
ACCELERATING SOLVERS FOR GLOBAL ATMOSPHERIC EQUATIONS
THROUGH MIXED-PRECISION DATA FLOW ENGINE

Lin Gan1,2, Haohuan Fu2, Wayne Luk3, Chao Yang4, Wei Xue1,2, and Guangwen Yang1,2

1.Department of Computer Science and Technology, Tsinghua University
2.Ministry of Education Key Lab. for Earth System Modeling, Center for Earth System Science, Tsinghua University

3.Department of Computing, Imperial College London
4.Institute of Software, Chinese Academy of Sciences

email: {l-gan11,haohuan,xuewei,ygw}@mails.tsinghua.edu.cn, w.luk@imperial.ac.uk, yangchao@iscas.ac.cn

ABSTRACT

One of the most essential and challenging components in
a climate system model is the atmospheric model. To solve
the multi-physical atmospheric equations, developers have
to face extremely complex stencil kernels. In this paper, we
propose a hybrid CPU-FPGA algorithm that applies single
and multiple FPGAs to compute the upwind stencil for the
global shallow water equations. Through mixed-precision
arithmetic, we manage to build a fully pipelined upwind
stencil design on a single FPGA, which can perform 428
floating-point and 235 fixed-point operations per cycle. The
CPU-FPGA algorithm using one Virtex-6 FPGA provides
100 times speedup over a 6-core CPU and 4 times speedup
over a hybrid node with 12 CPU cores and a Fermi GPU
card. The algorithm using four FPGAs provides 330 times
speedup over a 6-core CPU; it is also 14 times faster and 9
times more power efficient than the hybrid CPU-GPU node.

1. INTRODUCTION

Due to the climate’s significant influence on human activi-
ties and the huge losses caused by extreme weather events
(at least 485 billion USD a year for US alone [1]), climate
change has been one of the most important research subject-
s among governments and research organizations. Mean-
while, the complexity of the climate system makes computer-
based modeling the only method to study climate changing
mechanisms and make predictions into the future. Among
all the different parts in a climate system model, the global
atmospheric model is one of the most challenging compo-
nents. Developers have to face the complex equation sets
that bring tough challenges for the computing capability of
different platforms.

Current high performance computing (HPC) platform-
s have already provided peta-scale performance for highly-
scalable applications [2]. However, they have to face the
constraints of memory and communication bandwidth when
dealing with applications with complex computation and heavy
communication. Reconfigurable dataflow engines achieve
parallel performance through a deep pipeline of thousand-

s of concurrent operations, and have achieved high perfor-
mance in many application fields, such as exploration geo-
physics [3] and financial computing [4]. Moreover, the sup-
port for mixed precision brings an additional optimization
space and potential for extra performance boost.

In this paper, we propose a hybrid CPU-FPGA algorithm
to solve the global shallow water equations, which demon-
strate most of the essential dynamics of the atmosphere.

Our major contributions are:
• a hybrid domain decomposition that achieves efficient

utilization of both CPU and FPGA to compute the complex
upwind stencil (Section 3);
• a mixed-precision floating-point and fixed-point de-

sign that fits the resource-demanding SWE stencil kernel in-
to one Virtex-6 FPGA (Section 4).
• significant improvements in performance and power

efficiency over multi-core CPU and hybrid CPU-GPU plat-
forms (Section 5).

2. BACKGROUND

2.1 Related Work. In recent years, we start to see some
FPGA-based acceleration for modules within a global model
([5],[6]), and for regional weather predictions ([7]).

Smith et al. [5] accelerate the Parallel Spectral Trans-
form shallow water model using ORNL’s SRC Computers.
Only some subroutines (FFT or LT) is deployed on the FP-
GA and a small speedup is gained over CPUs. Wilhelm et
al. [6] analyze a high-level approach for programming pre-
conditioners for an ocean model in climate simulations on
FPGAs but do not manage actual acceleration. Oriato et al.
[7] accelerate a realistic dynamic core of LAM model using
FPGAs. It is a successful trial on reducing resource usage
through fixed-point arithmetic. However, LAM is a simpli-
fied weather prediction model that only covers regional area.
In contrast, our work targets on accelerating a more complex
atmospheric kernel in a global scale.

