
EE 282: Fall 2001/02 Lecture 6, 10/16/01

1

EE282 Lecture 6 10/16/2001WJD/AW/MT 1

EE282
Computer Architecture

Lecture 6: Branch Prediction and ILP

October 16, 2001

Marc Tremblay
Computer Systems Laboratory

Stanford University
tremblay@csl.stanford.edu

EE282 Lecture 6 10/16/2001WJD/AW/MT 2

Assignment

• Before Lecture on Thursday 10/18
– Finish reading H&P Chapter 4

EE 282: Fall 2001/02 Lecture 6, 10/16/01

2

EE282 Lecture 6 10/16/2001WJD/AW/MT 3

Today’s Lecture

• More complex pipelining
– the MIPS R4000 pipeline
– Pentium 4

• Branch prediction
– control hazards
– static prediction
– history table
– multi-bit prediction
– branch target table
– two-level prediction

• Instruction-level parallelism
– covert vs overt

parallelism
– parallelism in hardware

and software
– a question of scheduling

EE282 Lecture 6 10/16/2001WJD/AW/MT 4

Example: R4000 Pipeline

• 8 Stages
– F1 - select IP, start I$ access
– F2 - complete I$ access
– D - decode, register access, check I$ tag
– A - ALU operation
– M1 - start D$ access
– M2 - complete D$ access
– M3 - check D$ tag
– W - write back result to register

• Memory access takes 3 cycles

EE 282: Fall 2001/02 Lecture 6, 10/16/01

3

EE282 Lecture 6 10/16/2001WJD/AW/MT 5

Instr 1 2 3 4 5 6 7 8 9 10
i F1 F2 D A M1 M2 M3 W

i+1 F1 F2 D A M1 M2 M3 W
I+2 F1 F2 D A M1 M2 M3 W
i+3 F1 F2 D A M1 M2 M3
i+4 F1 F2 D A M1 M2
i+5 F1 F2 D A M1
i+6 F1 F2 D A
i+7 F1 F2 D

Pipeline Diagram

What are the bypass paths?

A B C D E F G H
From Stage
To Stage
To Instruction

EE282 Lecture 6 10/16/2001WJD/AW/MT 6

Characteristics of this pipeline

• How many comparators are needed to implement the
forwarding decisions?

• What instruction sequences will still cause stalls?
• What is the branch delay?
• What is the load delay?

EE 282: Fall 2001/02 Lecture 6, 10/16/01

4

EE282 Lecture 6 10/16/2001WJD/AW/MT 7

Example 2: Pentium 4

• Pipeline diagram (shown during lecture, available
soon on website)

EE282 Lecture 6 10/16/2001WJD/AW/MT 8

Branch Prediction

• Depending on use, some
branches are very predictable
– loops

• TTT…TN

– limit checks
• almost always pass

• Some are not very predictable
– data dependent dispatch

with equally likely cases
• Types of predictors

– static
– history
– multi-bit history
– pattern

for(j=0;j<30;j++) {

…

}

switch(mode) {

case 1: …

case 2: …

default: …

…

if(a > limit) {

…

}

EE 282: Fall 2001/02 Lecture 6, 10/16/01

5

EE282 Lecture 6 10/16/2001WJD/AW/MT 9

Static Prediction

• Assign a preferred direction
to each branch
– e.g.,

• BNEZ_T (predict taken)
• BNEZ_N (predict not

taken)

• Base on
– program analysis

• loops tend to be taken

– profiling of the program
• but it may be data

dependent

A>B?

EE282 Lecture 6 10/16/2001WJD/AW/MT 10

Dynamic Predictors

• Branch history table
– indexed by IP
– stores last direction each

branch went
– may indicate if last

instruction at this
address was a branch

– table is a cache of recent
branches

IM

IP

BHT

IR

Prediction

EE 282: Fall 2001/02 Lecture 6, 10/16/01

6

EE282 Lecture 6 10/16/2001WJD/AW/MT 11

Multi-bit predictors

• A ‘predict same as last’
strategy gets two
mispredicts on each loop
– Predict NTTT…TTT
– Actual TTTT…TTN

• Can do much better by
adding inertia to the
predictor
– e.g., two-bit saturating

counter
– Predict TTTT…TTT

for(j=0;j<30;j++) {

…

}

N2 N1 T1 T2

EE282 Lecture 6 10/16/2001WJD/AW/MT 12

Branch Target Tables

• Need to know where to go if
the prediction is ‘taken’
– predict the target along

with the direction
• May use different target

prediction strategy for
different types of branches
– subroutine returns

F R A M W

F R A M W

Predict Taken

Calculate Target

Need to guess target here

EE 282: Fall 2001/02 Lecture 6, 10/16/01

7

EE282 Lecture 6 10/16/2001WJD/AW/MT 13

Branch Target Prediction (2)

IM

IP

BHT

IR

Prediction
(Taken/Not)

+4

BTT Predicted
Target IP

Actual Target
IP (from A)

• Use current IP to index a cache of
next IPs

• Use a push-down stack to record
subroutine return addresses

• The ISA can give hints about where
you’re going

• Compaq Alpha has 4 instructions
with identical ISA behavior
– JMP, JSR, RET,

JSR_COROUTINE
– specify predictor’s use of stack
– include hint of target address
– JMP R31, (R3), hint

Stack

EE282 Lecture 6 10/16/2001WJD/AW/MT 14

Branch Pattern Tables (Two-Level Predictors)

• History gives a pattern of
recent branches
– e.g., TTNTTNTTN
– what comes next?

