
EE 282: Winter 2001 Lecture 6, 1/25/01

Copyright (c) 1999 by W. J. Dally, A. Wolfe, all rights
reserved. 1

EE282 Lecture 5 10/11/01AW/WJD/MT 1

EE282
Computer Architecture

Lecture 5: Microarchitecture
Fun with Pipelines

October 11, 2001

Marc Tremblay
Computer Systems Laboratory

Stanford University
marctrem@csl.stanford.edu

EE282 Lecture 5 10/11/01AW/WJD/MT 2

Assignment

• Before Lecture on Tuesday 10/16
– Read H&P 4.1 through 4.3

EE 282: Winter 2001 Lecture 6, 1/25/01

Copyright (c) 1999 by W. J. Dally, A. Wolfe, all rights
reserved. 2

EE282 Lecture 5 10/11/01AW/WJD/MT 3

Microarchitecture (Part 2)

• Data hazards
– types of hazards

• RAW, WAR, WAR

– stalls
• hold state of pipeline stages up to

dependent stage
• advance state of later pipeline

stages
– creates a ‘bubble’

– bypass
• use data before it is written to the

register file.

• Control hazards
– all instructions dependent on control

• an event may occur

– speculation
• guess that a branch will/won’t happen
• check the guess later

– back out incorrect computation

– squishing instructions
– commit point

• make sure instruction will happen
before modifying state

– branch prediction

EE282 Lecture 5 10/11/01AW/WJD/MT 4

Pipelined Implementation

IP

I-Mem

A DO

Reg
File

RW

D-Mem

A DO

DI

4

IR

IR

B

A
C

D

IR IR

D

MWAF

EE 282: Winter 2001 Lecture 6, 1/25/01

Copyright (c) 1999 by W. J. Dally, A. Wolfe, all rights
reserved. 3

EE282 Lecture 5 10/11/01AW/WJD/MT 5

Types of Data Hazards

• RAW (read after write)
– An operand is read before the correct value is written by a prior

operation.
– “True Dependency”

• Second operation depends on the first

• WAW (write after write)
– A first result is written after a second result - thus the incorrect

value is retained.
– “Output Dependency”

• Second write must follow the first write

• WAR (write after read)
– A first result is read after a second operation writes its result.
– “Anti-Dependency”

• Second write must follow the first read

EE282 Lecture 5 10/11/01AW/WJD/MT 6

Types of Data Hazards

• RAW (read after write)
– only hazard for ‘fixed’ pipelines
– later instruction must read

after earlier instruction writes

• WAW (write after write)
– variable-length pipeline
– later instruction must write

after earlier instruction writes

• WAR (write after read)
– pipelines with late read
– later instruction must write

after earlier instruction reads

F R A M W

F R A M W

F R 1 2 3

F R A M W

4 W

F R 1 2 3

F R A M W

4 R 5 W

EE 282: Winter 2001 Lecture 6, 1/25/01

Copyright (c) 1999 by W. J. Dally, A. Wolfe, all rights
reserved. 4

EE282 Lecture 5 10/11/01AW/WJD/MT 7

Pipeline Stalls

• Can resolve any type of hazard
– data, control, or structural

• Detect the hazard
• Freeze the pipeline up to the dependent stage until

the hazard is resolved

EE282 Lecture 5 10/11/01AW/WJD/MT 8

An Example Pipeline Stall

I-Mem

A DO

Reg
File

RW

D-Mem

A DO

DI

IR

IR

B

A
C

D

IR IR

E

+4 IP IP

ADD R1, R2, R3
ADD R4, R1, R5

EE 282: Winter 2001 Lecture 6, 1/25/01

Copyright (c) 1999 by W. J. Dally, A. Wolfe, all rights
reserved. 5

EE282 Lecture 5 10/11/01AW/WJD/MT 9

Example Pipeline Stall (Diagram)

Cycle

F

In
st

ru
ct

io
n

R X M W

F R X M W

Write Data to R1 Here

Read from R1 Here *

ADD R1, R2, R3
ADD R4, R1, R5

Bubble

∗ Assumes we can write through the
register file in 1 cycle

EE282 Lecture 5 10/11/01AW/WJD/MT 10

Implementing Stalls

• Detect the stall condition
– comparator on IR fields

• Freeze stalled instructions in place
– recycle pipeline registers

• Invalidate contents of pipeline
registers in bubble
– valid bit

• The process of allowing an
instruction to proceed because all
dependencies are satisfied is often
called issuing the instruction

=

IRR.RS1

IRA.RD OR Stall

Stage

V

Stall

EE 282: Winter 2001 Lecture 6, 1/25/01

Copyright (c) 1999 by W. J. Dally, A. Wolfe, all rights
reserved. 6

EE282 Lecture 5 10/11/01AW/WJD/MT 11

Stalls and CPI

∑ +=
i

ifiC)1(
Where fi is fraction of
instructions that stall
for i cycles

Example:

