
EE282
Fall Quarter, 2001

Verilog Session :
General Introduction to Verilog

HDL

Verilog Hardware Description Language

Motivation for HDLs in general:
• Increased hardware complexity

• Design space exploration

• Inexpensive alternative to prototyping

General Features:
• Support for describing circuit connectivity

• High-level programming language support for describing behavior

• Support for timing information (constraints, etc.)

• Support for concurrency

Verilog Simulation Model

• Verilog uses event-driven simulation.

Event Driven Simulation:

• Simulation starts at time 0.
• When all the events at time t have been scheduled, the simulation
clock advances to t+1.
• Simulation completes when there are no more events to process.

Key Verilog Features: Modules
• Modules are basic building blocks of a design description.

• Modules start with keyword module followed by the module name and
end with the keyword endmodule.

Key Verilog Features: Module Ports

• Module ports are similar to hardware pins: they provide means of
communication between the module and the outside world.

• Ports can be input, output, or inout (bidirectional).

Key Verilog Features: Module Instances

• A Verilog model generally consists of a hierarchy of module instances.

• A module instance is not the same as a function call in high-level
languages: each instance is a complete, independent, concurrent copy
of a module.

module AND3 (o, i0, i1, i2);
input i0, i1, i2;
output o;
wire temp;
AND a0 (temp, i0, i1);
AND a1 (o, temp, i2);

endmodule

Verilog Logic System

• 0 : zero, low, false, logic low, ground...

• 1 : one, high, true, logic high, power...

• X : unknown...

• Z : high impedance, unconnected, tri-state...

Verilog Data Types

Nets:
• Nets are physical connections between different devices.

• Nets always reflect the value of the driving device.

• Type of nets, we will be using exclusively - wire.

Registers:
• Contain implicit storage - unless a variable of this type is explicitly

assigned/modified, it holds its previously assigned value.

• Register variables do not imply hardware registers.

• Main register type is reg. Another less important register type is
integer which simply is equivalent to a 32 bit reg.

Verilog Variable Declaration

• Declaring a net

wire [<range>] <net_var> [<, net_var>*]

• Declaring a register

reg [<range>] <reg_var> [<, reg_var>*]

• Samples
reg r; // 1-bit reg variable.
wire w1, w2; // 2 1-bit wire variables.
reg [7:0] vreg; // 8-bit register; least significant bit is 0, i.e. vreg[0].
wire [0:11] vw1, vw2; // 2 12-bit nets; LSB is 11, i.e. vw1[11].

• Range information is specified as [MSB:LSB]. If no range exists, the
corresponding variable has a bitwidth of one

Correct Data Typing for Port Connectivity

Behavioral Modelling in Verilog

• Involves system description at a high level of abstraction - using high-
level language constructs.

• Emphasizes functionality primarily - independent of implementation.

• Specifies a set of concurrent procedural blocks, namely:

1. Initial blocks, and

2. Always blocks.

• Procedural blocks are built using the following constructs:

1.Timing controls, and

2. Procedural assignments,

3. High-level language programming constructs.

Initial and Always Blocks

• Initial blocks execute only once.

• Always blocks execute continuously in a loop.

• Blocks can be a single statement or a compound statement. A
compound statement is one or more single statements enclosed within
a begin...end construct.

Timing Control in Procedural Blocks

• Delays:
Used to delay the subsequent statement by a specified amount of time.
#10 clk = 1;
#10 clk = 0;

• Triggering control: @ (trigger_event)

Delays execution until trigger_event changes or transitions. The
trigger_event can be a signal/expression or multiple expressions linked
using the keyword or. It is also possible to detect for particular
transitions by using the keywords posedge or negedge.

always @(posedge CLK) q = d;
always @(i0 or i1) o = i0 & i1;

Procedural Assignments

• Regular assignments inside procedural blocks:

lhs_expr = rhs_expr;

• The lhs_expr must be a variable of the type register.

