Verilog Session
General Introduction to Verilog
HDL

EE282
Fall Quarter, 2001

Verilog Hardwar e Description Language

Motivation for HDLsin general:

* Increased hardware complexity
o Design space exploration
* |nexpensive dternative to prototyping

General Features;

» Support for describing circuit connectivity

« High-level programming language support for describing behavior
e Support for timing information (constraints, etc.)

« Support for concurrency

Verilog Simulation M odé

* Verilog uses event-driven simulation.
Event Driven Simulation:

Event 0 £+l

Qu&ua|l|| ||||||||| P

Events

e Simulation starts at time O.

* When all the events at time t have been scheduled, the smulation
clock advancesto t+1.

« Simulation completes when there are no more events to process.

Key Verilog Features: Modules

 Modules are basic building blocks of adesign description.

* Modules start with keyword module followed by the module name and
end with the keyword endmodule.

module AND module CPU

endmodule endmodule

Key Verilog Features. Module Ports

 Module ports are similar to hardware pins: they provide means of
communication between the module and the outside world.

« Ports can be input, output, or inout (bidirectional).

module AND (0,10, 11);

input i), il;
output o;

endmodule

Key Verilog Features. Module I nstances

A Veilog model generally consists of ahierarchy of module instances.

* A moduleinstance is not the same as afunction call in high-level
languages. each instance is a complete, independent, concurrent copy

of amodule,
. AND3
__

1D

module AND3 (o, 10, i1, i2);
input i0, 11, 12;
output o;
wire temp;
AND a0 (temp, i0, i1);
AND al (o, temp, i2);
endmodule

Verilog Logic System
0: zero, low, false, logic low, ground...
1 : one, high, true, logic high, power...
X : unknown...

Z . high impedance, unconnected, tri-state...

Verilog Data Types

Nets:

* Netsarephysical connections between different devices.

* Netsawaysreflect the value of the driving device.

* Type of nets, we will be using exclusively - wire.

Registers:

o Contain implicit storage - unless avariable of thistypeisexplicitly
assigned/modified, it holdsits previously assigned value.

* Register variables do not imply hardware registers.

o Mainregister typeisreg. Another less important register typeis
integer which ssimply is equivalent to a 32 bit reg.

Verilog Variable Declaration

Declaring a net

wire [<range>] <net_var> [<, net_var>*]

Declaring a register

reg [<range>] <reg var> [<, reg var>*]

Samples

reg r; // 1-bit reg variable.

wirewl, w2; // 2 1-bit wire variables.

reg [7:0] vreg; // 8-bit register; least significant bit s O, i.e. vreg[(].
wire[0:11] vw1, vw2; // 2 12-bit nets; LSB is 11, i.e. vw1[11].

Range information is specified as[MSB:LSB]. If no range exists, the
corresponding variable has a bitwidth of one

Correct Data Typing for Port Connectivity

Module Interface

(gl

register/net —Jim net register/net —Jiam- net

i

fret

* IRl

ner

Behavioral Modelling in Verilog

Involves system description at a high level of abstraction - using high-
level language constructs.

Emphasizes functionality primarily - independent of implementation.
Specifies a set of concurrent procedural blocks, namely:

1. Initial blocks, and

2. Always blocks.

Procedural blocks are built using the following constructs:

1.Timing controls, and

2. Procedural assignments,

3. High-level language programming constructs.

Initial and Always Blocks

Initial blocks execute only once.
Always blocks execute continuoudly in aloop.

Blocks can be a single statement or a compound statement. A
compound statement is one or more single statements enclosed within

a begin...end construct.

Initial Block Alwavs Block
initial always
begin begin

vy | end L 1] end

Timing Control in Procedural Blocks

 Deays
Used to delay the subsequent statement by a specified amount of time.
#10 clk = 1;
#10 clk = O;

 Triggering control: @ (trigger_event)
Delays execution until trigger_event changes or transitions. The
trigger _event can be a signal/expression or multiple expressions linked
using the keyword or. It isalso possible to detect for particular
transitions by using the keywords posedge or negedge.
aways @(posedge CLK) g =d;
aways @(i0oril) o=i0& il;

Procedural Assignments

Regular assignments inside procedural blocks:
lhs_expr =rhs_expr;
The lhs_expr must be a variable of the type register.
There are no constraints on data types included in the rhs_expr.