50% of instructions are dependent on the next instruction

30% of the remaining instructions are dependent on the instruction after
next

C= (1 x .2) + (2 x .3) + (3 x .5) = 2.3

EE282 Lecture 5 10/11/01AW/WJD/MT 12

Bypass (Forwarding)

• If data is available elsewhere in the pipeline, there is
no need to stall

• Detect condition
• Bypass (or forward) data directly to the consuming

pipeline stage
• Bypass eliminates stalls for single-cycle operations

EE 282: Winter 2001 Lecture 6, 1/25/01

Copyright (c) 1999 by W. J. Dally, A. Wolfe, all rights
reserved. 7

EE282 Lecture 5 10/11/01AW/WJD/MT 13

Simple Pipeline with Bypass Multiplexers

I-Mem

A DO

Reg
File

RW

D-Mem

A DO

DI

IR

IR

B

A
C

D

IR IR

E

+4 IP IP

EE282 Lecture 5 10/11/01AW/WJD/MT 14

Example Execution with Bypass

I-Mem

A DO

Reg
File

RW

D-Mem

A DO

DI

IR

IR

B

A
C

D

IR IR

E

+4 IP IP

ADD R1, R2, R3
ADD R4, R1, R5

EE 282: Winter 2001 Lecture 6, 1/25/01

Copyright (c) 1999 by W. J. Dally, A. Wolfe, all rights
reserved. 8

EE282 Lecture 5 10/11/01AW/WJD/MT 15

Control of Bypass

• Compare source register
fields of IRA to destination
register fields of IRM and
IRW.

• If match and fields active,
enable appropriate bypass
path

• Multiple matches

– Need latest data
– Priority mechanism

=

IRA.RS1

IRM.RD

BMA1

=

IRA.RS2

IRM.RD

BMA2

=

IRA.RS1

IRW.RD

BWA1

=

IRA.RS2

IRW.RD

BWA2

ADD R1, R2, R3
ADD R1, R4, R1
ADD R6, R1, R5

EE282 Lecture 5 10/11/01AW/WJD/MT 16

Control Hazards

Cycle

F

In
st

ru
ct

io
n

R X M W

F R X M W

Destination Available Here

Need Destination Here
JR R25
...

XX: ADD ...

Exception not detected until here

EE 282: Winter 2001 Lecture 6, 1/25/01

Copyright (c) 1999 by W. J. Dally, A. Wolfe, all rights
reserved. 9

EE282 Lecture 5 10/11/01AW/WJD/MT 17

Control Hazards

• Every instruction is dependent
on the previous instruction not
causing an event (exception)

• To be absolutely sure, we would
need to wait until all exceptional
conditions were checked before
issuing next instruction

• However, to optimize the
common case we can speculate
and start execution

• We must confirm our
speculation before irreversibly
modifying state

F R A M W

F R A M W

F R A M W

F R A M W

F R A M W

F R A

F R A M W

M W

EE282 Lecture 5 10/11/01AW/WJD/MT 18

Canceling (Squishing) Instructions

• For speculative instructions (all
instructions in a machine with
events)
– defer state modification until a

commit point
– speculatively execute the

instruction up to the commit
point

– stall the instruction at the
commit point until the
speculation is confirmed

– clear the valid bit if the
speculation was incorrect

– otherwise continue execution
and modify state

F R A M W

F R A

F R A M W

M W

Commit Point

EE 282: Winter 2001 Lecture 6, 1/25/01

Copyright (c) 1999 by W. J. Dally, A. Wolfe, all rights
reserved. 10

EE282 Lecture 5 10/11/01AW/WJD/MT 19

Example: Speculative Conditional Branch

I-Mem

A DO

Reg
File

RW

D-Mem

A DO

DI

IR

IR

B

A
C

D

IR IR

E

+4 IP IP

BNEZ R1, LOOP
ADD R2, R3, R4
SUB R5, R6, R7

EE282 Lecture 5 10/11/01AW/WJD/MT 20

Speculative Conditional Branch (Diagram)

Cycle

F

In
st

ru
ct

io
n

R A M W

F R A M W

Condition and Dest Available Here

Speculate
Not Taken

BNEZ R1, LOOP
ADD R2, R3, R4
SUB R5, R6, R7

F R A M W

Confirm or Branch

EE 282: Winter 2001 Lecture 6, 1/25/01

Copyright (c) 1999 by W. J. Dally, A. Wolfe, all rights
reserved. 11

EE282 Lecture 5 10/11/01AW/WJD/MT 21

Handling Events

• Internal Events
– Record any events raised

by setting bits of a
pipeline register

– At the commit point
(usually the WB stage),
check register clear to
confirm

– If register not clear,
cancel following
instructions (and possibly
this one) and handle
earliest occurring event

