs data 

mapping to physical processors
– Hides communications, memory details, system specifics

Data Objects Align Objects
Abstract 

Processors
Physical

Processors

HPF

Ensuring Efficient Execution
� User layout of data
� Good specification to compiler (ALIGN)
� Quality compiler implementation
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Simple Example (Integer Print)
I NTEGER,  PARAMETER : :  N=16

I NTEGER,  DI MENSI ON( 1: N) : :  A, B
! HPF$ DI STRI BUTE( BLOCK)  : :  A
! HPF$ ALI GN WI TH A : :  B
DO i =1, N
A( i )  = i
END DO
! HPF$ I NDEPENDENT
FORALL ( i =1: N)  B( i )  = A( i ) * 2
WRI TE ( 6, * )  ' A = ' ,  A
WRI TE ( 6, * )  ' B = ' ,  B
STOP
END

Output:

0: A = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0: B = 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

HPF Compiler Directives

t r i gger - st r i ng hpf - di r ect i ve

� t r i gger - st r i ng - comment followed by HPF$
� hpf - di r ect i ve - an HPF directive and its arguments

– DISTRIBUTE, ALIGN, etc.
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HPF - Distribute

� ! HPF$ DI STRI BUTE obj ect  ( det ai l s)

– distribution details - comma separated list, for each 
array dimension

� BLOCK, BLOCK(N), CYCLIC, CYCLIC(N)

– object must be a simple name (e.g., array name)
– object can be aligned to, but not aligned

HPF - ALIGN

� ! HPF$ ALI GN al i gnee( subscr i pt - l i s t )  
WI TH obj ect ( subscr i pt - l i s t )

� al i gnee - undistributed, simple object
� subscr i pt - l i s t

– All dimensions
– Dummy argument (int constant, variable or expr.)
– :
– *
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HPF - ALIGN
Equivalent directives, with !HPF$ DISTRIBUTE 

A(BLOCK,BLOCK)
! HPF$ ALI GN B( : , : )  WI TH A( : , : )

! HPF$ ALI GN ( i , j )  WI TH A( i , j )  : :  B

! HPF$ ALI GN ( : , : )  WI TH A( : , : )  : :  B

! HPF$ ALI GN WI TH A : :  B

Example
Original F77                                         HPF

HPF - Alignment for Replication

� Replicate heavily read arrays, such as lookup tables, to 
reduce communication
– Use when memory is cheaper than communication
– If replicated data is updated, compiler updates ALL copies

� If array M is used with every element of A:
I NTEGER M( 4)

I NTEGER A( 4, 5)

! HPF$ ALI GN M( * )  WI TH A( i , * )

M(:)

M(:)

M(:)

M(:)

A(1,:)

A(2,:)

A(3,:)

A(4,:)
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HPF Example - Matrix Multiply
PROGRAM ABmul t

I MPLI CI T NONE

I NTEGER,  PARAMETER : :  N = 100
I NTEGER,  DI MENSI ON ( N, N)  : :  A,  B,  C

I NTEGER : :  i ,  j
! HPF$ DI STRI BUTE ( BLOCK, BLOCK)  : :  C

! HPF$ ALI GN A( i , * )  WI TH C( i , * )
!  r epl i cat e copi es of  r ow A( i , * )

!  ont o pr ocessor s  whi ch comput e C( i , j )
! HPF$ ALI GN B( * , j )  WI TH C( * , j )

!  r epl i cat e copi es of  col umn B( * , j ) )

!  ont o pr ocessor s  whi ch comput e C( i , j )
A = 1

B = 2
C = 0

DO i  = 1,  N
DO j  = 1,  N

!  Al l  t he wor k i s  l ocal  due t o ALI GNs
C( i , j )  = DOT_PRODUCT( A( i , : ) ,  B( : , j ) )

END DO
END DO

WRI TE( * , * )  C

HPF - FORALL

� A generalization of Fortran 90 array assignment (not a loop)
� Does assignment of multiple elements in an array, but order 

not enforced
� Uses

– assignments based on array index
– irregular data motion
– gives identical results, serial or parallel

� Restrictions
– assignments only
– execution order undefined
– not iterative

FORALL ( I =1: N)  B( I )  = A( I , I )
FORALL ( I  = 1: N,  J  = 1: N: 2,  J  . LT.  I )  A( I , J )  = A( I , J)  /  A( I , I )
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Table of Contents
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� Shared Memory Models
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� Other Programming Models

Chapel

� The Cascade High-Productivity Language (Chapel)

– Developed by Cray as part of DARPA HPCS program

– Draws from HPF and ZPL

– Designed for “general” parallelism
Supports arbitrary nesting of task and data parallelism

– Constructs for explicit data and work placement

– OOP and generics support for code reuse

Adapted From:http://chapel.cs.washington.edu/ChapelForAHPCRC.pdf
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The Chapel Model

� Execution Model
– Explicit data parallelism with f or al l

– Explicit task parallelism f or al l , cobegi n, begi n

– Implicit communication

– Synchronization
� Implicit barrier after parallel constructs

� Explicit constructs also included in language

– Memory Consistency model still under development

Chapel - Data Parallelism

� f or al l loop
loop where iterations performed concurrently

f or al l i  i n 1. . N do
a( i )  = b( i ) ;

alternative syntax:
[ i  i n 1. . N]  a( i )  = b( i ) ;
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Chapel - Task Parallelism

� f or al l expression
allows concurrent evaluation expressions

[ i  i n S]  f ( i ) ;

� cobegi n
indicate statement that may run in parallel    

cobegi n {
Comput eTaskA( …) ;
Comput eTaskB( …) ;

}

� begi n
spawn a computation to execute a statement

begi n Comput eTaskA( …) ;  / / doesn’ t  r ej oi n
Comput eTaskB( …) ;       / / doesn’ t  wai t  f or  Comput eTaskA

Chapel - Matrix Multiply

var A:  [ 1. . M,  1. . L]  f l oat ;

var B:  [ 1. . L,  1. . N]  f l oat ;

var C:  [ 1. . M,  1. . N]  f l oat ;

f or al l ( i , j )  i n [ 1. . M,  1. . N]  do
f or k i n [ 1. . L]

C( i , j )  += A( i , k)  *  B( k, j ) ;
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Chapel - Synchronization

� si ngl e variables
– Chapel equivalent of futures
– Use of variable stalls until variable assignment

var x  :  si ngl e i nt ;
begi n x  = f oo( ) ;   / / sub comput at i on spawned
var y  = bar ;
r et ur n x* y ;        / / s t al l ed unt i l  f oo( )  compl et es.  