• There are no constraints on data types included in the rhs_expr.

• Common Error:

If a variable is not declared, it defaults to a 1-bit wire.

Thus, if an undeclared variable appears on the left-hand-side of a
procedural assignment, the Verilog compiler will generate an error
message, “Illegal left-hand-side assignment”.

So, use defensive code and declare all signals you read/write.

Operators in Verilog
• Arithmetic: + , - , * , / , % (2’s complement)

• Binary bit-wise: ~ , & , | , ^ , ~^

• Unary reduction: & , ~& , | , ~| , ^ , ~^

• Logical: ! , && , || , == , === , != , !==

• Relational: < , < , >= , <=

• Logical shift: >> , <<

• Conditional: ?:

• Concatenation: {}

• Common Error:
A lot of confusion arises between the “==” and “===” operators:
== returns “x” if either if the input bits is “x” or “z” while === does
compare “x”s and “z”s.

Conditional Statements
• If, If-Else Statements:

if (branch_flag > 0)
begin

PC = PCbr;
end

else
PC = PC + 4;

• Case Statements.
case (opcode)

6’b001010 : write_mem = 1;
6’b100011 : enable_alu = 1;
default :

begin
$display(“Unknown opcode: %h”, opcode);

end
endcase

• Could also use casez (compare z values) and casex (compare z and x).

Loop Constructs in Verilog

Repeat Loops:
• Repeats a block of statements a fixed number of times:

repeat (<size>) <block>

For Loops:
• Same as in C:

for (<loop_initialization>; <loop_condition>; <loop_update>) <block>

for (memaddr = 0; memaddr < memsize; memaddr = memaddr + 1)
$display(“Memory at address 0x%h is 0x$h.”, memaddr,
memory[memaddr]);

• Loop executes while loop_condition evaluates to TRUE.

Continuous Assignments
• Procedural assignments are used to assign values into register type

variables.

• Continuous assignments do the same for net type variables.

• Whenever the right-hand-side of the assignment changes, the left-
hand-side is automatically and immediately updated to reflect that
change.

• Generally, continuous assignments are used to model combinational
logic or make a simple connection.

Sample Assignment.
assign o = i0 & i1;

Modelling Memory in Verilog
• Declaring memory:

reg [<MSB>:<LSB>] <memory_var> [<start_addr>:<end_addr>];

• Memory addressing is done using indexing into the previously-defined
memory array:

L1Cache[16]...

• Verilog does not provide support for bit accesses into memory arrays.

• Loading memory arrays - using $readmem system task:

$readmem<base> (“<file_name>”, <mem_var>[,<start>, <finish>]);
<base> - refers to ‘b’ or ‘h’, i.e. binary or hex.
<start> and <finish> - denote first and last addresses of memory array.

Verilog Lexical Conventions
Comments.
• // - begins with a // and ends with a newline (like C++).

• /* */ - like C.

Integers.
• Integers can be sized or unsized (unsized defaults to 32 bits).

• Sized integers have the following representation:

<bit_size>’<base><value>

• Examples: 3’b101, 32’b1, 11’d97, 16’h1ff...

Identifiers.
• Identifiers provide user-defined names for Verilog objects.

• Identifiers must begin with a letter (a-z,A-Z) or underscore and can
contain any alphanumeric character, underscore, or dollar sign.

• Examples: _bus8, b$c01...

• Illegal: 8bus, out_a%b...

Verilog Lexical Conventions
System Tasks and Functions.
• Representation: $<identifier>.

• $time - returns the current simulation time.

• $display - used for formatted printing like printf in C.

• $stop - stops simulation.

• $finish - ends simulation.

• $readmemh - load memory array from user’s text file in hex format.

Compiler Directives.
• A compiler directive is immediately preceded by a grave accent (‘).

• ‘define - defines a compile-time constant or macro.

• ‘ifdef - ‘else - ‘endif - provide support for conditional compilation.

• ‘include - simple text inclusion.