Common Error:
If a variableis not declared, it defaultsto a 1-hit wire.

Thus, if an undeclared variable appears on the left-hand-side of a
procedural assignment, the Verilog compiler will generate an error
message, “1llegal |eft-hand-side assignment”.

S0, use defensive code and declare all signals you read/write.

Operatorsin Verilog

Arithmetic: +,-,* ,/, % (2’ s complement)
Binary bit-wise: ~, & , |, ", "

Unary reduction: & , ~& , |, ~|, ",
Logical: !, && ,||,==,===,!1=, ==
Relationa: <, <, >=, <=

Logical shift: >> , <<

Conditional: ?:

Concatenation: {}

Common Error:
A lot of confusion arises between the “==" and “===" operators.
== returns “x” if elther If the input bitsis“x” or “z” while === does

compare “x”’sand “z

Conditional Statements

e |f, If-Else Statements;
i f (branch_flag > 0)

begi n
PC = PCbr;
end
el se
PC = PC + 4;

e (Case Statements.
case (opcode)
6’ b001010 : wite nem = 1,
6’ b100011 : enable alu = 1;
def aul t
begi n
$di spl ay(“Unknown opcode: %", opcode);
end
endcase

e Could also use casez (compare z values) and casex (compare z and X).

L oop Constructsin Verilog

Repeat L oops.
» Repeatsablock of statements afixed number of times:
repeat (<size>) <block>
For L oops:
e SameasinC:
for (<loop _initialization>; <loop_condition>; <loop update>) <block>

for (memaddr = 0; memaddr < memsize; memaddr = memaddr + 1)
$display(“Memory at address 0x%h is 0x$h.”, memaddr,
memory[memaddr]);

* Loop executeswhile loop condition evaluatesto TRUE.

Continuous Assignments

* Procedura assignments are used to assign values into register type
variables.

« Continuous assignments do the same for net type variables.

* Whenever the right-hand-side of the assignment changes, the | eft-
hand-side is automatically and immediately updated to reflect that
change.

* Generally, continuous assignments are used to model combinational
logic or make a simple connection.

Sample Assignment.
assign o =10 & i1;

Modelling Memory in Verilog

Declaring memory:
reg [<MSB>:<LSB>] <memory_ var> [<start_addr>:<end addr>];

Memory addressing is done using indexing into the previously-defined
memory array.
L1Cache[16]...

Verilog does not provide support for bit accesses into memory arrays.

L oading memory arrays - using $readmem system task:
$readmem<base> (“<file_hame>", <mem var>[,<start>, <finish>]);
<base> - refersto ‘b’ or ‘h', i.e. binary or hex.

<start> and <finish> - denote first and last addresses of memory array.

Verilog Lexical Conventions

Comments.

o // - beginswith a// and ends with anewline (like C++).

o« [**][-likeC.

| ntegers.

* Integerscan be sized or unsized (unsized defaults to 32 bits).

e Sized integers have the following representation:
<hit_size>'<base><value>

 Examples: 3'b101, 32'bl, 11'd97, 16’ hiff...

|dentifiers.

* |dentifiers provide user-defined names for Verilog objects.

* ldentifiers must begin with aletter (a-z,A-Z) or underscore and can
contain any alphanumeric character, underscore, or dollar sign.

 Examples. busB, b$cO1...
« lllegal: 8bus, out_a%b...

Verilog Lexical Conventions

System Tasksand Functions.

Representation: $<identifier>.

$time - returns the current simulation time.

$display - used for formatted printing like printf in C.

$stop - stops simulation.

$finish - ends simulation.

$readmemh - load memory array from user’ stext file in hex format.

Compiler Directives.

A compiler directiveisimmediately preceded by a grave accent (*).
‘define - defines a compile-time constant or macro.

‘ifdef - “‘else - *endif - provide support for conditional compilation.
‘include - simple text inclusion.

