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Node level heterogeneous architectures have become attractive in recent years for several reasons: Compared to 
traditional symmetric CPUs, they offer high performance for real applications, and can be energy and/or cost efficient. 
In this paper, we give an overview of the state-of-the-art in heterogeneous computing, focusing on some common 
architectures: The NVidia and the ATI graphics processing units (GPUs), the Cell Broadband Engine Architecture 
(CBEA), the ClearSpeed processor, the field programmable gate array (FPGA) accelerator solutions from Maxeler 
MaxNodes (MAX), the SGI systems (RASC), and the Convey Hybrid-Core Computer. We present a review of the 
hardware, available software tools for each solution, a quantitative and a qualitative comparison of the architectures, 
and we give our view on the future of heterogeneous computing. 
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I. Introduction 
 
In this comparative study we survey commercially available systems (as opposed to academic 
projects). For less recent contributions, and for contributions of academic research, interested 
readers are referred to past survey papers of these and other authors [4, 5, 9, 13, and 14]. Each one 
of the solutions presented here is a proven, commercially more or less successful representative of a 
particular computing style. Examination of their comparative advantages and disadvantages serves 
to envision future trends for such systems. We focus on a single node, noting that systems can be 
formed by connecting multiple such nodes together. In this context, the term node refers to the 
smallest unit of hardware that is capable of working as a standalone system. 
 
It is important to underline the following: This survey, like any other survey, presents data obtained 
from original papers of authors, or web sites of vendors, who introduced the surveyed 
concepts/systems. Thus, data obtained from different sources were generated under different 
conditions, and therefore, any direct performance comparison is always questionable. In such 
conditions, what provides the best comparison is the insight into the facts related to the number of 
systems sold and the facts related to exploitation experiences of those who use the presented 
systems/concepts, in order to solve their critical problems on a daily basis. 
 
II. Problem Statement 
 
The continuous performance improvement of microprocessor technology is not likely to hold in the 
future. This positive trend observed in the past, known as the Moore’s law, was due to two main 
factors: Increasing clock speed and improvement in instruction level parallelism. 
 
Over the past years, the speed was increasing by constantly growing the clock frequency, while the 
capacity has always been boosted by the reduction of transistor size. Consequently, programs could 
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be speeded-up through instruction level parallelisms (ILP) in a way that was transparent to the user. 
Nowadays, the speed increase trend is getting more and more difficult to maintain. Enhancements 
of the ILP-design are not followed anymore by system performance [29]. 
 
In addition, more recently, power consumption is becoming one of the main limitations. To solve 
this problem, the research community and industry have started using a large amount of available 
chip area to implement several processors, thus creating the so called chip multicore processing 
systems. If there is enough parallelism, multicore solutions can achieve speedups over single cores 
with the same power consumption.  
 
Reconfigurable computing implies a hardware that can be reconfigured to implement application-
specific functions. The basic concept of reconfigurable computing (RC) was proposed in the 1960s, 
but has only recently become feasible. Reconfigurable computers consist of a flexible hardware 
fabric and one or more (heterogeneous and/or customized) processors. These systems customize the 
internal structure of the platform to suit the application, leading to faster run-times, more power-
efficient processing, and better device utilization. Dynamically reconfigurable systems go even 
further; their internal structure may even adapt to the workload, at runtime.  
 
The reconfigurable systems have a lot of potential for speedup, thanks to the fact that execution 
time of some loop with n iterations and o operations per iterations depends on the sum of n and o, 
while on other systems, execution time of same loop depends on product of n and o. The reason for 
this is a very deep pipeline implemented in FPGA, as explained in Figure 1.  
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Figure 1: Graphical representation of execution units potentials on three architectural styles: (a) The 
multicore CPU execution (MC) model (Intel, CBEA, and ClearSpeed): NcoresCPU – number of 
available cores in the CPU, TclkCPU – clock period of the CPU, TCPU – execution time on the CPU, 
the case of one loop iteration; (b) The GPU execution (GP) model (NVidia and AMD ATI): 
NcoresGPU – number of available cores in the GPU, TclkGPU period of clock in GPU, TGPU – execution 
time on the GPU of one iteration; (c) Data flow execution (DF) model (MaxNodes, SGI RASC, 
Convey): NDF – number of implemented data flows, TclkDF – period of clock for a data flow 
machine, TDF – latency of data flow pipeline. On the x-axis are input data items, and on y-axis is the 
execution time. Loop iterations are not data-dependent. 
 
The execution times of Figure 1 are derived from the following formulae: 
 

(a) TCPU = NOPS * CCPU*TclkCPU  



 tCPU =  N * TCPU / NcoresCPU 
        =  N * NOPS * CCPU*TclkCPU / NcoresCPU , 

(b) TGPU  = NOPS * CGPU*TclkGPU  
 tGPU =  N * TGPU / NcoresGPU 
         =  N * NOPS * CGPU*TclkGPU / NcoresGPU , 

(c) TDF = NOPS * CDF * TclkDF 
 tDF = TDF + (N – 1) * TclkDF / NDF 
       = NOPS * CDF * TclkDF + (N – 1) * TclkDF / NDF 

Meaning of the variables in the above formulae is given in the caption of Figure 1. 
 
 
III. Existing Solutions and Their Criticism 
 
In this section, we give a short overview of seven existing solutions for the problem specified 
above, namely: CBEA, ClearSpeed, SGI RASC, Convey, Maxeler MaxNodes, NVidia GPU, and 
AMD ATI GPU computing. In general, the reviewed solutions are well established commercial 
solutions and give good results under the conditions of interest for their operating environments and 
problem solving domains, but each one of them has some comparative advantages and 
disadvantages. 
 
