Maxeler project

Euclidean algorithm for computing the greatest common divisor

Vjeran Rađa
France Petač
Dr. Veljko M. Milutinović
FRI 2013/14

GCD on control flow

- Easy to implement, many different implementations
- Time complexity dependent on number of digits

$$
\begin{aligned}
\text { function } & \operatorname{gcd}(\mathrm{a}, \mathrm{~b}) \\
\text { while } \mathrm{b} & \neq 0 \\
\mathrm{t} & :=\mathrm{b} \\
\mathrm{~b} & :=\mathrm{a} \bmod \mathrm{~b} \\
\mathrm{a} & :=\mathrm{t}
\end{aligned}
$$

return a

GCD from CF to DF

- No while loops
- End contidion
- Mod function
- Output

Implementation

- While to for
- End condition
- Mod function
- Division correction
- Output

```
function gcd(a, b)
    while b # 0
            t := b
            b := a mod b
    a := t
```

 return \(a\)
    ```
for (int i=5;i > 0 ; i--)
DFEVar condition = constant > 0;
    t = condition ? constant : t;
    constant = condition ? mod(a,constant) : constant;
    a = condition ? t : a;
}
```


Implementation

Vjeran Rađa, France Petač

Possible improvements

- Parallelization
- Optimization (less ifs)
- Different algorithm

Results

- Simulation
- DFE
- GOTO: possible improvements

Conclusion

- It's hard (at first)
- It's hard (even later)
- Paradigm changes