Compared with conventional architectures, reconfigurable
systems have their unique advantage in supporting mixed
precisions. Significant performance improvement has been

(a) Cubed-sphere mesh.

y

x

(b) The 13 point stencil.

Fig. 1. The Mesh and stencil in the SWE algorithm.

achieved in recent efforts on applying mixed-precision de-
signs for Monte Carlo simulations ([8], [9]).

Another important issue for mixed-precision designs is
how to choose the optimal precision that can both maximize
the performance and satisfy the accuracy requirement. For
kernels with a specific error requirement, Lee et al. [10]
provide MiniBit, a tool to optimize bit widths of fixed-point
numbers. However, for numeric simulations that run for t-
housands of time steps, such as in the atmospheric simula-
tion, it is difficult to determine the optimal bit width through
analytic methods.

2.2 Equations and Discretization. Shallow water equation-
s (SWEs) are a set of conservation laws to simulate the wave
propagation and model the essential characteristics of the
atmosphere. We choose cubed-sphere mesh as the compu-
tational mesh, which is obtained by mapping a cube to the
surface of the sphere (Figure 1(a)).

When written in local coordinates, SWEs have an iden-
tical expression on the six patches, that is

∂Q

∂t
+

1

Λ

∂(ΛF 1)

∂x1
+

1

Λ

∂(ΛF 1)

∂x2
+ S = 0, (1)

where (x1, x2) ∈ [−π/4, π/4] are the local coordinates,
Q = (h, hu1, hu2)T is the prognostic variable, F i = uiQ
(i = 1, 2) are the convective fluxes, S is the source term.

Spatially discretized with a cell-centered finite volume
method and integrated with a second-order accurate TVD
Runge-Kutta method [11], SWE solvers are transformed in-
to the computation of a 13-point upwind stencil (Figure 1(b)).
To get the prognostic components (h, hu1 and hu2) of the
central point, its neighboring 12 points need to be accessed.

2.3 SWE Algorithm and Challenges. Figure 2 shows the
six patches of the cubed-sphere. For each patch, to calculate
all the mesh points (solid dots), we should store two more
layers of meshes (empty points, named as halo meshes) from
its adjacent patches. The SWE Algorithm is shown in Algo-
rithm 1. First, halos must be updated. Each patch needs to
fetch the halo values from its four neighboring patches.

Second, we do the stencil calculation. For each point,
we first compute its local coordinate and then compute the

Patch

3

Patch

1

Patch

2

Patch

5

Patch

6

Patch

0

Fig. 2. Mesh points (solid dots) to be calculated inside a patch and its
halo meshes (empty dots) from other patches.

Fluxes in four directions (left, right, bottom, top). In Algo-
rithm 1, we explain the computation of the left Flux in detail
(line 7-9), including Boundary Interpolation, State Recon-
struction and Riemann Solver. The other three direction-
s have the similar operations. In the end, we compute the
Source terms and gather Fluxes and Sources (line 12 in Al-
gorithm 1).

Algorithm 1 The SWE Algorithm
1: for patch 0 to patch 5 do
2: Halo Updating
3: for j← 0 to nj do . Upwind Stencil
4: for i← 0 to ni do
5: Compute Local Coordinate
6: Compute Left Flux, Including{
7: if(on Left Boundary) {Boundary Interpolation}
8: State Reconstruction
9: Riemann Solver

10: }
11: Compute Right, Bottom, Top Fluxes Including Interpolation
12: Compute Source Terms for h, hu1, hu2

13: end for
14: end for
15: end for

Efficiently solutions of SWEs bring serious design chal-
lenges. Halo exchange brings data communication among
patches. Boundary Interpolation includes a lot of complex
conditional statements which consume a lot of the limited F-
PGA resources. Moreover, although the upwind stencil from
SWEs only involves 13 points (Figure 1(b)), the computa-
tional complexity is much higher than normal stencil ker-
nels. To compute one mesh point, we will need at least 434
ADD/SUB operations, 570 multiplications, 99 divisions, 25
square roots and 20 sine/cosine operations.