� sync variables
– generalization of single, allowing multiple assignments
– full / empty semantics, read ‘empties’ previous assignment

� at omi c statement blocks
– transactional memory semantics
– no changes in block visible until completion

Chapel - Productivity

� New programming language 
� Component reuse 

– Object oriented programming support
– Type generic functions

� Tunability
– Reduce latency via explicit work and data distribution

� Expressivity
– Nested parallelism supports composition

� Defect management
– ‘Anonymous’ threads for hiding complexity of concurrency

no user level thread_id, virtualized
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Chapel - Performance

� Latency Management
– Reducing

� Data placement - distributed domains

� Work placement - on construct

– Hiding
� si ngl e variables

� Runtime will employ multithreading, if available

Chapel - Latency Reduction

� Locales
– Abstraction of processor or node
– Basic component where memory accesses are assumed uniform
– User interface defined in language

� integer constant numLocales
� type l ocal e with (in)equality operator
� array Local es[ 1. . numLocal es ] of type l ocal e

var CompGr i d: [ 1. . Rows,  1. . Col s]  l ocal = . . . ;
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� Domain
– set of indices specifying size and shape of aggregate types (i.e., 

arrays, graphs, etc)

var m:  i nt eger = 4;
var n:  i nt eger = 8;

var D:  domai n( 2) = [ 1. . m,  1. . n] ;
var DI nner :  domai n( D)  = [ 2. . m- 1,  2. . n- 1]

var St r i dedD:  domai n( D)  = D by ( 2, 3) ;

var i ndexLi st :  seq( i ndex ( D) )  = . . . ;

var Spar seD:  spar se domai n( D)  = i ndexLi s t ;

Chapel - Latency Reduction

� Declaring arrays
var A,  B:  [ D]  f l oat

� Sub-array references
A( Di nner )  = B( Di nner ) ;

� Parallel iteration
f or al l ( i , j )  i n Di nner  {  A( i , j }  = . . . }

Chapel - Domains
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Chapel - Latency Reduction

� Distributed domains
– Domains can be explicitly distributed across locales
var D:  domai n( 2)  di st r i but ed( bl oc k( 2)  t o CompGr i d)  = . . . ;

– Pre-defined 
� bl ock,  cycl i c ,  bl ock- cycl i c,  cut

– User-defined distribution support in development

Chapel - Latency Reduction

� Work Distribution with on

cobegi n {
on TaskALocs do Comput eTaskA( . . . ) ;
on TaskBLocs do Comput eTaskB( . . . ) ;

}

alternate data-driven usage:

f or al l ( i , j )  i n D {
on B( j / 2,  i * 2)  do A( i , j )  = f oo( B( j / 2,  i * 2) ) ;

}
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Chapel - Portability

� Language based solution, requires compiler

� Runtime system part of Chapel model.  Responsible for mapping 

implicit multithreaded, high level code appropriately onto target 

architecture

� locales machine information available to programmer

� Parallel model not effected by underlying machine

� I/O API discussed in standard, scalability and implementation not 

discussed

Table of Contents

� Introduction to Parallelism
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The Fortress Model

� Developed by Sun for DARPA HPCS program

� Draws from Java and functional languages

� Emphasis on growing language via strong library 
development support

� Places parallelism burden primarily on library developers

� Use of extended Unicode character set allow syntax to 
mimic mathematical formulas

Adapted From: http://irbseminars.intel-research.net/GuySteele.pdf

The Fortress Model

Execution Model

� User sees single-threaded execution by default

– Loops are assumed parallel, unless otherwise specified

� Data parallelism
– Implicit with f or construct

– Explicit ordering via custom Generators

� Explicit task parallelism
– Tuple and do al l constructs

– Explicit with spawn
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The Fortress Model

Execution Model

� Implicit communication

� Synchronization
– Implicit barrier after parallel constructs

– Implicit synchronization of reduction variables in f or loops

– Explicit at omi c construct (transactional memory)

� Memory Consistency

– Sequential consistency under constraints
� all shared variable updates in at omi c sections

� no implicit reference aliasing

Fortress - Data Parallelism

� f or loops - default is parallel execution

1: N and seq( 1: N) are generators
seq( 1: N) is generator for sequential execution
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Fortress - Data Parallelism

� Generators
– Controls parallelism in loops
– Examples

� Aggregates - <1, 2, 3, 4>

� Ranges - 1: 10 and 1: 99: 2

� Index sets - a. i ndi ces and a. i ndi ces. r owMaj or

� seq( g) - sequential version of generator g

– Can compose generators to order iterations

seq( <5, <seq( <1, 2>) ,  seq( <3, 4>) >>)

1 2 3 4

5

Fortress - Explicit Task Parallelism

� Tuple expressions
– comma separated exp. list executed 

concurrently
( f oo( ) ,  bar ( ) )

� do- al so blocks
– all clauses executed concurrently

do
f oo( )

al so do
bar ( )

end
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Fortress - Explicit Task Parallelism

� Spawn expressions (futures)
…
v = spawn do

…
end
…
v. val ( )    / / r et ur n val ue,  bl ock i f  not  compl et ed
v. r eady( )  / / r et ur n t r ue i f f v compl et ed
v. wai t ( )   / / bl ock i f  not  compl et ed,  no r et ur n 
val ue
v. st op( )   / / at t empt  t o t er mi nat e t hr ead

Fortress - Synchronization

� at omi c blocks - transactional memory
– other threads see block completed or not yet started
– nested at omi c and parallelism constructs allowed
– t r yat omi c can detect conflicts or aborts
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Fortress - Productivity

� Defect management
– Reduction

� explicit parallelism and tuning primarily confined to libraries

– Detection
� integrated testing infrastructure

� Machine model 
– Regions give abstract machine topology

Fortress - Productivity

Expressivity
� High abstraction level

– Source code closely matches formulas via extended Unicode charset
– Types with checked physical units
– Extensive operator overloading

� Composition and Reuse
– Type-based generics
– Arbitrary nested parallelism
– Inheritance by traits

� Expandability
– ‘Growable’ language philosophy aims to minimize core language 

constructs and maximize library implementations
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Fortress - Productivity

� Implementation refinement
– Custom generators, distributions, and thread placement

� Defect management
– Reduction

� explicit parallelism and tuning primarily confined to libraries

– Detection
� integrated testing infrastructure

� Machine model 
– Regions give abstract machine topology

Fortress - Matrix Multiply

mat mul t ( A:  Mat r i x[ / Fl oat / ] ,  

B:  Mat r i x[ / Fl oat / ] )

:  Mat r i x[ / Fl oat / ]

A B

end

C = mat mul t ( A, B)
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Fortress - Performance

� Regions for describing system topology

� Work placement with at

� Data placement with Distributions

� spawn expression to hide latency

Fortress - Regions

� Tree structure of CPUs and memory resources
– Allocation heaps
– Parallelism
– Memory coherence