• Predict next branch by
looking up history of
branches for a particular
pattern

• Two-level predictor
– first level - find history

(pattern)
– 2nd level - predict

branch for that pattern
• Correlating predictors

IP

BHT

110110

110110

BPT

State f
Prediction

BPT may be
Independent for
each BHT entry or
shared

EE 282: Fall 2001/02 Lecture 6, 10/16/01

8

EE282 Lecture 6 10/16/2001WJD/AW/MT 15

Branch Performance

F D1 D2 D3 R T A1 ...

Consider a modern pipeline with a long decode stage

Predict Discover its
a branch

Resolve direction
and calculate target

Penalty for mispredicted branch is _____

If 10% of instructions are branches what is CPI
With no prediction?
With 70% accurate prediction (static)
With 85% accurate prediction (2-bit)
With 95% accurate prediction (2-level)

EE282 Lecture 6 10/16/2001WJD/AW/MT 16

Alternatives to Prediction

• Predication
– guard instructions with

predicate, cancel if false
– when is this a good idea?

• What length conditional
segment?

• Delay slots
– make branch delay explicit
– exposes implementation in

the ISA
• makes life difficult for

future implementations

– compiler tries to fill delay
slot with useful instruction
(possibly predicated)

• ISA support
– hints to the predictor

• let the compiler pass along
the information it has

– separate the components of
the branch

• target address calculation
– prepare to branch (Tera)

• determining direction
• actually branching

EE 282: Fall 2001/02 Lecture 6, 10/16/01

9

EE282 Lecture 6 10/16/2001WJD/AW/MT 17

To Unity and Beyond (Below 1 CPI)

• No reason to limit pipelines to process 1 instruction
per cycle

• Can predict next several (2-6) instructions and
execute them simultaneously

• Need to resolve data dependencies
• Several approaches

– VLIW - compiler schedules instructions
– Multi-issue - issue instructions in order, but in parallel
– Superscalar - issue instructions out of order

EE282 Lecture 6 10/16/2001WJD/AW/MT 18

Parallelism
Overt vs Covert (1 of 2)

Dusty
Deck

Compiler

Computer
Pipelined
and/or

Multiple Issue

Sequential
Program

Covert approach

Programmer doesn’t see
parallelism, just speed

Compiler may discover parallelism
(e.g., in loops) and/or reorganize code
to remove dependencies

Code generated usually has
sequential semantics for
compatibility with ISA

Hardware executes in parallel
while preserving sequential
semantics

EE 282: Fall 2001/02 Lecture 6, 10/16/01

10

EE282 Lecture 6 10/16/2001WJD/AW/MT 19

Parallelism
Overt vs Covert

Problem
Dusty
Deck

Compiler

Pipelined
and/or

Multiple Issue
CPU

Sequential
Program

Parallel
Program

Parallelizer

Compiler

Parallel
Program

Parallel
Computer

Program with multiple
threads that explicitly
communicate and
synchronize

Exploits only
ILP

Exploits ILP and
thread-level parallelism

In addition to threads,
object code may make
ILP explicit, encoding
dependencies

EE282 Lecture 6 10/16/2001WJD/AW/MT 20

Problem vs Program

Find the maximum element of an array, a

max = a[0] ;
for(i=1;i<n;i++) {
if(a[i] > max) max = a[i] ;

}

return max ;

for(i=1;i<=logn;i++) {
m = 1<<(logn-i) ; p = i&1 ; q = p^1 ;
forall(j=0;j<m;j++){

a[j,p] = max(a[2*j,q],a[2*j+1,q]);
}

}
return a[0,p] ;

EE 282: Fall 2001/02 Lecture 6, 10/16/01

11

EE282 Lecture 6 10/16/2001WJD/AW/MT 21

Parallelism and Hardware

Chip
100mm2

64-bit ALU
.5mm2

Technology gives us lots of
function units

They get only slightly faster
each year

The wires get slower

Pipeline

Parallel or
Interleave

Pipeline or replicate at bit, word, vector,
subroutine levels

EE282 Lecture 6 10/16/2001WJD/AW/MT 22

Parallelism and Software

a = (b + c) * (d + e + f) ;Independent Operations (ILP)

Function decomposition

Domain decomposition

xform clip render

1

2

3

4

xform/clip

xform/clip

xform/clip

xform/clip

render

render

render

render

EE 282: Fall 2001/02 Lecture 6, 10/16/01

12

EE282 Lecture 6 10/16/2001WJD/AW/MT 23

How Are We Going to Get There?

• Microarchitecture support for lowering the CPI < 1.0
– Issuing more than 1 instruction per cycle
– Speculation beyond going past a branch
– Latency issues
– Memory hierarchy needed to support aggressive

compute engines
• Caches
• TLBs
• Memory banks
• Etc.