This section starts with a classification of existing solutions in the domain of contemporary 
computing architectures. It continues with an overview which, for each and every example, gives 
the following main points: (a) The 7 Ws of the solution (who, where, when, whom, why, what, how, 
or a subset there off), (b) Essential elements of the approach, in terms of the architecture and the 
programming model, and finally a conclusion section where we critically compare the presented 
solutions in their current state.  
 
III.A. Classification Criteria 
 
The basic division is at control-flow (CF) and data-flow (DF) “supercomputers”. In essence, the 
control-flow supercomputers compile down to machine code and execute the code using one of 
several possible execution paradigms; the data-flow supercomputers compile down to GTL (gate 
transfer level), which brings a better speed/watt at the expense of more difficult programming. 
Therefore, one possible classification criterion is the flow concept, which results in CF and DF. 
 
Control flow “supercomputers” span over a wide range of different architectures. These 
architectures can be composed of cores that all belong to the same architectural type, or of cores 
that belong to several different architectural types. Based on this, CF architectures can be further 
divided into two additional groups: Homogeneous architectures (HOM, e.g. Intel processors) or 
heterogeneous architectures (HET, e.g. NVidia GPU, AMD ATI GPU, IBM CELL, and 
ClearSpeed). 
 
Homogeneous architectures are outside of the scope of this paper, and will not be further observed 
in this paper. 
 
Heterogeneous control flow architectures are most often composed of one to several larger and 
highly sophisticated cores and a lot of simpler and smaller cores. Depending on how these two 
groups of cores are coupled, the HET subgroup can be subdivided into two subgroups: Loosely 
coupled systems (LC, e.g. NVidia GPU and AMD ATI GPU), where these two groups of cores are 



implemented on two or more chips interconnected on printed boards, and tightly coupled systems 
(TC, e.g. IBM CELL and ClearSpead), where all cores are on the same chip. 
 
A combination of the CPU and flexible hardware accelerators can be used to increase the 
computation speed of applications. One possible way to implement hardware accelerators is by 
using the data-flow concept. 
 
In the case when a data-flow concept is used, FPGAs can be treated as the enabling technology in 
which a set of processors and a set of custom hardware accelerators are implemented and made to 
communicate with each other using a network. The system can be made adaptable by modifying the 
computation infrastructure. This can be done at compile-time using full device reconfiguration or at 
run-time by means of partial device reconfiguration. 
 
Essential difference of various data-flow machines is that some of them use explicit data-flow, 
while the others use implicit data-flow. So, one possible classification criterion is explicit (EDF, 
e.g., MaxNode) versus implicit (IDF, e.g., Convey and SGI RASC). 
 
Machines that use implicit data-flow can be further differentiated by the granularity of the model 
that is presented to the programmer. The first ones are seen as coprocessors, where each 
coprocessor has a set of instructions that can be executed (CG, e.g. Convey). The other ones are 
seen as some chip area on which a set of operation units is implemented and used in arbitrary 
combinations (FG, e.g. SGI RASC). 
 
Our classification is given in Figure 2, together with specifications of classification criteria, 
outcomes generated by applying these criteria, and the representative examples discussed in this 
paper. To make the classification more appropriate for the focus of this paper, some issues that 
could be important are left out of the classification. 
 

 
 

Figure 2: A classification of hybrid architectures 
 
Issues of importance in CF supercomputers, not encompassed by the presented classification, are 
discussed next. 
 



Among the control-flow machines, two basic paradigms exist for parallel computation on 
multiprocessors. The first paradigm is message passing interface (MPI), usually available where 
communication among processors happens in a network. The second paradigm, the shared memory 
or symmetrical multi processing (SMP) is applied in bus-based systems, where communications are 
performed via the shared memory.  
 
Heterogeneous multiprocessing refers to the use of different processing cores to maximize 
performance. This paradigm can be used for both, MPI or SMP.  
 
In most of the existing research efforts, the purpose is to have an efficient mapping of a set of 
threads onto a set of processors. Two possibilities have been presented that address this purpose: 
Simultaneous multithreading (SMT) [12, 18, and 20] and chip multiprocessor (CMP) [3, 17, 19, 23, 
and 29].  
 
An SMT chip is based on a superscalar processor with a set of units for parallel execution of 
instructions. Given a set of threads, resources are dynamically allocated by extracting several 
instructions to be executed in parallel. Threads that need long memory access are preempted to 
avoid idle states of processors. This paradigm can also be used with both, MPI or SMP.  
 
Instead of using only one superscalar core to execute instructions in parallel, the CMPs use many 
processor cores to compute threads in parallel. Each processor has small first-level local instruction 
and data caches. A second level cache is available for all the processors on a chip. The CMPs target 
applications consist of a set of independent computations that can be easily mapped to threads.  
Existence of independent computations is usually the case in database or web server applications 
where transactions do not rely on each other. In CMPs, threads having long memory access are 
preempted to allow others to use the processor [4].  
 
Issues of importance in DF supercomputers, not encompassed by the presented classification are 
discussed next. 
 
The type of interaction with the host machine can also be used as a classification paradigm. Some 
data-flow machines use Front Side Bus (FSB). Others use standard peripheral buses, e.g. Peripheral 
Component Interface Express (PCIe). Still the others use a custom bus, e.g. Non Uniform Memort 
Access Link (NUMA Link). 
 
III.B. Presentation of Existing Solutions 
 
We shall now present details of systems selected as commercially successful. The NVidia Fermi 
GPU and the AMD ATI Cypress GPU are examples of heterogeneous systems in which a CPU is 
accompanied by a highly multithreaded single instruction/multiple data (SIMD) accelerator. The 
CBEA and ClearSpeed are representatives of heterogeneous multicore processors. Finally, the 
Maxeler Dataflow Engines (MaxNodes), the SGI RASC, and the Convey coprocessor belong to the 
domain of symmetrical multicore processors accompanied by reconfigurable hardware accelerators.  
 