3. CPU-FPGA HYBRID DESIGNS

3.1 Domain Decomposition. Instead of deploying the w-
hole SWEs algorithm into the FPGA, we design a hybrid
algorithm that utilizes both the host CPU and the FPGA.

We decompose each of the cubed-sphere patch into the
outer part that includes two layers of boundary area and the
inner part (Figure 3(a)). Then we can find that all the halo
exchanges (Comm. between patches arrow) and boundary

m
es

h
si

ze

2 layers

Inner part

2 layers

Outer part

Patch

Comm. between patches.

Comm. between CPU and FPGA.

Comm. between
sub-patch

(a) CPU and 1 FPGA.

2 layers

Inner part, by FPGA
Outer part, by CPU

FPGA
(1,1)

2 layers

FPGA
(m,1)

FPGA
(1,k)

FPGA
(m,k)

……

……

PatchyN

xN

m
Nx

Sub-patch

k
Ny

(b) CPU and m× k FPGAs.

Fig. 3. Domain decomposition of our hybrid CPU-FPGA algorithm.

interpolation in Algorithm 1 only happen in the outer part.
Therefore, we assign CPU to process the outer part and as-
sign FPGA to perform the more regular inner-part computa-
tion. Shown in Algorithm 2, the CPU will process the halo
exchanges and the boundary computing while FPGA only
needs to process the inner-part stencil computation. When
both the inner part and the outer part are finished, meshes
along the inner-outer boundary will be exchanged (Comm.
between CPU and FPGA arrow in Figure 3). Unlike tradi-
tional mechanism in which the CPU is usually idle while
the FPGA is working, CPU keeps working in our algorith-
m. Moreover, with careful adjustment, the CPU time for
communication and calculations can be overlapped by the
FPGA computing. Such computation communication over-
lapping will be essential for atmospheric simulations to hide
the heavy communications when mesh points increase to a
large scale.

Algorithm 2 the CPU-FPGA Hybrid Algorithm
1: for patch 0 to patch 5 do
2: CPU:
3: for mesh points of the outer part do
4: Halo Updating
5: Compute Local Coordinate
6: Boundary Interpolation (Left, Right, Bottom, Top)
7: end for
8: FPGA:(simultaneously with CPU)
9: for mesh points of the inner part do

10: Compute Local Coordinate
11: Compute Reconstruction and Riemann (Left, Right, Bottom, Top)
12: Compute Source Terms for h,hu1,hu2

13: end for
14: CPU-FPGA Exchange
15: end for

The hybrid algorithm can also be applied to platforms
with multiple FPGAs. Supposing we have a computing node
with m × k FPGAs and multi-core CPUs, and are handling
the meshsize of Nx × Ny , we first decompose the original
patch intom×k sub-patches (Figure 3(b)), so that the mesh-
size for each sub patch is (Nx/m) × (Ny/k). Here we as-
sume that theNx andNy can be divided exactly bym and k,
respectively. Such inner patch decomposition will bring ex-
tra communications between each sub-patches (Comm. be-

tween sub-patch arrow). Now we can find that a sub-patch
has the similar computational and communicating mecha-
nism with the original patch, with only 1/(m × k) of the
computing area.

3.2 Bandwidth Requirement. In the hybrid algorithm, FP-
GA only processes the inner part points. Data streams will
go through the FPGA data flow engine to finish the upwind
stencil operation. The bandwidth requirement of an applica-
tion would be:

Bandr = S × b× fFPGA (2)

where S refers to the total number of the streams that go
through the data flow engine at each time step, b refers to
the number of bytes of the data type, and fFPGA refers to
the frequency of the FPGA. If the bandwidth of the network
Bands can satisfy the bandwidth requirement, say

Bands ≥ Bandr (3)

It would be ideal so that all the input and output streams can
be prepared in one physical cycle. For cases that can not sat-
isfy (3), we can either increase Bands, or decrease Bandr.
To improve Bands, we can use medium with higher access-
ing bandwidth to replace the original network. To decrease
Bandr, we can optimize the applications to decrease the
number of streams and the data bytes. We usually do not de-
crease the frequency of FPGA since such behavior will slow
down the physical cycle.