� Every thread, object, and array 
element has associated region

obj . r egi on( )    / / r egi on wher e obj ect  obj i s l ocat ed

r . i sLocal To( s)  / / i s r egi on r  i n r egi on t r ee r oot ed at  s
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� Explicit work placement with at

inside do al so

with spawn

regular block stmt

Fortress - Latency Reduction

� Explicit data placement with Distributions

a = Bl ocked. ar r ay( n, n, 1) ;  / / Penci l s al ong z axi s

� User can define custom distribution by inheriting 
Distribution trait
– Standard distributions implemented in this manner

Fortress - Latency Reduction
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Fortress - Portability

� Language based solution, requires compiler

� Runtime system part of Fortress implementation  
Responsible for mapping multithreaded onto target 
architecture

� Regions make machine information available to 
programmer

� Parallel model not affected by underlying machine

Table of Contents

� Introduction to Parallelism
� Introduction to Programming Models
� Shared Memory Programming
� Message Passing Programming
� Shared Memory Models
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– TBB
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– Stapl

� PGAS Languages
� Other Programming Models
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The STAPL Model

� Standard Adaptive Parallel Library

� Developed by Lawrence  Rauchwerger, Nancy Amato, 
Bjarne Stroustrup and several grad students at Texas A&M 

� Library similar and compatible with to STL 

� Strong library development support

� Places parallelism burden primarily on library developers

� Commercial simple variant : Intel TBB

Adapted From: http://irbseminars.intel-research.net/GuySteele.pdf

Standard Template Adaptive Parallel Library

A library of parallel, generic constructs based on the 
C++ Standard Template Library (STL).
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Standard Template Library (STL)
Generic programming components using C++ templates.

� Containers - collection of other objects.
– vector, list, deque, set, multiset, map, multi_map, hash_map.
– Templated by data type.   vector<int> v(50);

� Algorithms - manipulate the data stored in containers.
– manipulate the data stored in containers.
– count(), reverse(), sort(), accumulate(), for_each(), reverse().

� Iterators - Decouple algorithms from containers.
– Provide generic element access to data in containers.
– can define custom traversal of container (e.g., every other element)
– count(vector.begin(), vector.end(), 18);

Algorithm  ContainerContainerIterator

Execution Model
• Two models: User and Library Developer

• Single threaded – User

• Multithreaded – Developer

• Shared memory – User

• PGAS – Developer

• Data & task parallelism

• Implicit communications: User

• Explicit communications: Developer
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Execution Model

– Memory Consistency: 
– Sequential  for user

– Relaxed for developer (Object level)

– Will be selectable

– Atomic methods for containers

– Synchronizations: Implicit & Explicit 

STAPL Components

– Components for Program Development
� pContainers, Views, pRange, pAlgorithms

– Run-time System
� Adaptive Remote Method Invocation (ARMI)

� Multithreaded RTS

� Framework for Algorithm Selection and Tuning 
(FAST)
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pContainers

Generic, distributed data structures with parallel 
methods.

� Ease of Use
– Shared object view
– Generic access mechanism through Views
– Handles data distribution and remote data access internally
– Interface equivalent with sequential counterpart

� Efficiency
– OO design to optimize specific containers
– Template parameters allow further customization

� Extendability
– New pContainters extend Base classes

� Composability
– pContainers of pContainers

Currently Implemented
pArray, pVector, pGraph, pMap, pHashMap, pSet, pList

pContainer Taxonomy

Static
pContainer

AssociativeBase
<Key, Value>

Sequence
<Value>

- pList

pContainerBase

Dynamic
pContainer

pVector/pList/pArray/
pGraph/...

Simple
Associative

<Key=Value>

 - pSet

Pair
Associative

<Key,Value>

- pMap
-pHashMap

Indexed
<Value>

Index is the implicit
Key
 - pVector/pArrays
 - HTA

New
Specialized
pContainer

Specific Properties
(traits) can

augment the traits
provided by
pContainer
framework

Relationship
<Value,Relation>

- pGraph
- pGeneric Trees

Relationship pContainersAssociative pContainers

RelationshipBase
<Value,Relat ion>
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pContainer Customization

Optional user customization through pContainer Traits.

� Enable/Disable Performance Monitoring.
� Select Partition Strategies.
� Enable/Disable Thread Safety.
� Select Consistency Models

cl ass  p_ar r ay_t r ai t s {
I ndexed,  Assoc/ Key=I ndex ,
St at i c , I ndexedVi ew<St at i c, . . . ,  Random>,
Di st r i but i onManager Tr ai t s,
- u- Moni t or i ng,
- u- Rel axed

}

View

� STAPL equivalent of STL iterator, extended to allow for efficient parallelism.  

� Focus on processing value range, instead of single item.

� Generic access mechanism to pContainer.

� Custom traversal of pContainer elements. 

� Hierarchically defined to allow control of locality and granularity of 

communication/computation.

Gray -> the pContainer physical partition.
Transparent -> logical views of the data.

P1   P2    P3    P4 P1   P2    P3    P4

V1   V2    V3    V4

V1

V2    

V3   

V4

subview subview

subview

view

View

Data Space
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pAlgorithms

� pAlgorithms in STAPL
– Parallel counterparts of STL algorithms provided in STAPL.
– Common parallel algorithms.

� Prefix sums

� List ranking

– pContainer specific algorithms.
� Strongly Connected Components (pGraph)

� Euler Tour (pGraph)

� Matrix multiplication (pMatrix)

– Often, multiple implementations exist that are adaptively used by the 
library.

pRange

� pRange is a parallel task graph.

� Unifies work and data parallelism.

� Recursively defined as a tree of subranges.
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pRange -- Task Graphs in 
STAPL

� Data to be processed by pAlgorithm
– View of input data
– View of partial result storage

� Work Function
– Sequential operation
– Method to combine partial results

� Task
– Work function
– Data to process

� Task dependencies
– Expressed in Task Dependence Graph (TDG)
– TDG queried to find tasks ready for execution

Task

View

Work Function

901345675628

View

Task graph of pAlgorithm
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901345675628

10121816
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Composing Task Graphs
� Increases amount of concurrent work available
� Forms a MIMD computation
� Dependencies between tasks specified during 

composition
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Simple Dependence 
Specification

� Goal: Developer concisely expresses 
dependencies
– Enumeration of dependencies is unmanageable

� Common patterns will be supported in pRange
– Sequential – sources depend on sinks
– Independent – no new dependencies needed in 

composed graph
– Pipelined – dependencies follow a regular pattern
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Discrete Ordinates Particle 
Transport Computation

� Important application for DOE
– E.g., Sweep3D and UMT2K

� Large, on-going DOE project at TAMU to develop 
application in STAPL (TAXI)

One sweep Eight simultaneous sweeps

1

2 5

3 6

4 7

8

10 13

18 2112 15

14 1711

9

22 2516 19

26 2920 23

3024 27

28 31
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prA
4

3 8

2 7

1 6

5

11 16

19 249 14

15 2010
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25 30
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prB
Pipeline Pattern Example
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pRange Summary
� Binds the work of an algorithm to the data