III.B.1. NVidia Fermi GPU 
 
A GPU is a symmetric multi-core processor that is exclusively accessed and controlled by the CPU, 
making the two a heterogeneous system. The GPU operates asynchronously from the CPU, 
enabling concurrent execution and memory transfer. The graphics processing unit (GPU), first 
invented by NVIDIA in 1999, is the most pervasive parallel processor to date. Today’s GPUs 
greatly outpace CPUs in arithmetic throughput and memory bandwidth, making them the ideal 
processor to accelerate a variety of data parallel applications [28]. 



 
The Fermi based GPU (see Figure 3), implemented with 3.0 billion transistors, features up to 512 
CUDA cores. A CUDA core executes a floating point or integer instruction per clock for a thread. 
The 512 CUDA cores are organized in 16 SMs of 32 cores each. Each CUDA processor has a fully 
pipelined integer arithmetic logic unit (ALU) and floating point unit (FPU). The GPU has six 64-bit 
memory partitions, for a 384-bit memory interface, supporting up to a total of 6 GB of GDDR5 
DRAM memory. A host interface connects the GPU to the CPU via PCI-Express. The GigaThread 
global scheduler distributes thread blocks to SM thread schedulers [28]. 
 
The CUDA is the hardware and software architecture that enables NVidia GPUs to execute 
programs written with C, C++, Fortran, OpenCL, DirectCompute, and other languages. A CUDA 
program calls parallel kernels. A kernel executes in parallel across a set of parallel threads. The 
programmer or compiler organizes these threads in thread blocks and grids of thread blocks. The 
GPU instantiates a kernel program on a grid of parallel thread blocks [28]. 
 
Each thread within a thread block executes an instance of the kernel, and has a thread ID within its 
thread block, program counter, registers, per-thread private memory, inputs, and output results. A 
thread block is a set of concurrently executing threads that can cooperate among themselves through 
barrier synchronization and shared memory. A thread block has a block ID within its grid. A grid is 
an array of thread blocks that execute the same kernel, read inputs from global memory, write 
results to global memory, and synchronize between dependent kernel calls [28]. 
 
 

 

L2 cache

 
Figure 3: The Fermi architecture 

 



In the CUDA parallel programming model (shown in Figure 4), each thread has a per-thread private 
memory space used for register spills, function calls, and C automatic array variables. 

                              
 

Figure 4: The CUDA programming model 
 
 
Each thread block has a per-Block shared memory space used for inter-thread communication, data 
sharing, and result sharing in parallel algorithms. Grids of thread blocks share results in Global 
Memory space after kernel-wide global synchronization [28]. 
 
The CUDA’s hierarchy of threads maps to a hierarchy of processors on the GPU; a GPU executes 
one or more kernel grids; a streaming multiprocessor (SM) executes one or more thread blocks; and 
CUDA cores and other execution units in the SM execute threads. To improve performance by 
memory locality, the SM executes threads in groups of 32 threads called a warp [28]. 
 
III.B.2. AMD ATI  
 
The other GPU available on the market, and also relatively successful, comes from AMD ATI. The 
first ATI’s GPGPU appeared in 2004. Code name Cypress represents the most successful AMD 
ATI’s GPU architecture of today.  
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Figure 5: The Cypress architecture 

 
The Cypress based GPU (Figure 5), implemented with 2.15 billion transistors, has 320 cores with 
1600 processing elements (ALU). They are organized as 20 SIMDs, each one made of 16 units, 
what AMD calls thread processors. These processors, as the primary execution units, are 
superscalar and five ALUs wide. The fifth ALU is a superset of the others, capable of handling 
more advanced operations like trascendentals (e.g., sin, cos, arc tan, sqrt, pow, etc. ). The execution 
units are pipelined with eight cycles of latency, but the SIMDs can execute two hardware thread 
groups, or "wavefronts" in AMD parlance, in interleaved fashion, so the effective wavefront latency 
is four cycles. In every cycle, an execution unit can issue 4 single precision operation, or two single 
precision multiply add operation, or two double precision operations, or one double precision 
multiply add operation, and one more single precision operation or some transcendental function. 
Every SIMD is equipped with 32KB of local memory and with 8KB L1 cache. There is also a 
global shared memory of 64KB, and four banks of L2 cache, 64KB each. Processor has four 64-bit 
interfaces to the external memory, that gives the total bandwidth of 156.3 GB/s [1 and 37]. 
 
AMD GPUs are supported by Open Calculation Language (OpenCL), an industry standard API that 
is open, multiplatform development platform for heterogeneous architectures. It is very similar to 
NVidia’s CUDA, but not only intended for use with GPU accelerators. 
 
Since OpenCL is meant to target not only GPUs but also other accelerators, such as multi-core 
CPUs, flexibility is given in the type of compute kernel that is specified. Compute kernels can be 
thought of either as data-parallel, which is well-matched to the architecture of GPUs, or task-
parallel, which is well-matched to the architecture of CPUs. 

A compute kernel is the basic unit of executable code and can be thought of as similar to a C 
function. Execution of such kernels can proceed either in-order or out-of-order depending on the 
parameters passed to the system when queuing up the kernel for execution. Events are provided so 
that the developer can check on the status of outstanding kernel execution requests and other 
runtime requests.  



In terms of organization, the execution domain of a kernel is defined by an N-dimensional 
computation domain. This lets the system know how large of a problem the user would like the 
kernel to be applied to. Each element in the execution domain is a work-item and OpenCL provides 
the ability to group together work-items into work-groups for synchronization and communication 
purposes.  