3.3 Implementation. The hybrid algorithm can be applica-
ble to any host systems with FPGAs as accelerators. Here
we use the Maxeler FPGA platforms [12] to implement.

We have a MaxWorkstation, which includes one Intel i7
quad-core CPU and one accelerating board with a Virtex-6
SX475T FPGA and 24GB on-board memory (DRAM). We
also have a MaxNode, which consists of 12 Intel Xeon CPU
cores and four accelerating boards.

We set the meshsize of the SWE patch to be 1024×1024,
i.e. Nx = Ny = 1024. For the Workstation, the single
FPGA will process the whole mesh. For the MaxNode, we
further decompose the patch into 2 × 2 sub-patches, each
with a meshsize of 512× 512.

For both designs, FPGA will only process the inner-part
computing, while the host CPU will process the outer-part
computing and halo updating. We also apply OpenMP in the
CPU side to fully explore the multi-core resources.

As for the bandwidth requirement, in the SWE data flow
engine, there are totally 11 double-precision streams. As-
suming the FPGA runs at 100 MHz, Bandr = 8.8 Gbytes/s
according to Equation (2). If all data are stored in the host
CPU, Bands equals to the bandwidth of PCIe 2.0 (8 G-
bytes/s), which cannot satisfy Equation (3). So we use the
DRAM, which has a much higher accessing bandwidth (38
Gbytes/s) for the FPGA, to increase Bands in Equation (3).
In this way, we only need to perform the data exchange of

0 0.5 1 1.5 2 2.5

2.24s

0.45s

0.68s

0.26s

1−FPGA

4−FPGAs

Inner−part time (FPGA)
Outer−part time (CPU)

Fig. 4. Communication-computation overlapping.

Table 1. The resource cost for the baseline FPGA design and the designs
with different algorithmic optimizations.

Resource FPGA-baseline Rom-based Extract-CF

LUTs 299% 283% 240%

FFs 220% 210% 176%

BRAMs 20% 23% 17%

DSPs 189% 178% 149%

the boundary part between the CPU and FPGA through the
PCIe 2.0 interface.

The results of the computation communication overlap-
ping are shown in Figure 4. The CPU time for handling the
outer part communications and calculations (blank bar) is
completely overlapped by the FPGA operation (blue bar).

4. MIXED-PRECISION FPGA DESIGN

4.1 Algorithmic Optimizations. The resources required
for a straightforward double-precision version on Virtex-6
SX475T can be found in Table 1 (shown as FPGA-baseline).
Except for BRAMs, other resources requirements are far be-
yond what the FPGA can supply.

We therefore conduct some algorithmic optimizations to
reduce the requirement for resources. In Algorithm 1, local
coordinate computation only relates to index i or j. Since i
and j are looped from 0 to ni or nj , the local coordinate can
be pre-calculated during the compiling stage and stored in
ROMs, which are implemented with BRAMs. In this way,
extra BRAMs are occupied in exchange for other more de-
manded resources (Rom-based column in Table 1). Another
method is to erase the redundant computations (Extract-CF
column in Table 1). We extract all the common factors that
happen many times in the algorithm to avoid repeated cal-
culations. For example, if factor X happens many times as
common denominator, we extract and pre-calculate the val-
ue of 1/X , and multiply it with other factors when needed.

While the above optimizations reduce the resource cost
by 20%, the resulting design is still too large to fit into one
Virtex-6 SX475T FPGA. We therefore design a mixed-precision
algorithm to reduce the resource demand.

4.2 Precision Optimizations. In the SWE kernel, although

−80

−60

−40

−20

0

Variable X

xh
xhu

xhv

ql0h ql0hu

ql0hv

regrav

sqrgrav

tm

grav

lo
g2

|X
|

Fig. 5. Dynamic range of variable log2|X|.

the overall requirement for data precision is high, variables
in different parts of the program demonstrate different range
and precision behaviors. We can therefore explore the de-
sign space of using different number representations and
precisions at different parts.