� Simplifies programming task graphs
– Methods to create tasks
– Common dependence pattern specifications
– Compact specification of task dependencies
– Manages task refinement 
– Simple specification of task graph composition

� Supports multiple programming models
– Data-parallelism
– Task-parallelism

STAPL Example - p_count
Implementation

t empl at e<t ypename Vi ew,  t ypename Pr edi cat e>

cl ass p_count _wf {

/ / const r uct or  - i ni t  member  m_pr ed

pl us<r esul t _t ype> combi ne_f unct i on( voi d)

{  r et ur n pl us<r esul t _t ype>( ) ;  }

t empl at e<t ypename Vi ewSet >

si ze_t  oper at or ( ) ( Vi ewSet & vs)

{  

r et ur n count _i f ( vs. s v0( ) . begi n( ) ,  

vs. sv0( ) . end( ) ,  m_pr ed) ;  

}

} ;

t empl at e<t ypename Vi ew,  t ypename Pr edi cat e>

p_count _i f ( Vi ew& vi ew,  Pr edi cat e pr ed)  {

t ypedef p_count _wf <Vi ew, Pr edi cat e>   wf _t ;

wf _t wf ( pr ed) ;

r et ur n pRange<Vi ew,  wf _t >( vi ew,  wf ) . execut e( ) ;

}

Example Usage

st apl _mai n( )  {

p_vect or <i nt >             val s;

p_vect or <i nt >: : v i ew_t y pe  v i ew 

= val s. cr eat e_vi ew( ) ;

. . .  / / i ni t i al i ze

i nt r et  = p_count ( v i ew,  l ess_t han( 5) ) ;

}
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STAPL Example - p_dot_product
Implementation

t empl at e<t ypename Vi ew>

cl ass p_dot _pr oduct _wf {

pl us<r esul t _t ype> get _combi ne_f unct i on( voi d)

{  r et ur n pl us<r esul t _t ype>( ) ;  }

t empl at e<t ypename Vi ewSet >

r esul t _t ype oper at or ( ) ( Vi ewSet & vs)

{  

r esul t _t ype r esul t  = 0;

Vi ewSet : : v i ew0: : i t er at or  i  = vs. sv0( ) . begi n( ) ;

Vi ewSet : : v i ew1: : i t er at or  j  = vs. sv1( ) . begi n( ) ;

f or ( ;  i ! =v s. sv0. end( ) ;  ++i ,  ++j )  {

r esul t  += * i  *  * j ;

}

} ;

t empl at e<t ypename Vi ew1,  t ypename Vi ew2>

p_dot _pr oduct ( Vi ew1& vw1,  Vi ew2& vw2)  {

t ypedef p_dot _pr oduct _wf <Vi ew1,  Vi ew2>   wf _t ;

wf _t wf ;

r et ur n pRange<Vi ew1,  Vi ew2,  wf _t >( vw1,  vw2,  wf ) . ex ecut e( ) ;

}

Example Usage

st apl _mai n( )  {

p_vect or <i nt >             val s;

p_vect or <i nt >: : v i ew_t y pe  v i ew1 

= val s. cr eat e_vi ew( ) ;

p_vect or <i nt >             mor e_val s;

p_vect or <i nt >: : v i ew_t y pe  v i ew2 

= mor e_val s. cr eat e_v i ew( ) ;

. . .  / / i ni t i al i ze

i nt r et  = p_dot _pr oduc t ( v i ew1,  v i ew_2) ;

}

RTS – Current state

Application Specific Parameters

Smart Application

STAPL RTS

ARMI Executor

K42 User-Level

Dispatcher

Kernel Scheduler

(no custom scheduling, e.g. NPTL)
Operating System 

Memory ManagerAdvanced stageAdvanced stage

Experimental stage: Experimental stage: 
multithreadingmultithreading

ARMI Executor

Comm. Thread

RMI Thread

Task Thread

Custom schedulingCustom scheduling

Kernel schedulingKernel scheduling
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ARMI – Current State

ARMI: Adaptive Remote Method Invocation
– Abstraction of shared-memory and message passing

communication layer (MPI, pThreads, OpenMP, mixed, Converse).

– Programmer expresses fine-grain parallelism that ARMI adaptively 
coarsens to balance latency versus overhead.

– Support for sync, async, point-to-point and group communication.

– Automated (de)serialization of C++ classes. 

ARMI can be as easy/natural as shared memory and as 
efficient as message passing.

ARMI Communication Primitives
Point to Point Communication
armi_async - non-blocking: doesn’t wait for request arrival or completion.
armi_sync - blocking and non-blocking versions.

Collective Operations
armi_broadcast, armi_reduce, etc.

can adaptively set groups for communication. 

Synchronization
armi_fence, armi_barrier - fence implements distributed termination algorithm 

to ensure that all requests sent, received, and serviced.
armi_wait - blocks until at least at least one request is received and serviced.
armi_flush - empties local send buffer, pushing outstanding to remote 

destinations.
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RTS – Multithreading (ongoing work)

In ARMI
� Specialized communication thread dedicated the emission and 

reception of messages
– Reduces latency, in particular on SYNC requests

� Specialized threads for the processing of RMIs
– Uncovers additional parallelism (RMIs from different sources can 

be executed concurrently)
– Provides a suitable framework for future work on relaxing the consistency 

model and on the speculative execution of RMIs

In the Executor
� Specialized threads for the execution of tasks

– Concurrently execute ready tasks from the DDG (when all dependencies 
are satisfied)

RTS Consistency Models

Processor Consistency (default)

– Accesses from a processor on another’s memory are sequential
– Requires in-order processing of RMIs

� Limited parallelism

Object Consistency
– Accesses to different objects can happen out of order
– Uncovers fine-grained parallelism

� Accesses to different objects are concurrent
� Potential gain in scalability

– Can be made default for specific computational phases
Mixed Consistency

– Use Object Consistency on select objects
� Selection of objects fit for this model can be:

� Elective – the application can specify that an object’s state does not depend on 
others’ states.