WorkItem

ComputeUnit

ComputeUnits

...
Global/Constant 

Memory Data 
Cache

Local Memory

Private
Memory

Global 
Memory

 

Figure 6: Memory hierarchy in OpenCL 

OpenCL defines a multi-level memory model with memory ranging from private memory visible 
only to the individual compute units in the device to global memory that is visible to all compute 
units on the device. Depending on the actual memory subsystem, different memory spaces are 
allowed to be collapsed together.  

OpenCL 1.0 defines 4 memory spaces: Private, local, constant and global. Figure 6, shows a 
diagram of the memory hierarchy defined by OpenCL.  

Private memory is memory that can only be used by a single compute unit. This is similar to 
registers in a single compute unit or a single CPU core.  

Local memory is memory that can be used by the work-items in a work-group. This is similar to the 
local data share that is available on the current generation of AMD GPUs.  

Constant memory is memory that can be used to store constant data for read-only access by all of 
the compute units in the device during the execution of a kernel. The host processor is responsible 
for allocating and initializing the memory objects that reside in this memory space. This is similar 
to the constant caches that are available on AMD GPUs.  

Finally, global memory is memory that can be used by all the compute units on the device. This is 
similar to the off-chip GPU memory that is available on AMD GPUs [27].  

On Figure 7 is shown an example of vector addition. 



 

Figure 7: The OpenCL example: Vector addition 
 
III.B.3. Cell Broadband Engine Architecture (CBEA)  
 
The Cell Broadband Engine Architecture (CBEA), developed by Sony, Toshiba, and IBM, was 
conceived as the next generation chip architecture for multimedia and compute-intensive processing 
[34 and 35]. It was first used in the Sony PlayStation 3 game console. Currently, IBM offers two 
processors based on the CBEA: The Cell Broadband Engine (Cell/B.E.), which is used in Sony’s 
PlayStation 3 and IBM’s Cell blades, and the PowerXCell 8i processor, used in Roadrunner, the 
world’s first petaflop supercomputer. 
 
Figure 8 shows the major components of a Cell/B.E. processor: The main processing element (the 
Power processor element, or PPE), the parallel processing accelerators (synergistic processor 
elements, or SPEs), the on-chip interconnect (a bidirectional data ring known as the element 
interconnect bus, or EIB), and the I/O interfaces (the memory interface controller, or MIC, and the 
Cell Broadband Engine interface, or CBEI). 
 
The PPE contains a 64-bit PowerPC processor unit (PPU), two separate 32-Kbyte level 1 caches for 
instructions and data, and a unified 512-Kbyte level 2 cache for instructions and data. The PPU 
supports two-way simultaneous multithreading. The PPE can complete two double precision 
operations per clock cycle, resulting in a peak performance of 6.4 Gflops at 3.2 GHz. 
 
Each SPE is an accelerator core based on a single-instruction multiple data (SIMD) reduced 
instruction set computer processor. The SPE operation semantics are similar to those of the 
PowerPC SIMD extensions. The SPE has a unified 128-entry 128-bit wide SIMD register file to 
store operands of all data types. Each SPE can directly address a local store of 256 Kbytes for 
instruction and data references. 
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Figure 8: The Cell BE Architecture 

 
This local store is explicitly managed by software—that is, the compiler or programmer—by way of 
MFC block transfers between system memory and the local store, as shown in Figure 9. The MFC 
can issue up to 16 simultaneous direct memory access (DMA) operations of up to 16 Kbytes each 
between the local store and system memory. Unlike traditional hardware caches, this organization 
lets the system prefetch large memory operands into on-chip memory in parallel with program 
execution, avoiding the performance-degrading effects of frequent cache misses commonly 
associated with hardware caches. This local memory hierarchy is very important, especially in 
conditions when execution rate of a SPE is significantly higher than the rate at which data can be 
fetched into the SPE. 
 

 
Figure 9: Each SPE independently computes a part on the input dataset. The results are assembled 

on the main processing unit, PPE 
 
In the Cell/B.E., the peak SPE-to-main-memory bandwidth is 25.6 Gb/s, which is one of the highest 
memory-to-CPU bandwidth designs. With double buffering to overlap communication and 
computation, the Cell/B.E. has a compute–to–memory bandwidth ratio of 8 ops per byte of data 
fetched from the system memory (204.8 Gflops/25.6 Gbytes). 
 



To compile code for the Cell/B.E., one can use either the IBM xlc or the GNU gcc (ppu-gcc and 
spu-gcc) compilers. In addition to the original thread based programming model for developing 
Cell/B.E. applications, developers have ported several other programming models to this 
architecture, including OpenMP, message-passing interface, Google’s MapReduce, the data-parallel 
RapidMind model, and the data driven Cell Superscalar (CellSs) model [5]. Cell/B.E.-based systems 
are also the top energy-efficient systems on the green500 list (www.green500.org). 
 
III.B.4 ClearSpeed  
 
The ClearSpeed Technology focuses on alleviating power, heat, and density challenges of high 
performance systems. Their latest processor CSX700 is high performance solution with very low 
power consumption, mainly due to low clock frequency and advanced clock gating [7]. It is at the 
heart of ClearSpeed’s e720 accelerator card that brings the power of CleerSpeed’s processor to the 
HP blade server. Thanks to compact size of card and low power consumption of processor it can fit 
into type II mezzanine slot without requiring any additional cooling or power supply [8]. Low 
power consumption means lower heating and has positive effects on the reliability of system. 
Further reliability improvement is done by inclusion of ECC bits with each memory. 