4.2.1 Range Analysis. Current FPGAs are generally more
efficient for fixed-point arithmetic rather than floating-point
arithmetic. Therefore, one strategy we take is to locate the
region in the program that actually computes in a small range,
and replace the region from floating-point arithmetic to fixed-
point arithmetic.

For all the different intermediate variables throughout
the kernel, we first perform a range analysis to track the
range of their absolute values. As shown in Figure 5, while
some variables (e.g., xhv, ql0hv, and tm) cover a wide dy-
namic range, some other variables (e.g., xh, xhu, ql0h, ql0hu)
only change within a small range. As those variables all lo-
cate in the process of State Reconstructions, we can extract
the four-direction Reconstruction parts, and use fixed-point
data type in that module. Most variables in the remaining
parts (four-direction Riemann and the Sources Terms) cover
a wide range, which we can then apply reduced floating-
point numbers to represent.

Another discovery is that the maximum dynamic range
of the base-two logarithmic values of the variables would be
smaller than 60. Therefore, floating-point with 8-bit expo-
nent would be good enough for representing the range.

4.2.2 Precision Analysis. As the SWE kernel generally in-
volves a large number of iterations, it is difficult to achieve
meaningful results through analytic precision analysis ap-
proaches due to the conservative assumptions. Therefore, in
our approach, we determine the precision bit-width through
bit-accurate simulations for different bit-width configurations.
Note that the simulation is performed based on the data of
a typical benchmark scenario (zonal flow over an isolated
mountain), which demonstrates the typical features of nu-
merical atmospheric simulation.

To determine the floating-point mantissa bits, we explore
a set of different bit-widths from 53 to 24 and observe the
dynamic trends of the relative error of divergence and the

float(11,53) float(8,53) float(8,48) float(8,40) float(8,32) float(8,30) float(8,24)
10

−2

10
−1

10
0

10
1

10
2

10
3

R
el

at
iv

e
E

rr
or

 o
f D

iv
er

ge
nc

e

60

110

160

210

260

R
es

ou
rc

e
of

 L
U

T
s

(%
)relative error of divergence

resource cost of LUTs (%)

Fig. 6. The relative error of divergence and resource cost of LUTs ac-
cording to different floating-point bit-widths.

on-chip resource cost according to different floating-point
bit-width configurations (Figure 6).

The relative error of divergence is computed by com-
paring the simulated divergence against the standard data set
validated in [13], and can be used as an important indicator
for the quick estimation of the accuracy. If the relative error
is larger than 5%, the final result will no longer be true.

For brevity, hereafter float(e, m) denotes floating-point
with e bits exponent and m bits mantissa, and fixed(i,f) de-
notes a fixed-point with i bits integer and f bits fraction.

For float(8,53), float(8,48), and float(8,40) settings, we
observe a similar relative error as the double-precision float(11,
53). For float(8,32), we can still achieve a relative error of
around 2%. However, when we further reduce the precision
to float(8,30), we see a surge of the relative error to a level
that is far above the required 5%.

On the resource cost side, float(8,32) is also a suitable
choice that reduces the LUTs usage from around 240% to
80% of the total capacity of a Virtex-6 SX475T FPGA.

Based on the above considerations, we pick float(8,32)
as the number representations in the algorithm. For the fixed-
point variables in the Reconstruction parts, we apply a sim-
ilar approach to determine the fractional bit-width to be 38.

4.3 The Architecture of the Mixed-Precision Design. The
general architecture of the mixed-precision design is shown
in Figure 7. The input streams are originally in double pre-
cision, and will be later converted into fixed-point and go
through Module 1 for the all-direction State Reconstruction-
s. Then it will be converted into reduced-precision floating-
point and go through Module 2 for the computation of all-
direction Riemann and the Source Term. During the compu-
tation, local coordinates are acquired through looking up the
ROMs. After the computation is finished, the results will be
converted back into double precision.