� Detected – if it is possible to assert the absence of such dependencies

– Use Processor Consistency on the rest
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RTS Executor

Customized task scheduling
– Executor maintains a ready queue (all tasks for which dependencies 

are satisfied in the DDG)
– Order tasks from the ready queue based on a scheduling policy (e.g. 

round robin, static block or interleaved block scheduling, dynamic 
scheduling …)

– The RTS decides the policy, but the user can also specify it himself
– Policies can differ for every pRange

Customized load balancing
– Implement load balancing strategies (e.g. work stealing)
– Allow the user to choose the strategy
– K42 : generate a customized work migration manager

RTS Synchronization

� Efficient implementation of synchronization primitives is crucial
– One of the main performance bottlenecks in parallel computing
– Common scalability limitation

Fence
– Efficient implementation using a novel Distributed Termination 

Detection algorithm
Global Distributed Locks

– Symmetrical implementation to avoid contention
– Support for logically recursive locks (required by the compositional 

SmartApps framework)
Group-based synchronization

– Allows efficient usage of ad-hoc computation groups
– Semantic equivalent of the global primitives
– Scalability requirement for large-scale systems



135

Productivity

� Implicit parallelism

� Implicit synchronizations/communications

� Composable (closed under composition)

� Reusable (library)

� Tunable by experts (library not language)

� Compiles with any C++ compiler (GCC)
� Optionally exposes machine info.
� Shared Memory view for user
� High level of abstraction – Generic Programming

Performance 

� Latency reduction: Locales , data distribution

� Latency Hiding: RMI, multithreading, Asynch
Communications

� Optionally exposes machine info.
� Manually tunable for experts
� Adaptivity to input and machine (machine learning)



136

Portability

� Library – no need for special compiler
� RTS needs to be ported – not much else
� High level of abstraction

References
Cilk

http://supertech.csail.mit.edu/cilk/
http://supertech.csail.mit.edu/cilk/manual-5.4.3.pdf
Dag-Consistent Distributed Shared Memory,

Blumofe, Frigo, Joerg, Leiserson, and Randall, In 10th International 
Parallel Processing Symposium (IPPS '96), April 15-19, 1996, 
Honolulu, Hawaii, pp. 132-141. 

TBB
http://www.intel.com/cd/software/products/asmo-na/eng/294797.htm
TBB Reference Manual – provided with package
http://idfemea.intel.com/2006/prague/download/SShah_IDF_Keynote_2

006-10-03_v1.pdf
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Table of Contents

� Introduction to Parallelism
� Introduction to Programming Models
� Shared Memory Programming
� Message Passing Programming
� Shared Memory Models
� PGAS Languages

– UPC
– X10

� Other Programming Models

UPC

� Unified Parallel C
� An explicit parallel extension of ISO C 
� A partitioned shared memory parallel 

programming language
� Similar to the C language philosophy

– Programmers are clever

Adapted from http://www.upc.mtu.edu/SC05-tutorial
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Execution Model

� UPC is SPMD
– Number of threads specified at compile-time or run-

time;
– Available as program variable THREADS
– MYTHREAD specifies thread index (0. . THREADS- 1)

� There are two compilation modes
– Static Threads mode:

� THREADS is specified at compile time by the user
� THREADS as a compile-time constant

– Dynamic threads mode:
� Compiled code may be run with varying numbers of threads

UPC is PGAS

� The languages share the global address space 
abstraction
– Programmer sees a single address space
– Memory is logically partitioned by processors
– There are only two types of references: local and remote
– One-sided communication

Shared

G
lo

b
al

 
ad

d
re

ss
 s

p
ac

e

X[0]

Private
ptr: ptr: ptr: 

X[1] X[P]

Thread0 Thread1 ThreadP
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Hello World

� Any legal C program is also a legal UPC program
� UPC with P threads will run P copies of the program.
� Multiple threads view

#i ncl ude <upc. h> / *  UPC ext ensi ons * /
#i ncl ude <st di o. h>

mai n( )  {
pr i nt f ( " Thr ead %d of  %d:  hel l o UPC 
wor l d\ n" ,  \

MYTHREAD,  THREADS) ;
}

Private vs. Shared Variables

� Private scalars (i nt A)
� Shared scalars (shar ed i nt B)
� Shared arrays (shar ed i nt Vec[ TREADS] )
� Shared Scalars are always in threads 0 space
� A variable local to a thread is said to be affine to that thread

Shared

G
lo

b
al

 a
d

d
re

ss
 

sp
ac

e

Private

Thread0 Thread1 Threadn

A:  A:  A:  

Vec [ 0] :

B:  

Vec [ n] :Vec [ 1] :

where:
n=Thr eads- 1
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Data Distribution in UPC

� Default is cyclic distribution
– shar ed i nt V1[ N]

– Element i affine to thread i %THREADS

� Blocked distribution can be specified
– shar ed [ K]  i nt V2[ N]

– Element i affine to thread ( N/ K) %THREADS

� Indefinite ()
– shar ed [ 0]  i nt V4[ 4]

– all elements in one thread

� Multi dimensional are linearized according to C 
layout and then previous rules applied

Work Distribution in UPC

� UPC adds a special type of loop
upc_f or al l ( i ni t ;  t est ;  l oop;  af f i ni t y)

st at ement ;

� Affinity does not impact correctness but only 
performance

� Affinity decides which iterations to run on each 
thread.  It may have one of two types:
– Integer: af f i ni t y%THREADS is MYTHREAD

– E.g., upc_f or al l ( i =0;  i <N;  i ++;  i )

– Pointer: upc_t hr eadof ( af f i ni t y) is MYTHREAD

– E.g., upc_f or al l ( i =0;  i <N;  i ++;  &vec[ i ] )
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#def i ne N 4
#def i ne P 4
#def i ne M 4
/ /  Row- wi se bl ocki ng:
shar ed [ N* P/ THREADS]  i nt a[ N] [ P] ,  c[ N] [ M] ;  
/ /  Col umn- wi se bl ocki ng:
shar ed[ M/ THREADS]  i nt b[ P] [ M] ;  

voi d mai n ( voi d)  {
i nt i ,  j  ,  l ;  / /  pr i vat e var i abl es

upc_f or al l ( i = 0 ;  i <N ;  i ++;  &c[ i ] [ 0] )
f or  ( j =0 ;  j <M ; j ++)  {

c[ i ] [ j ]  = 0;
f or  ( l = 0 ;  l <<<<P ;  l ++)  

c[ i ] [ j ]  += a[ i ] [ l ] * b[ l ] [ j ] ;
}

}

UPC Matrix Multiply

3210

3210

3210

3210

3333

2222

1111

0000

Replicating b among processors 
would improve performance

Synchronization and Locking

� Synchronization
– Barrier: block until all other threads arrive 

� upc_bar r i er

– Split-phase barriers
� upc_not i f y this thread is ready for barrier
� upc_wai t wait for others to be ready

� Locks: upc_l ock_t
– Use to enclose critical regions

� voi d upc_l ock( upc_l ock_t * l )
� voi d upc_unl ock( upc_l ock_t * l )

– Lock must be allocated before use
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Collectives

� Must be called by all the threads with same 
parameters

� Two types of collectives
– Data movement: scatter, gather, broadcast,…
– Computation: reduce, prefix, …

� When completed the threads are synchronized

� E.g., 
r es=bupc_al l v_r educe( i nt ,  i n,  0,  UPC_ADD) ;