 
Figure 10: Structure of the ClearSpeed’s CSX700 processor 

 
Figure 10 shows structure of the processor. It is a dual core SIMD architecture, where each core is 
multithreaded array processor (MTAP). Along with cores, there are two DDR2 DRAM interfaces 
that supports 8GB of RAM each, two on-chip 128KB SRAM memory, PCIe x16 host interface, and  
 
system services block. Inside of core, there are: One main multithreaded processor, and one SIMD 
processing unit. Main processor supports 8 hardware threads and for synchronization of threads has 
128 8bit semaphores. Processor has two caches, instruction and data cache. Both caches are 



organized as 4-way set-associative caches. Instruction cache has 512 lines of 4 instructions, while 
data cache has 256 lines of 16B each. Execution unit has ALU, double precision FPU, and several 
register files, 128B each. 
 
The SIMD processing unit has 96 processing elements (PE) that give a lot of processing power to 
the SlearSpeed’s processor. Poly controller accepts instructions from the main processor, and 
organizes execution on PEs. Each PE is equipped with: 128B register file, one FPU for single and 
double precision operations with dual issue pipelined add and multiply, a 6KB of PE’s SRAM, 16-
bit MAC with 64 bit accumulator, and support for integer and floating point divide and square root 
operations. The PE’s SRAMs give high memory bandwidth for the purpose of parallel execution on 
PEs. The PEs have a possibility to communicate directly to the memory or IO through configurable 
programmed IO channel. Chanel is 128bit wide, can transfer 8, 16, 32 or 64 bit per PE, and can use 
hardware semaphore for synchronization. 
 
The code is fetched by the main processor, and depending on the instruction type, executed by main 
processor or by the SIMD processing unit. 
 
Accelerator can be used in two ways. The first one is plug and play where ClearSpeed supported 
library intercepts call and determine whether that call can be accelerated or not. If the answer to the 
previous question is positive, library makes further steps in order to utilize accelerator without any 
programmer’s help. The other one is native code development where programmer recognizes parts 
of code that can be speeded up and using SlearSpeed SDK translate them into the code for 
accelerator. The SDK includes: (a) A suite of tools including an industry standard source-level 
debugger based on gdb and an ANSI C-based cross compiler for ClearSpeed’s CSX family of 
processors, (b) An extensive set of standard C libraries based on the newlib open source library 
together with a set of libraries to support architecture-specific features, (c) The ClearSpeed Vector 
Math Library and ClearSpeed Random Number Generator Library, and (d) Documentation for the 
software development tools and languages. 
 
III.B.5. Maxeler Dataflow Engines 
 
Maxeler Technologies in Palo Alto and London is a fast expanding HPC company with roots at 
Stanford, Bell Labs, US, and Imperial College, London, UK. 
 
Maxeler Technologies' core competence is in delivering substantially increased performance for 
HPC applications through the rewriting of applications for Dataflow Engines. By mapping 
compute-intensive algorithms directly into parallel hardware, tightly coupled to a conventional CPU 
through a high-speed I/O bus, complete applications can be accelerated by orders of magnitude over 
conventional CPU implementations. By exploiting massive parallelism at the bit-level, Maxeler 
MaxNode solutions deliver performance far in excess of CPUs at approximately a tenth of the clock 
frequency and power consumption.  
 
Figure 11 sketches the architecture of a Maxeler hardware acceleration system which equips one or 
more Dataflow Engines attached to a set of memories and connected to a host CPU via PCI Express 
channels [15 and 25]. MaxRing interconnects (not shown in Figure 9) establish high bandwidth 
communication channels between the Dataflow Engines on the accelerator. Accelerating an 
application involves looking at the entire application, adapting program structure and partitioning 
the execution flow and data layout between CPUs and accelerators. The program of the Dataflow 
Engines comprises arithmetic data-paths for the computations (the kernels) and modules 
orchestrating the data I/O for these kernels (the manager). 
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Figure 11: The Maxeler accelerator architecture 

 
The Maxeler Kernel Compiler generates the dataflow engines, and as such the program describes 
computations structurally (computing in space) rather than specifying a sequence of processor 
instructions (computing in time). A kernel is a streaming core with a data flow described by a 
unidirectional graph without cycles.  
 
For example, kernel code for a 3-point moving average over N values with 2-point averages at the 
boundaries: 
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Figure 12: Code for moving average over N values 

 
Figure 13 depicts the kernel graph for the moving average which splits into a data part (right-hand 
side) and a control part (left-hand side). The Kernel Compiler is effectively a Java software library 
and as such, kernel graphs are created by writing a Java program and executing it. 
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Figure 13: Kernel graph for the moving average example 

 
Kernel graphs are directly mapped to hardware and then data streams through the arithmetic nodes. 
Efficient streaming kernels strongly emphasize the regularity of the data flow, making the actual 
computations look like a side-effect of streaming. Such streaming kernels lend themselves to deeply 
pipelined dataflow implementations which are key to achieving high performance in custom 
hardware. 
 
III.B.6. SGI's Reconfigurable Application Specific Computing (RASC) 
 
SGI was founded as a spinoff of the Stanford University's research in accelerating a specific 
application, three dimensional graphics. The SGI pioneered acceleration of graphics through 
hardware setting records and providing technological capabilities that were impossible without 
specialized computational elements [33]. 

 

 
Figure 14: RASC Architecture 

 
Altix is a family of SGI’s SMP (Symmetric Multi Processing) solutions. Its distinguishing feature is 
that each processor has both fast access local memory and slower access to local memories of other 
processors in the system. Data exchange between processors is achieved thanks to NUMALink bus. 
The NUMALink bus enables data exchange between processors to be relatively fast. The 
NUMALink interconnect is a hierarchical system bus. It allows for global addressing and scalability 
of SMP systems. Maximum NUMALink data transfer is 6.4 GB/s. The integral component of the 
Altix system can be the Reconfigurable Application Specific Computing (RASC) module. It is the 
SGI’s technology that is enabling users to develop application specific hardware using 
reconfigurable logic elements. 