• External Events
– Handle by setting event

bit in pipeline register at
the commit stage

– Treat as earlier than any
internal event depending
on priority

EE282 Lecture 5 10/11/01AW/WJD/MT 22

Multi-cycle Operations

• Some pipelines may have multi-cycle execution units
– characterize by bandwidth, B (ops/cycle), and latency,

T (cycles)
– fully pipelined, B = 1
– sequential, B=1/N
– partially pipelined

• Instructions cannot be issued until required unit is
available
– For units that are not fully pipelined

• Instructions of different length may contend for the
back-end of the pipeline

EE 282: Winter 2001 Lecture 6, 1/25/01

Copyright (c) 1999 by W. J. Dally, A. Wolfe, all rights
reserved. 12

EE282 Lecture 5 10/11/01AW/WJD/MT 23

Pipeline with Diverse Execution Units

F R

FP Mult (B=1, T=4)

FP Add (B=1, T=2)

ALU (B=1, T=1)

Div (B=1/5, T=5)

W

Instructions share front of pipeline

Split for execution unit paths

Rejoin to share writeback stage

EE282 Lecture 5 10/11/01AW/WJD/MT 24

Reservation Tables

FP Mult (B=1, T=4)

FP Add (B=1, T=2)

ALU (B=1, T=1)

Div (B=1/5, T=5)

W

Fetch X
Regs X
M1
M2
M3
M4
A1 X
A2 X
ALU
DIV
W X

Fetch X
Regs X
M1
M2
M3
M4
A1
A2
ALU
DIV X X X X X
W X

EE 282: Winter 2001 Lecture 6, 1/25/01

Copyright (c) 1999 by W. J. Dally, A. Wolfe, all rights
reserved. 13

EE282 Lecture 5 10/11/01AW/WJD/MT 25

Merging Reservation Stations

FP Mult (B=1, T=4)

FP Add (B=1, T=2)

ALU (B=1, T=1)

Div (B=1/5, T=5)

W

Fetch X
Regs A X
M1
M2
M3
M4
A1 A
A2 A
ALU
DIV X X X X X
W A X

EE282 Lecture 5 10/11/01AW/WJD/MT 26

Competing for the Writeback Port

FP Mult (B=1, T=4)

FP Add (B=1, T=2)

ALU (B=1, T=1)

Div (B=1/5, T=5)

W

Consider the sequence:
FDIV
FMULT
NOP
FADD
AND

All 4 units request W stage in same cycle

Three approaches
1. Don’t issue until reservation table

indicates writeback stage will be
available

2. Queue requests before writeback
stage. Allows subsequent instructions
to issue

3. Stall at output of unit until available

EE 282: Winter 2001 Lecture 6, 1/25/01

Copyright (c) 1999 by W. J. Dally, A. Wolfe, all rights
reserved. 14

EE282 Lecture 5 10/11/01AW/WJD/MT 27

Example: R4000 Pipeline

• 8 Stages
– F1 - select IP, start I$ access
– F2 - complete I$ access
– R - decode, register access, check I$ tag
– A - ALU operation
– M1 - start D$ access
– M2 - complete D$ access
– M3 - check D$ tag
– W - write back result to register

• Memory access takes 3 cycles

EE282 Lecture 5 10/11/01AW/WJD/MT 28

Instr 1 2 3 4 5 6 7 8 9 10
i F1 F2 R A M1 M2 M3 W

i+1 F1 F2 R A M1 M2 M3 W
I+2 F1 F2 R A M1 M2 M3 W
i+3 F1 F2 R A M1 M2 M3
i+4 F1 F2 R A M1 M2
i+5 F1 F2 R A M1
i+6 F1 F2 R A
i+7 F1 F2 R

What are the forwarding paths?
From stage To stage To which subsequent instruction

Pipeline Diagram

EE 282: Winter 2001 Lecture 6, 1/25/01

Copyright (c) 1999 by W. J. Dally, A. Wolfe, all rights
reserved. 15

EE282 Lecture 5 10/11/01AW/WJD/MT 29

Characteristics of this pipeline

• How many comparators are needed to implement the
forwarding decisions?

• What instruction sequences will still cause stalls?
• What is the branch delay?
• What is the load delay?

EE282 Lecture 5 10/11/01AW/WJD/MT 30

Next Time

• In Search of Instruction-level Parallelism
– what is instruction-level parallelism
– branch prediction
– executing multiple instructions per cycle

• in-order
• very-long instruction word (VLIW)

– explicit dependencies (EPIC)

• dynamic scheduling
– out-of-order issue
– register renaming
– re-order buffers