Type Input Thread Operation

UPC Pointers 

i nt * p1; / *  pr i vat e poi nt er  t o l ocal  memor y * /

shar ed i nt * p2; / *  pr i vat e poi nt er  t o shar ed space * /

i nt * shar ed p3; / *  shar ed poi nt er  t o l ocal  memor y * /

shar ed i nt * shar ed p4; / *  shar ed poi nt er  t o  

shar ed space * /

Shared

G
lo

b
al

 
ad

d
re

ss
 s

p
ac

e

Private
p1: 

Thread0 Thread1 Threadn

p2: 

p1: 

p2: 

p1: 

p2: 

p3: 

p4: 

p3: 

p4: 

p3: 

p4: 

• Pointers-to-shared are more costly to dereference
• The use of shared pointers to local memory are discouraged
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Memory Consistency

� UPC has two types of accesses: 
– Strict: Will always appear in order
– Relaxed: May appear out of order to other threads

� There are several ways of designating the type, 
commonly:
– Use the include file:

#i ncl ude <upc_r el axed. h>

– All accesses in the program unit relaxed by default 
– Use strict on variables that are used as 

synchronization (st r i ct  shar ed i nt f l ag; )
dat a = … whi l e ( ! f l ag)  {  } ;

f l ag = 1;            … = dat a;    / /  use t he dat a

Additional Features

� Latency management: two levels of 
proximity exposed to the user

� Portability: UPC compilers are available 
for many different architectures

� Productivity: UPC is a low-level language, 
the main objective is performance
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Table of Contents

� Introduction to Parallelism
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– UPC
– X10

� Other Programming Models

X10

� Developed by IBM as part of DARPA HPCS

� Draws from Java syntax and arrays in ZPL

� Partitioned Global Address Space (PGAS)

� Clocks - generalized barrier synchronization

� Constructs for explicit data and work placement

Adapted from presentations at:  http://x10.sourceforge.net/tutorial/presentations
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The X10 Model

Place - collection of resident 
activities & objects 
(e.g., SMP node of cluster).

Activities - lightweight thread 
of execution.

Locality Rule
Access to data must be
performed by a local activity.
Remote data accessed by
creating remote activities

Ordering Constraints (Memory 
Model)

Locally Synchronous:
Guaranteed coherence for local heap.
Strict, near sequential consistency.

Globally Asynchronous: 
No ordering of inter-place activities.
Explicit synchronization for coherence.

The X10 Model

Execution Model
� Explicit data parallelism, f or each

� Explicit task parallelism f ut ur e,  async

� Explicit, asynchronous, one-sided communication with f ut ur e

� Explicit synchronization
– cl ock, f i ni sh, f ut ur e, at omi c section (within a place)

� Multi-level memory model under development

– Within a place - more strict, not quite sequential consistency

– Across places - relaxed, explicit synchronization required
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X10 - Regions

� Defines a set of points (indices)
– Analogous to Chapel domains
– User defined regions in development

X10 - Distributions

� Maps every point in a region to a place
– Analogous to Chapel distributed domains
– User distributions regions in development

di st  D1 = di s t . f act or y. const ant ( R,  her e) ; / / maps r egi on R t o l ocal  pl ace

di st  D2 = di s t . f act or y. bl ock ( R) ;        / / bl ocked di s t r i but i on

di st  D3 = di s t . f act or y. cyc l i c( R) ;       / / cyc l i c  di s t r i but i on

di st  D4 = di s t . f act or y. uni que( ) ;        / / i dent i t y  map on [ 0: MAX_PLACES- 1]

doubl e[ D]  val s ;

val s . di s t r i but i on[ i ]  / / r et ur ns pl ace wher e i t h el ement  i s  l ocat ed.  
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X10 - Data Parallelism

[ f i ni sh]  f or each( i :  Regi on)  S
Create a new activity at place P for each point in Region 
and execute statement S.  Finish forces termination 
synchronization.

publ i c  c l ass Hel l oWor l d2 {

publ i c  s t at i c  voi d mai n( St r i ng[ ]  ar gs)  {

f or each ( poi nt  [ p]  :  [ 1: 2] )  

Syst em. out . pr i nt l n( " Hel l o f r om act i v i t y  "  + p + " ! " ) ;

}

}

X10 - Data Parallelism

[ f i ni sh]  at each( i :  Di st r i but i on)  S
Create a new activity at each point in Region at the place 
where it is mapped in the Distribution.  Finish forces 
termination synchronization.

publ i c  c l ass Hel l oWor l d2 {

publ i c  s t at i c  voi d mai n( St r i ng[ ]  ar gs)  {

at each ( pl ace p:  di s t . f act or y. uni que( pl ace. MAX_PLACES) )  

Syst em. out . pr i nt l n( " Hel l o f r om pl ace "  + p + " ! " ) ;

}

}
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X10 - Task Parallelism

[ f i ni sh]  async( P)  S

Create a new activity at place P, that executes statement S.
/ / gl obal  ar r ay
doubl e a[ 100]  =  …;
i nt k = …;

async ( 3)  {  
/ /  execut ed pl ace 3    
a[ 99]  = k;  

}

/ / cont i nue wi t hout  wai t i ng

/ / gl obal  ar r ay
doubl e a[ 100]  =  …;
i nt k = …;

f i ni sh async ( 3)  {  
/ /  execut ed pl ace 3    
a[ 99]  = k;  

}

/ / wai t  f or  r emot e compl et i on

X10 - Task Parallelism

f ut ur e( P)  S
Similar to async , returns result from remote computation.

/ /  gl obal  ar r ay
f i nal  doubl e a[ 100]  =  …;
f i nal  i nt i dx = …;

f ut ur e<doubl e> f d = 
f ut ur e ( 3)  
{  

/ /  execut ed at  pl ace 3    
a[ i dx] ;  

} ;

i nt val = f d. f or ce( ) ;  / / wai t  f or  f d
compl et i on
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X10 - Synchronization

� Atomic block
– conceptually executed in a single step while other 

activities are suspended
– must be nonblocking, no task spawning 

(e.g., no communication with another place)

/ /  push dat a ont o concur r ent  
/ /  l i s t - st ack
Node node = new Node( dat a) ;
at omi c {

node. next  = head;
head = node;  

}

X10 - Synchronization

� Clocks
– Generalization of barrier

� Defines program phases for a group of activities
� Activities cannot move to next phase until all have 

acquiesced with a call to next

– Activities can register with multiple clocks
– Guaranteed to be deadlock free
– next ,  suspend,  r esume,  dr op
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X10 - Synchronization

f i nal  c l ock c = cl ock. f act or y. cl ock( ) ;
f or each ( poi nt [ i ] :  [ 1: N] )  c l ocked ( c) {

whi l e (  t r ue )  {
/ / phase 1
next ;
/ / phase 2
next ;
i f  (  cond )  

br eak;
}  / /  whi l e

}  / /  f or each
c. dr op( ) ;