 

 
Figure 15: The RASC module structure 

 
The SGI RASC is tightly integrated with NUMALink. From the hardware perspective, FPGA is no 
longer a co-processor mode in this model. As shown in Figure 14, with the NUMALink FPGA, it 
has access to global shared memory and there is no need to load and unload data. The RASC is 
coupled with two Virtex4LX200 FPGA chips. Each one offers 200k of reconfigurable logic cells. 
Additionally there are two blocks of 64 MB QDR RAM memory. This memory acts like a second 
level cache for FPGA. The first level cache is implemented inside the Virtex4LX200 structure and 
is called BlockRAM. Bidirectional data interface implemented for FPGA has an 128-bit width and 
is clocked with frequency of 200 MHz [22]. 

 

 

Figure 16: The RASC FPGA programming process 

 
The RASC hardware module is based on an application-specific integrated circuit (ASIC) called 
TIO. The TIO attaches to the Altix system NUMAlink interconnect directly, instead of being driven 
from a compute node using the XIO channel. One TIO supports two PCI-X busses, an AGP-8X bus, 



and the Scalable System Port (SSP) port that is used to connect the Field Programmable Gate Array 
(FPGA) to the rest of the Altix system for the RASC program. The RASC module contains a card 
with the co-processor (COP) FPGA device, as shown in Figure 15. 
 
Summary of the SGI approach to FPGA programming is as follows (see Figure 16): Write an 
application in the C programming language for system microprocessor; Identify computation 
intense routine(s); Generate a bitstream using Core Services and language of choice; Replace 
routines with RASC abstraction layer (rasclib) calls that support both a C and Fortran90 interface; 
Run your application and debug with GDB. 
 
III.B.7. Convey’s Reconfigurable Coprocessor 
 
The Convey hybrid-core is the FPGA based accelerator board coupled to the processor as a 
coprocessor [10]. This system, appeared in 2008, brings a new programming model, where 
personalities are used as an extension of the instruction set of the processor. There are predefined 
sets of personalities for problems in several industries, including: Oil and gas, computer-aided 
engineering (CAE), bioinformatics, and financial services. 
 
A structure of the system is shown on Figure 17. The main component is a board with four Xilinx  
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Figure 17: Structure of system with Convey accelerator card. 

  
Virtex 5 LX330 chips intended for calculations. There are two additional FPGAs that implements 
interface to the host. The board is tightly coupled with processor, and has access to the processor’s 
RAM memory. The board also has its local memory, with significantly greater throughput to it. 
Across the whole system a cache-coherent shared virtual memory system is provided that allows to 
access data in the CPU’s memory and in the accelerator device memory. Though, logically, 
memory is seen as uniform, because different memories in use, system is implemented as 
ccNUMA[2]. For the best performance, programmer have to make appropriate data placement. 
FPGAs have on chip memory, known as BlockRAM, but this memory is not directly visible to the 
programmer. 



 
The programming model of this system offers solution to overcome complexity of programming 
FPGA based accelerators [11]. The solution is in a form of the predesigned hardware, as Convey 
calls it, personality. Operations that are often in the domain of interest, and that are time-
consuming, are implemented in the hardware. According to a particular program that will be 
executed, FPGAs are configured with personalities. Which personalities will be used is decided in 
compile time by setting compiler flags. Compiler is in some degree able to automatically recognize 
parts of code that can be accelerated with specified personalities, and to compile those parts, so they 
can be also executed on FPGAs (generated code can be executed on machine without FPGAs). 
Because of limited abilities of compiler, it is possible that programmer annotates source code 
written in C, C++, or Fortran with pragma directives. All of this is possible because compiler gives 
to the programmer unique view of all memory, system’s one and accelerator’s one. From 
programmer’s point of view, this significantly simplifies programming, but because of NUMA 
nature of the system it can significantly reduce performance. To deal with this drawback, 
programmer has to think where to put which data, and to specify that in a form of pragma 
directives. Pragma directives are also used for compiler optimizations. 
 
Code intended for execution on FPGA has some other limitations. It cannot call non-coprocessor 
code including system calls, and it cannot do input/output operations. 
 
Compiler comes with some predefined personalities that are single precision and double precision 
floating point operations, defining a soft-core for vector coprocessor. For someone who needs more, 
there is Convey’s personality development kit for developing new customized personalities, but that 
requires significant additional knowledge and effort. 
 
III.B.8. Conclusion About Existing Solutions 
 
We have presented several commercially successful solutions for high performance computing. For 
each one we have given an overview of hardware and software. This section gives a summary of 
selected architectures, future trends from our point of view, and a conclusion. 
 
III.B.8.a. Architectures 
 
A performance comparison is given in the table below [1, 2, 5, 6, 7, 16, 21, 36, and 37]. When 
interpreting the data presented in Table 1, keep in mind that not all solutions belong to the same 
generation of technology. Year of issue can be used as an orientation to which generation a 
particular solution belongs to. This is important because the generation has a significant impact on 
the speed of a system, hiding the true relationship between two different architectures. Further on, 
most of the quoted sources present peak performances as the major (often times the only one) 
performance data, while the reality says the only useful performance measures are those related to 
sustained performances. Some studies show that the sustained performance is usually several times 
lower than the peak performance. One such study shows that presented GPUs with peak 
performance measured in TFLOPS are able to sustain only several hundreds of GFLOPS [37]. Also, 
the shown differences between CPU and GPU performances are in question [24]. The later one 
shows that Convey HC-1 performs less than 10 GFLOPS (80 GFLOPs in peak performance) on 
most of the used kernels (parts of bigger real program that are time consuming, e.g. dense matrix-
vector multiplication), and that real bandwidth to the memory is less than half of the presented peak 
bandwidth [2]. One respected exception is the Maxeler machine, and its data related to the sustained 
performance in the context of oil drilling. 
 
