Homework 1 (100 points total)

EE282 Autumn 2001/2002
Solutions

Date due: Tuesday, October 9, 2001, 5:00pm
October 18, 2001

1 Making Games Fast (60 points total)

Assume that the total CPU time for processing all the tasks = 100s

Original Machine This implies 10 seconds were spent in TGAL, 40s in TT, 35s in PM,
10s in GP and 5s in others. Number of frames executed in this time = 15 * 100 = 1500.

1.1 Compiler Optimization (15 points)

Total CPU time (60s * 80%) + (40s * 100%) = 88s
Number of frames executed in this time | 1500

Therefore new frame rate = 1500frames/88s = 17.045 frames/s

1.2 Hardware Acceleration (15 points)

a. Mid-range Accelerator

Total CPU time | (%) + (60s) = 80s
2

Therefore new frame rate = 1500frames/80s = 18.75 frames/s

b. I3 Accelerator

| Total CPU time | (*¥) + (¥ + 50s) = 63s |

Therefore new frame rate = 1500frames/63s = 23.81 frames/s

1.3 Hand code optimization (15 points)

To get 18 frames/sec, we will need

Total Frames

= 1
TotalT1me frames/sec (1)
Total F
TotalFrames _ o, . o @
frames/sec
1500
35 35
83.33333...s = 10s + 40s + ?S + 10s + 55 = 65s + ?S (4)
...where x is the speedup factor for Physical Modeling.
Solving for x,
18.33333...s = % (5)
35s
= — =1.9090... 6
¥ T 183335 (6)

This means that Physical Modeling must be done at 1.91x the original speed. In other
words, Physical Modeling must have its execution time reduced by (35 — 18.3333333)/35 =
47.619...%, or its new execution time must be 52.38% of its original. Credit should be given
for answers stated in any of these three ways.

1.4 Putting things together (15 points)

a. Mid-range Accelerator

Again, let’s calculate the new time as we did above:

1500
40s 35
37.55 = (105 * 80%) + 78 + (7‘9 £ 80%) + (105 % 80%) + (55 % 80%) 8)
35
37.55 = 40s + (78 « 80%)) 9)

As you can see, it’s theoretically impossible to reach 40 frames/sec via a combination

of the mid-range accelerator, the compiler optimization, and any optimization of Physical
Modeling.

b. I3 Accelerator

From the previous calculation, the new time for 40 frames/sec must be 37.5s . Thus:

1 4
37.55 — (% + 80%) + % 4 (% ¥ 80%) + (105 * 80%) + (55 * 80%) (10)
37.5s = 24s + (% * 80%) (11)
Thankfully, it’s possible in this case. Solving for x:
35

13.55 = ?‘9 x 80% (12)

35s % 80%

= —— = 2.074074... 1

1355 07407 (13)

Again, the answer can come in the other forms. Note that we are giving speedup values
for Physical Modeling separate from the contribution from compiler optimization. That is,
the absolute speedup for Physical Modeling is a combination of the speedup values we provide
here and the compiler optimization effects. Full credit should also be given for answers given

with respect to the total speedup (hand-optimization and compiler optimization) applied to
Physical Modeling.

13.5s 35s
= — 14
80% T (14)
35
16.8755 — 78 (15)

So to summarize, Physical Modeling must be done at 2.07x the original speed. In other
words, Physical Modeling must have its execution time reduced by (35 — 16.875)/35 =
51.78...%, or its new execution time must be 48.21% of its original. Again, credit should be
given for answers stated in any of these three ways.

2 DLX performance benchmarking (40 points total)

2.1 Software floating point performance (15 points)

To calculate this, we first figure out how much time the DLX machine spends on instructions
not executed on behalf of emulating floating point.

(875,000 * 1.3) + (580, 000 * 1.3) + (1,075,000 % 1.3) = 3, 289, 000cycles (16)

3,289, 000cycles * time/cycle = 3,289, 000

55 1gs = 013156 (17)

Thus the DLX machine spends 5-0.13156 = 4.86844s emulating floating point instructions.

2.2 Floating point emulation (10 points)

We can find the number of instructions spent emulating by:
(#instructions) * CPI x (time/cycle) = 4.86844s (18)

Assuming that CPI for emulating instructions is 1.3, then:

4.86844 4.86844
#instructions = : i = 18 = 93.62...millioninstructions (19)
CPI x (time/cycle) 1.3 * 52155

Dividing by 1,955,000 yields 47.889 integer instructions to emulate a floating-point in-
struction on average.

2.3 Cost versus performance (15 points)

The problem states that the cost/performance must be the same. Thus, since DLX-FP costs
10x as much, its performance must also be 10x, that is, the execution time must be 1/10th
of DLX. In other words, the benchmark that took DLX 5 seconds to execute should execute
in 0.5 seconds on DLX-FP.

Writing this out, we have

0.5=(1.3%x0.8754+1.3%0.58+ 1.6 % 1.075 1.955) * 106 20
(1.3 % + * + * + x *) * * 50 100 (20)
.. where x is the CPI for floating point instructions on DLX-FP.
25 = (3.6115 + x * 1.955) (21)
21.3885
= =10.94... 22
7= o5 107 (22)