X10 - Matrix Multiply

doubl e[ . ]  A = new doubl e[ D1] ;  / / def i ned on Regi on R1
doubl e[ . ]  B = new doubl e[ D2] ;  / / def i ned on Regi on R2
doubl e[ . ]  C = new doubl e[ D3] ;  / / def i ned on Regi on R3
. . .
f i ni sh at each( poi nt i j :  D3)  {   

f or ( poi nt  k :  R1[ 1] )  {
poi nt  i dx1 = new poi nt ( i j [ 0] , k) ;
poi nt  i dx2 = new poi nt ( k,  i j [ 1] ) ;
f ut ur e<doubl e> a( A[ i dx1] . l ocat i on)  { A[ i dx1] ; }  
f ut ur e<doubl e> b( B[ i dx2] . l ocat i on)  { B[ i dx2] ; }  
C[ i ]  += a. f or ce( )  *  b. f or ce( ) ;

}
}
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X10 - Productivity

� New programming language based on Java

� Abstraction 
– Relatively low for communication and synchronization
– Transparency was a design goal

� Component reuse 
– Java style OOP and interfaces
– Generic types and type inference under development

X10 - Productivity

� Tunability
– Implementation refinement via Distributions and work placement

� Defect management
– Reduction with garbage collection
– Detection and removal with integration with Eclipse toolkit

� Interoperability
– C library linkage supported, working on Java
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X10 - Performance

� Latency Management
– Reducing

� Data placement - distributions.

� Work placement - at each,  f ut ur e,  async

– Hiding
� Asynchronous communication with f ut ur e

� Processor virtualization with activities

� Load Balancing
– Runtime can schedule activities within a place

X10 - Portability

� Language based solution, requires compiler

� Runtime system not discussed.  Must handle threading 

and communication - assumed to be part of model 

implementation 

� places machine information available to programmer

� Parallel model not effected by underlying machine

� I/O not addressed in standard yet
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Linda

� History
– Developed from 1992 by N. Carriero and D. Gelernter
– A Commercial version is provided by Scientific 

Computing Associates, Inc.
– Variations: TSpace (IBM), JavaSpaces (SUN)

� Programming Style
– Processes creation is implicit
– Parallel processes operate on objects stored in and 

retrieved from a shared, virtual, associative memory 
(Tuple Space) 

– Producer-Consumer approach 

Adapted from http://www.lindaspaces.com/teachingmaterial/LindaTutorial_Jan2006.pdf

Linda

� Productivity
– Linda extends traditional languages (C, Java,…)
– The abstraction provided is intuitive for some class of 

problems
– Object stored in the Tuple Space has a global scope: 

the user have to take care of associates the right keys

� Portability
– Tuple Space has to be implemented
– Code analysis is architecture dependent
– If objects in the shared space contains references to 

values a shared memory has to be provided
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Linda

� Performance
– Depends on Tuple Space implementation

� Architecture is hidden to the user

– Code analysis can provide optimizations

� Defect analysis
– Commercial implementation provides 

debuggers and profilers

Tuple Space

� A Tuple is a sequence of typed fields:
� (“Linda”, 2, 32.5, 62)
� (1,2, “A string”, a:20) // array with size
� (“Spawn”, i, f(i))

� A Tuple Space is a repository of tuples

� Provide:
� Process creation
� Synchronization
� Data communication
� Platform independence



157

Linda Operations (read)

� Extraction
– i n( “ t upl e” ,  f i el d1,  f i el d2) ;

� Take and remove a tuple from the tuple space
� Block if the tuple is not found

– r d( “ t upl e” ,  f i el d1,  f i el d2) ;

� Take a tuple from the space but don’t remove it
� Block if the tuple is not found

– i np, r dp: as in and rd but non-blocking

Linda Operations (write)

� Generation
– out ( “ t upl e” ,  i ,  f ( i ) ) ;

� Add a tuple to the tuple space
� Arguments are evaluated before addition

– eval ( “ t upl e” ,  i ,  f ( i ) ) ;

� A new process compute f(i) and insert the 
tuple as the function returns

� Used for process creation
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Tuple matching

� Tuples are retrieved by matching
– out ( “ Hel l o” ,  100)

– i n( “ Hel l o” ,  100)  / /  mat ch t he t upl e

– i n( “ Hel l o” ,  ?i )  / /  i =100

� Tuples matching is non-deterministic
– out ( “ Hel l o” ,  100)

– out ( “ Hel l o” ,  99)

– i n( “ Hel l o” ,  ?i )  / /  i =99 or  i =100

� Tuple and template must have the same number 
of fields and the same types

Atomicity

� The six Linda operations are atomic
– A simple counter

i n( “ count er ” ,  ?count ) ;

out ( “ count er ” ,  count +1) ;

– The first operation remove the tuple gaining 
exclusive access to the counter

– The second operation release the counter



159

Hello world

l i nda_mai n( i nt i )  {
out ( " count " ,  0) ;
f or ( i nt i =1;  i <=NUM_PROCS;  i ++)

eval ( " wor ker " , hel l o_wor l d( i ) ) ;
i n( " count " ,  NUM_PROCS) ;
pr i nt f ( " Al l pr ocesses done. \ n" ) ;

}

voi d hel l o_wor l d ( i nt i )  {
i nt j ;
i n( " count " ,  ?j ) ;  out ( " count " ,  j +1) ;
pr i nt f ( " Hel l o wor l d f r om pr ocess %d, " ,  i ) ;
pr i nt f ( "  count  %d\ n" ,  j ) ;

}

Matrix Multiply
f or ( i nt i =0;  i <M;  ++i )  {

f or ( i nt k=0;  k<L;  ++k)  {

f or ( i nt j =0;  j <N;  ++j )  {

C[ i ] [ j ]  =

A[ i ] [ k] * B[ k] [ j ] ;

}

}

}

A parallel specification:
Cij is the dot-product of row
i of A and column j of B
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Matrix Multiply in Linda

Voi d / /  Comput e C=A* t r anspose( B)
mat r i x_mul t i pl y( doubl e A[ m] [ n] , B[ l ] [ n] , C[ m] [ l ] )  {  

f or ( i nt i =0;  i  < m;  i ++)  / /  Spawn i nt er nal  pr oduct s
f or ( i nt j =0;  i  < l ;  j ++)  {  

I D = i * n + j ;  
eval ( " dot " ,  I D,  \

dot _pr oduct ( &A[ i ] ,  &B[ j ] ,  I D) ) ;  
}  

f or ( i nt i =0;  i  < n;  i ++)  / /  Col l ect  r esul t s
f or ( i nt j =0;  j  < n;  j ++)  {  

I D = i * n + j ;  
i n( " dot " ,  I D,  ?C[ i ] [ j ] ) ;  