Also, the important parameters for assessing performance potential for parallel algorithms, besides 
peak performance are also a bandwidth of shared memory access or interconnection network speed. 



 
Table 1: Performance comparison 

Intel Nehalem E5520 Quad-core CPU 

Computation Capacity Memory Capacity 

# cores Clock frequency Peak 
performance Power 

L1 cache Memory 

Size Bandwidth Size Bandwidth 

4 2.27 GHz 36 GFLOPs 80W 128 kB 291 GB/s not limited 25 GB/s 

Cell/B.E 

Computation Capacity Memory Capacity 

# cores Clock frequency Peak 
performance Power 

CPU cache Local store Memory 
size Bandwidth 

Size Bandwidth Size Bandwidth 

1+8 hetero 3.2 GHz 230.4 GFLOPs 135W 512kB 44 GB/s 8*256KB 204.8 GB/s 16 GB 25 GB/s 

ClearSpeed CSX700 

Computation Capacity Memory Capacity 

# cores Clock frequency Peak 
performance Power 

CPU cache Local store Memory Bandwid
th to 
host Size Size Bandwidth Size Bandwidth 

2+192 hetero 250 MHz 96 GFLOPS 11.4W 24KB 2*128KB 192 GB/s 2*8 GB 2*4 GB/s 4 GB/s 

SGI RASC Accelerator board (2 x Virtex4 LX200) max 120W 

Computation Capacity Memory Capacity 

# LUTs # FFs # 
DSP48E 

Clock 
frequency 

Peak 
performance Power 

Block RAMs On board memory 
Bandwidth to host 

# Size Size Bandwidth 

200448 
x2 

200448 
x2 96 x2 200 MHz 47 GFLOPs 120W 336 0.7 MB 40 MB 16 GB/s 6.4 GB/s 

Maxeler Max2 FPGA Acceleration Card 

Computation Capacity Memory Capacity 

# LUTs # FFs 
# 

DSP48E
s 

Clock 
frequency 

Peak 
performance Power 

Block RAMs On board memory Bandwidth 
to host # Size Bandwidth Size Bandwidth 

414720 414720 384 150MHz 116 GFLOPs 55W 648 2.8 MB 1519 GB/s 12GB 28GB/s 4GB/s 

Convey coprocessor HC-1 

Computation Capacity Memory Capacity 

# LUTs # FFs # 
DSP48E 

clock 
frequency 

peak 
performance Power 

Block RAMs On board memory bandwidth 
to host # Size bandwidth size bandwidth 

4* 
207360 

4* 
207360 4* 192 n/a 80 GFLOPs 100W 4*28

8 
4*1.25 

MB n/a 8 GB 80 GB/s 1066 MT/s 

NVidia GTX580 

Computation Capacity Memory Capacity 

# Multiprocessors # cores clock 
frequency 

peak 
performance Power 

shared memory on board memory bandwidth 
to host Size bandwidth size bandwidth 

16 512 1.54 GHz 1.58 TFLOPs 244W 768 KB N/A 6 GB 192.4 GB/s 8 GB/s 

AMD ATI HD5870 

Computation Capacity Memory Capacity 

# Multiprocessors # cores clock 
frequency 

peak 
performance Power 

shared memory on board memory bandwidth 
to host size Bandwidth size bandwidth 

20 1600 850 MHz 2.72 TFLOPs 188W 640 KB 2176 GB/s 6 GB 153.6 GB/s 8 GB/s 

 
Presented architectures have their own strengths and weaknesses, which make differences between 
them. The main problem of all these solutions is difficulty of programming them, especially 
keeping in mind that programs have to be tuned for the target architecture, in order to take the best 
of it. The level of difficulty of programming these systems, and performance that will be achieved 
differs from application to application.  



 
Based on data published by manufacturers, the best performing architectures for single precision 
floating point operations are GPUs. Often, they achieve several times better performance than the 
others. Prerequisite for this performance benefit is that the same operation can be done on a large 
amount of data in parallel. Algorithms with a lot of synchronization and communication are not 
suitable for these architectures, especially if the communication pattern is irregular [24]. GPUs are 
also a preferred solution, if the decision is based on the price and performance per watt ratio. 
 
ClearSpeed, made exclusively for acceleration of high performance calculations, seems very similar 
to the GPU, except that it has only two SIMD processors several times wider than the ones in the 
GPU. It is one order of magnitude slower, mainly due to a low working frequency. From the other 
side, lower frequency means a significantly lower power consumption and better performance per 
watt ratio. 
 
Despite the fact that CBEA has appeared five years ago, it is still comparable to the state-of-the art 
CPUs. It presents a very flexible architecture with eight independent cores. Each core can execute 
different program. Fast communication and synchronization, with over 200 GB/s bandwidth of the 
interconnect bus, makes CBEA a very flexible solution. The price paid is more difficult 
programming, compared to GPUs. Double precision calculations can also be done very efficiently. 
 