Through mixed-precision floating point and fixed-point
arithmetic, the resource usage of LUTs, FFs, BRAMs and
DSPs reduce to 76.17%, 53.41%, 12.59% and 44.84%, which
enables us to fit one complete SWE kernel into one FPGA.

fixed-point

±

±
*

FPGA

ROM

index

double

±

±
*

double

reduced

reduced

Module 1 Module2

input
buffer

local coordinate

convert
convert

Fig. 7. General Architecture of Mixed-Precision Design. Module1
(fixed-point): Left, Right, Top, Bottom Reconstructions. Module2(reduced
floating-point): Left, Right, Top, Bottom Riemann; and the Source Terms

5. RESULTS AND ANALYSIS

5.1 Reference Designs. The CPU-GPU design is based on
Tianhe-1A, China’s largest supercomputer with 7168 com-
puting nodes. Each Tianhe-1A node is equipped with two
six-core Intel X5670 CPUs and one NVIDIA M2050 GPU.
We have performed systematic optimizations [14] for both
the GPU and CPU sides, including OpenMP multi-threading
and GPU shared memory. The performance on Tianhe-1A
is used here to be a comparison basis for our FPGA designs.
Note that we have in this paper optimized the SWEs algo-
rithm in Section 4.1, so we also apply those optimizations in
our CPU code for a fair comparison.

5.2 Accuracy Validation. Our numerical test is based on a
model problem, zonal flow over an isolated mountain, which
is taken from the benchmark test set of Williamson et al.
[13]. The test runs in 100 time steps, and the meshsize is
fixed to 1024× 1024× 6.

The numerical solutions of our programs are close in ac-
curacy to the standard reference which has been validated in
[14]. We further use mass conservation, one of the most es-
sential integral invariants in atmospheric simulation, to give
a more concrete accuracy comparison. Theoretically the rel-
ative error of mass should keep zero, conservative with the
previous time step. However, considering influences from
hardware precision, a relatively small difference (less than
10−11) is acceptable. Figure 8 shows the mass relative error
at each time step. CPU-double refers to the CPU standard
version. FPGA-mixed refers to the mixed-precision algo-
rithm, whose relative error of FPGA-mixed maintains small-
er than 10−11, and therefore satisfies the accuracy require-
ments. We also show the case of the single-precision FPGA
version that does not satisfy the conservation requirement.

5.3 Performance and Power Efficiency. Table 2 shows the
overall performance (evaluated by the total mesh point num-
ber it can processed per second) and the power efficiency

Table 2. Performance and power efficiency for different platforms
Mesh size: 1024× 1024× 6

platform performance speedup power efficiency power
(points/second) (Watt) (points/(second·Watt)) efficiency

6-core CPU 4.66K 1 225 20.71 1
Tianhe-1A node 110.38K 23x 360 306.6 14.8x
MaxWorkstation 468.11K 100x 186 2.52K 121.6x

MaxNode 1.54M 330x 514 3K 144.9x

10 20 30 40 50 60 70 80 90 100

10
−14

10
−12

10
−10

Time Step

M
as

s
C

o
n

se
rv

at
io

n
 (

re
la

ti
v

e
er

ro
r)

CPU−double
FPGA−mixed
FPGA−single

Fig. 8. Mass Conservation. Values should be less than 10−11.

measured on different platforms .
The performance of CPU-FPGA algorithm using one

Virtex-6 FPGA (MaxWorstation) gains 100 times speedup
over 6-core CPU and 4 times over a Tianhe-1A node with
12 CPU cores and a 448-cores GPU. With 4 FPGAs run-
ning simultaneously, the performance of MaxNode gains a
speedup of 330 over a 6-core CPU and 14 times over the
Tianhe-1A node. The performance of MaxNode is equiva-
lent to 14 nodes in the Tianhe-1A supercomputer.

Even though the FPGA device works at a frequency of
100MHz, we manage to build the complex kernel on a fully-
pipelined FPGA card, which can perform 428 floating-point
and 235 fixed-point operations per cycle. Meanwhile, the
fully-pipelined design also provides much higher efficiency
than that of the CPU and GPU based platforms. The combi-
nation of the high parallelism and the high efficiency leads
to the ultra-high performance of our design.

