EE282 Computer Architecture

Lecture 1: What is Computer Architecture?

September 27, 2001

Marc Tremblay
Computer Systems Laboratory
Stanford University
marctrem@csl.stanford.edu

WJD/MR/AW/MT	EE282 Lecture 9/27/01	1

Goals

- Understand how computer systems are organized and why they are organized that way.
- instruction-set architecture
- system-level organization
- microarchitecture
- Be conversant with measures of computer performance and methods for increasing performance
- metrics
- benchmarks
- performance methods
- pipelining, multiple issue, branch prediction

Logistics

Lectures	Tues \& Thur 1:15-2:30		
Lecturers	Marc Tremblay, Andrew Wolfe, Partha Ranganathan		
TAs	Daniel Wang Other		
Grading	Final Exam	1	35\%
	Midterm	1	25\%
	Homework	4+2	40\%
Text	Hennessy \& Patterson Computer Architecture: A Quantitative Approach (2nd Edition)		

See Policy Sheet for details

EE282 Online

URL: http://www.stanford.edu/class/ee282
e-mail: ee282@lists.stanford.edu ee282tas@ogun.stanford.edu

Wanted: A Few Good Graders

- Grade a portion of every problem set
- In exchange:
- requirement to take problem sets is waived
- full credit on all problem sets

What is Computer Architecture?

Technology Constraints

- Yearly improvement
- Semiconductor technology
- 60% more devices per chip (doubles every 18 months)
- 15% faster devices (doubles every 5 years)
- Slower wires
- Magnetic Disks
- 60% increase in density
- Circuit boards
- 5\% increase in wire density
- Cables
- no change

64x more devices since 1992 $4 x$ faster devices

Changing Technology leads to Changing Architecture

- 1970s
- multi-chip CPUs
- semiconductor memory very expensive
- microcoded control
- complex instruction sets (good code density)
- 1980s
- single-chip CPUs, on-chip RAM feasible
- simple, hard-wired control
- simple instruction sets
- small on-chip caches
- 1990s
- lots of transistors
- complex control to exploit instruction-level parallelism
- 2000s
- even more transistors
- slow wires
- limited cooling capacity
- several CPUs per chip
- thread level parallelism
- more to come...

Application Constraints

- Applications drive machine 'balance'
- Numerical simulations (technical computing)
- floating-point performance
- main memory bandwidth
- Transaction processing
- I/Os per second
- Memory bandwidth/latency important
- integer CPU performance
- Media processing
- low-precision 'pixel' arithmetic
- multiply-accumulate rates
- bit manipulation
- Embedded control
- I/O timing

System-Level Organization

- Design at the level of processors, memories, and interconnect.
- More important to application performance than CPU design
- Feeds and speeds
- constrained by IC pin count, module pin count, and signaling rates
- System balance
- for a particular application
- Driven by
- performance/cost goals
- available components (cost/perf)

- technology constraints

Microarchitecture

- Register-transfer-level (RTL) design
- Implement instruction set
- Exploit capabilities of technology
- locality and concurrency
- Iterative process
- generate proposed architecture
- estimate cost
- measure performance
- Current emphasis is on overcoming sequential nature of programs
- deep pipelining

- multiple issue
- dynamic scheduling
- branch prediction/speculation

WJD/MR/AW/MT	EE282 Lecture 9/27/01	11

The Architecture Process

Performance Measurement and Evaluation

- Many dimensions to computer performance
- CPU execution time
- by instruction or sequence
$-\quad$ floating point
$-\quad$ integer
$-\quad$ branch performance
- Cache bandwidth
- Main memory bandwidth
- I/O performance
- bandwidth
- seeks
- pixels or polygons per second
- Relative importance depends on applications

Evaluation Tools

- Benchmarks, traces, \& mixes
- macrobenchmarks \& suites
- application execution time

MOVE	39%
BR	20%
LOAD	20%
STORE	10%
ALU	11%

- microbenchmarks
- measure one aspect of performance
- traces
- replay recorded accesses

LD 5EA3
ST 31FF

- cache, branch, register

LD 1EA2

- Simulation at many levels
- ISA, cycle accurate, RTL, gate, circuit
- trade fidelity for simulation rate
- Area and delay estimation

- Analysis
- e.g., queuing theory

Benchmarks

- Microbenchmarks
- measure one performance dimension
- cache bandwidth
- main memory bandwidth
- procedure call overhead
- FP performance
- weighted combination of microbenchmark performance is a good predictor of application performance
- gives insight into the cause of performance bottlenecks
- Macrobenchmarks
- application execution time
- measures overall performance, but on just one application

Perf. Dimensions

Some Warnings about Benchmarks

- Benchmarks measure the whole system
- application
- compiler
- operating system
- architecture
- implementation
- Popular benchmarks typically reflect yesterday's programs
- computers need to be designed for tomorrow's programs
- Benchmark timings often very sensitive to
- alignment in cache
- location of data on disk
- values of data
- Benchmarks can lead to inbreeding or positive feedback
- if you make an operation fast (slow) it will be used more (less) often
- so you make it faster (slower) - and it gets used even more (less)

Means

Arithmetic mean $\frac{1}{n} \sum_{i=1}^{n} T_{i}$
Can be
weighted.
Represents total
execution time
Harmonic mean $\frac{n}{\sum_{i=1}^{n} \frac{1}{R_{i}}}$

Geometric mean $\left(\prod_{i=1}^{n} \frac{T_{i}}{T_{r i}}\right)^{\frac{1}{n}}=\exp \left(\frac{1}{n} \sum_{i=1}^{n} \log \left(\frac{T_{i}}{T_{r i}}\right)\right) \begin{aligned} & \text { Consistent } \\ & \begin{array}{l}\text { independent of } \\ \text { reference }\end{array}\end{aligned}$

Performance Basics

- Amdahl's Law
- speedup fraction p by S
- Performance equation
- I-instructions executed
- CPI - clock cycles per instruction
- $\mathrm{t}_{\text {cy }}$ - clock cycle
- Need to consider all three elements when making changes
- But remember
- workloads change depending on machine characteristics

Amdahl's Law

$$
T_{1}=T_{0}\left[(1-p)+\frac{p}{S}\right]
$$

Amdahl's law assumes serial execution

m

Cost

- Chip cost is primarily a function of die area
- increases faster than linearly due to yield
- a very powerful processor can be built on a small die (10mm)
- going larger gives diminishing performance returns
- but...

W afer Cost		2,500.00			
W afer Diameter		200	mm		
W afer Area		31416	$\mathrm{mm}{ }^{\wedge} 2$		
Chip Size	Die Area	Die/W afer	Yield	Good Die	Cost/Die
1	1	30971	0.98	30351	\$0.08
5	25	1167	0.96	1122	\$2.23
7.5	56.25	499	0.81	406	\$6.16
10	100	269	0.62	166	\$15.06
15	225	110	0.35	38	\$65.79
17.5	306.25	77	0.27	21	\$119.05

Chip cost is a function of size

CPU cost is a small fraction of system cost (today)