The performance of FPGA based solutions cannot be easily measured using the number of floating 
point operations done per unit of time, as FPGAs do not have predefined floating point units. 
Implementing floating point requires use of a significant amount of available logic, and generated 
logic is much slower than that in CPUs and GPUs. The FPGA based solutions are much better 
suited for algorithms based on fixed point, integer, or logical operations. For those applications, 
FPGA can significantly outperform competitions. One more benefit of using FPGAs is the ability to 
implement custom precision floating point, completely independent of the IEEE-754 standard. For 
Maxeler FPGA solutions in particular, peak performance potential of the chip is not a good guide to 
overall achieved performance, since the inherent flexibility of the architecture often enables good 
solutions to be devised for a wide range of applications where more rigid solutions (even with 
higher peak performance) struggle. 
 
III.B.8.b Programming Considerations 
 
There is a widespread opinion that the major obstacle for use of heterogeneous and reconfigurable 
architectures is a lack of programming environment on higher levels of abstraction. Such an 
environment will take some burden away from thinking about every detail of the target architecture 
from programmer and will provide them with a much faster development cycle. It will also simplify 
migration of existing software to these new architectures. 
 
The main obstacle in offering a high-level programming (e.g., C and Java), lies in the semantic gap 
between this model and the explicitly concurrent models used to program hardware devices. 
Common hardware description languages such as VHDL or Verilog use an execution model based 
on Communicating Sequential Processes (CSP)[15] and thus far detached from the imperative 
models.  
 
Approaches to solve a semantic gap problem cover a wide spectrum of solutions, ranging from the 
easier approach where the input language already offers a concurrency execution model close to the 
hardware CSP model to the harder approach of automatic uncovering of concurrency from traditional 
imperative languages [31]. Compilation of programs from the imperative paradigm to hardware has 
therefore to bridge this semantic gap by automatically extracting as much concurrency as possible. A 
popular alternative approach is to rely on library implementations where the notions of concurrent 



execution have been crystallized by library developers and openly publicized in application 
programmer interfaces (APIs). Programming systems such as Maxeler MaxCompiler [25] address 
this by allowing the programmer to describe their application in a high level language (Java) but in an 
explicitly parallel way. 
 
The popularity of MATLAB, as a domain-specific language for image/signal processing and control 
applications points to a great potential for adoption of this approach in specific application domains.  
Current FPGA compilation flows are too rigid as programmers must endure long compilation 
cycles, for the definition of a suitable reconfigurable computing implementation. A possible avenue 
for mitigating the issues related to long compilation cycles would include the use of dynamic Just-
In-Time (JIT) and incremental compilation techniques. A first, quick translation to possible not very 
efficient mappings, using only the regions of the input code exercised, would allow the execution to 
proceed as quickly as possible. As the execution would progress, a run-time system would trigger a 
recompilation of the more frequently exercised structures for recompilation, this time with the 
benefit of the knowledge of key specific program values. 
 
IV. The Trend, Promising Solutions, and Open Questions for Future Research 
 
In our opinion, heterogeneous computing has a great future. As we have seen from the previous 
text, there are several obstacles that stay on the way to a more widespread use of heterogeneous 
computing. One of them is migration of existing software to these new architectures. One approach 
to this problem is to offer libraries that will be used by old software to get benefits from these new 
architectures.  
 
Looking at the further directions of GPU technology development, it seems that there will be 
included some new hardware resources, e.g. new high speed reconfigurable interconnections like 
those in FPGAs. Software environment is also improved: The CUDA 4.0 offers a shared address 
space, where the whole memory can be accessed by both, CPU and GPU. Earlier versions were 
limited to the use of a subset of the C language, but the newer ones support full C++. 
 
The future of the CBEA cannot be seen clearly. Although the CBEA has independent cores and use 
local memory together with DMA, its programming complexity makes this architecture less 
attractive. However, in our opinion, as power becomes one of the most limiting factors, some 
features from CBEA will be seen again in new generation of processors [30]. 
 
The FPGA based solutions represent a very promising approach. The fast growth rate in the 
capacity of FPGAs, and at the same time the reduction of price and power consumption are 
observed during the last several years. It is widespread opinion that FPGAs will be further improved 
by increasing of the clock frequency and by adding new hardware resources, such as floating point 
support. Adding new resources will make FPGAs suitable for much wider range of applications. 
Because of the need for hardware design, these solutions are more difficult to program and to 
achieve good performance. Programming issue comprises: Methodology of generation bitstream for 
the FPGA, support for debugging application, and interface between application and system. 
Performance issue includes optimizations of data movement (partitioning) between microprocessors 
and FPGAs, and partitioning between multiple CPU+FPGA pairs, driving the scalability of the 
system topology. There are several approaches that offer solution for these problems. The best 
performing approach is Maxeler dataflow programming model which offers modeling of dataflow 
machine on high level of abstraction instead of directly designing hardware. Some other solutions 
offer a more preferred programming model where programmer sees only the library calls, but with 
one order of magnitude lower achieved performance. 
 
 



 
V. Conclusion 
 
For certain data-intensive applications, more cores do not mean better performance, according to 
Sandia’s simulation [26]: ”After about 8 cores, there’s no improvement, and further it even 
decreases”. Therefore, it is difficult to envision efficient use of hundreds of traditional CPU cores 
[32]. The use of hundreds of accelerator cores in conjunction with a handful of traditional CPU 
cores, on the other hand, appears to be a sustainable roadmap.  
 
Currently, there is no one-size-fits-all approach for different computing domains, including general 
purpose computing. The seven presented architectures are intended for different problem domains, 
and none of them seem to be universal.  
 
The GPU provides a mass-appeal via highly parallel and accessible accelerator technology where 
communication and synchronization are avoided. The CBEA is a very flexible architecture which 
gives to the programmer freedom of eight independent cores with high bandwidth for inter-core 
synchronization and communication. The last ones, FPGA based solutions are very suitable for 
applications relying on very large datasets and complex computations. Using appropriate approach, 
some of them achieve excellent performance.  
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