}
}  

Matrix Multiply in Linda (2)

doubl e dot _pr oduct ( doubl e A[ n] , \

doubl e B[ n] ,  i nt I D)  {  

/ /  I D i s not  used i n t he 

/ /  sequent i al  ver si on of  dot _pr oduct

doubl e sum=0;

f or ( i nt i =0;  i <m;  i ++)

sum += A[ i ] * B[ i ] ;  

r et ur n sum;  

}  
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Parallel dot-product
doubl e dot _pr oduct ( doubl e * A,  doubl e * B,  i nt I D)  {  

doubl e p;
f or ( i nt i =0 ;  i  < m ;  i ++)  

eval ( " p- dot " ,  I D,  p_pr od( A, B, i * ( n/ m) , ( n/ m) ) ) ;
sum = 0;  
f or  ( i nt i =0 ;  i  < m ;  i ++)  {  

i n( " p- dot " ,  I D,  ?p) ;  
sum += p ;  

}  
r et ur n sum ;  

}  
doubl e p_pr od( doubl e * A, doubl e * B, i nt st ar t ,  i nt l en)  {

doubl e sum = 0;  
f or ( i nt i =st ar t ;  i  < l en+st ar t ;  i ++)  

sum += A[ i ] * B[ i ] ;  
r et ur n sum;  

}

Nested Parallelism

� Matrix multiply uses nested parallelism
� Tuples of dot_product have the same 

types as tuples in matrix_multiply but they 
have a different string identifier
– (“dot”, int, double*)

– (“p-dot”, int, double*)

� Correctness is guaranteed by ID and 
commutativity of addition
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Runtime

� Tuple rehashing
– Runtime observe patterns of usage, remaps tuple to 

locations
� Domain decomposition
� Result tuples
� Owner compute

� Long fields handling
– Usually long fields are not used for mathcing
– Bulk transfer

� Knowing implementation and architecture details 
and helps in optimizing user code
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MapReduce

� Used by Google for production software
� Used on 1000s processors machines
� Automatic parallelization and distribution
� Fault-tolerance 
� It is a library built in C++

Adapted From: http://labs.google.com/papers/mapreduce.html

MapReduce Model

� Input & Output are sets of key/value pairs 
� Programmer specifies two functions: 

– map( i n_key,  i n_val ue)  - > l i st ( out _key,  
i nt er medi at e_val ue

� Processes input key/value pair 
� Produces set of intermediate pairs 

– r educe( out _key,  
l i s t ( i nt er medi at e_val ue) )  - > 
l i s t ( out _val ue)

� Combines all intermediate values for a particular key 
� Produces a set of merged output values (usually just one)
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Example: Word Count

map( St r i ng i nput _key,  St r i ng i nput _val ue) :  
/ /  i nput _key:  document  name 
/ /  i nput _val ue:  document  cont ent s
f or  each wor d w i n i nput _val ue:

Emi t I nt er medi at e( w,  " 1" ) ;  

r educe( St r i ng out put _key,  I t er at or  
i nt er medi at e_val ues) :  
/ /  out put _key:  a wor d 
/ /  out put _val ues:  a l i st  of  count s
i nt r esul t  = 0;  f or  each v i n
i nt er medi at e_val ues:  r esul t  += Par seI nt ( v) ;  
Emi t ( AsSt r i ng( r esul t ) ) ;

Sequential Execution Model
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Parallel Execution Model

Shuffling
& Sorting

Parallel Execution Model

� Fine granularity tasks: many more map 
tasks than machines 

� Minimizes time for fault recovery 
� Can pipeline shuffling with map execution 
� Better dynamic load balancing 
� Often use 200,000 map/5000 reduce tasks 

w/ 2000 machines 
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Performance

� Typical cluster: 
– 100s/1000s of 2-CPU x86 machines, 2-4 GB of 

memory 
– Limited bisection bandwidth 
– Storage is on local IDE disks 
– distributed file system manages data (GFS)
– Job scheduling system: jobs made up of tasks, 

scheduler assigns tasks to machines

Performance: Locality

� Master scheduling policy: 
– Asks GFS for locations of replicas of input file blocks 
– Map tasks typically split into 64MB (GFS block size) 
– Map tasks scheduled so GFS input block replica are 

on same machine or same rack 

� Effect: Thousands of machines read input at 
local disk speed 

� Without this, rack switches limit read rate
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Performance: Replication

� Slow workers significantly lengthen completion 
time 
– Other jobs consuming resources on machine 
– Bad disks with soft errors transfer data very slowly 
– Weird things: processor caches disabled (!!) 

� Solution: Near end of phase, spawn backup 
copies of tasks 
– Whichever one finishes first "wins" 

� Effect: Dramatically shortens job completion time 

Performance

� Sorting guarantees within each reduce 
partition 

� Compression of intermediate data 
� Combiner: useful for saving network 

bandwidth 
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Fault Tolerance

� On worker failure: 
– Detect failure via periodic heartbeats 
– Re-execute completed and in-progress map tasks 
– Re-execute in progress reduce tasks 
– Task completion committed through master 

� Master failure not handled yet

� Robust: lost 1600 of 1800 machines once, but 
finished fine 

Productivity

� User specifies only two functions
� May be complex to specify a general 

algorithm
� Highly productive for specific kind of 

problems
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MATLAB DCE

� Executing independent jobs in a cluster 
environment

� A job is a set of tasks
� A task specifies input data and operations 

to be performed
� A scheduler takes a job and executes its 

tasks
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Execution Model

Scheduler

Client

Client

Worker

Worker

Worker

Worker

Job

Job

All Results

All Results

Task

Task

Task

Task

Results

Results

Results

Results

Job Creation and Execution

� Create a Scheduler: sched = 
f i ndResour ce( ' schedul er ' ,  ' t ype' ,  ' l ocal ' )

� Create a Job: j  = cr eat eJob( sched) ;

� Create Tasks
– cr eat eTask( j ,  @sum,  1,  { [ 1 1] } ) ;

– cr eat eTask( j ,  @sum,  1,  { [ 2 2] } ) ;

� Submit job: submi t ( j ) ;

� Get results
– wai t For St at e( j ) ;
– r esul t s = get Al l Out put Ar gument s( j )

r esul t s =

[ 2]

[ 4]

� Destroy job: dest r oy( j ) ;

Number of output 
arguments
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Portability

� Different ways to pass data to workers
– Passing paths for data and functions when 

using a shared file system

– Compressing and passing data and functions 
to workers initializing an environment at 
worker place

� The first way is less portable even though 
more efficient

Productivity

� MATLAB DCE is a queuing system
� Schedule independent jobs
� It may be difficult to code an arbitrary 

parallel algorithm
� Good for speeding up huge computation 

with very high level independent tasks
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Conclusions

� High level PPM – high productivity
� Low level PPM – high performance ?
� Safety in higher abstraction
� Needed: Parallel RTS, Debuggers
� Desperately Needed: Compilers 