As for the power efficiency (evaluated by the perfor-
mance per watt), our CPU-FPGA algorithm with 4 FPGAs
is up to 9 times more power efficient than a Tianhe-1A node.

6. CONCLUSION
In this paper, we propose a hybrid CPU-FPGA algorithm
to solve the Global SWEs. Platforms based on single and
multiple FPGAs are employed to scale the performance. We
manage to reduce the great resource demand through mixed-
precision floating-point and fixed-point method and build
the extremely complex upwind stencil into one FPGA card.

Our work manages to achieve significant acceleration by
employing FPGAs to solve the global atmospheric equation-
s. The results show great potential in utilizing FPGA for the

state-of-the-art global atmosphere study.

7. REFERENCES

[1] J. Lazo, M. Lawson, P. Larsen, and D. Waldman, “US economic sen-
sitivity to weather variability,” Bulletin of the American Meteorologi-
cal Society, p. 709, 2011.

[2] T. Ishiyama, K. Nitadori, and J. Makino, “4.45 Pflops astrophysi-
cal N-body simulation on K computer: the gravitational trillion-body
problem,” in Proc. SuperComputing, 2012, p. 5.

[3] H. Fu, R. Clapp, O. Lindtjorn, T. Wei, and G. Yang, “Revisiting finite
difference and spectral migration methods on diverse parallel archi-
tectures,” Computers & Geosciences, 2012.

[4] A. Tse, D. Thomas, K. Tsoi, and W. Luk, “Reconfigurable control
variate Monte-Carlo designs for pricing exotic options,” in FPL 2010,
2010, pp. 364–367.

[5] M. C. Smith, J. S. Vetter, and X. Liang, “Accelerating scientific appli-
cations with the SRC-6 reconfigurable computer: Methodologies and
analysis,” in IPDPS. IEEE, 2005, pp. 157b–157b.

[6] D.-M. F. Wilhelm and N. ad Weinstraße, “Parallel preconditioners for
an ocean model in climate simulations.”

[7] D. Oriato, S. Tilbury, M. Marrocu, and G. Pusceddu, “Acceleration
of a Meteorological Limited Area Model with Dataflow Engines,” in
2012 Symposium on SAAHPC, 2012, pp. 129–132.

[8] G. Mingas and C. Bouganis, “A Custom Precision Based Architec-
ture for Accelerating Parallel Tempering MCMC on FPGAs without
Introducing Sampling Error,” in FCCM 2012, 2012, pp. 153–156.

[9] G. Chow, A. Tse, Q. Jin, W. Luk, P. Leong, and D. Thomas, “A mixed
precision Monte Carlo methodology for reconfigurable accelerator
systems,” in Proc. FPGA, 2012, pp. 57–66.

[10] D. Lee, A. Gaffar, R. Cheung, O. Mencer, W. Luk, and G. Constan-
tinides, “Accuracy-guaranteed bit-width optimization,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 25, no. 10, pp. 1990–2000, 2006.

[11] S. Gottlieb, C. Shu, and E. Tadmor, “Strong stability-preserving high-
order time discretization methods,” SIAM review, vol. 43, no. 1, pp.
89–112, 2001.

[12] O. Pell and V. Averbukh, “Maximum Performance Computing with
Dataflow Engines,” Computing in Science & Engineering, pp. 98–
103, 2012.

[13] D. Williamson, J. Drake, J. Hack, R. Jakob, and P. Swarztrauber, “A
standard test set for numerical approximations to the shallow water
equations in spherical geometry,” Journal of Computational Physics,
vol. 102, no. 1, pp. 211–224, 1992.

[14] C. Yang, W. Xue, H. Fu, L. Gan, L. Li, Y. Xu, Y. Lu, J. Sun, G. Yang,
and W. Zheng, “A peta-scalable CPU-GPU algorithm for global atmo-
spheric simulations,” in Proceedings of PPoPP’13, 2013, pp. 1–12.

