
1

EE282 - Class 3 – 10/04/01
WJD/AW/MT

EE282
Computer Architecture

Lecture 3:
Instruction-Set Architecture (Part 2)

October 4th, 2001

Marc Tremblay
Stanford University

marctrem@csl.stanford.edu

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Today

• Instruction-set architecture
� Register files

� ISA Design Styles

� Common instruction types

� Data Types

� Addressing Modes

� Binary Encodings

� Control Instructions

� Interrupts & Events

2

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Register Files

• Group of registers having the same characteristics
• Number of registers (e.g. 16, 32, 64, 128, 256 registers)
• Register width (e.g. 32, 64, 80, 128 bits)
• Data type

– Integer, fixed-point, floating-point, SIMD
– Data type agnostic -> unified register file

• FP + SIMD: very common (e.g. IA32, SPARC, PowerPC)
• Int + FP + SIMD: less common (e.g. MAJC)

• Organization
– Contiguous/flat
– Some overlapping in space or time

• Register windows (RISC-I/II, SPARC)
• Dribbling stack (IA-64, Java engines)

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Register File Organization

op r1 r2

• Flat register file
• # of registers = 2(# of reg spec bits)

• # of ports is typically # of registers that
need to be accessed simultaneously

op r1 r2

• If op starts with 0x1… -> access integer register file
• If op starts with 0x0… -> access floating-point register file
• Opcode bit effectively doubles name space

Int FP

3

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Register Files: Implicit functionality

• Some registers often have a special role
• Constant value

– R0 often is value “0”
– R1 is sometimes “1”

• Assignment
– IP may be saved automatically in one specific register upon a

function call

• Software convention
– Registers may be assigned role by software
– For instance:

• Stack pointer
• Returned value
• Parameters

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Principles of Instruction Set Design

• Keep it simple (KIS)
– complexity

• increases logic area

• increases pipe stages

• increases development time

– evolution tends to make kludges

• Orthogonality (modularity)
– simple rules, few exceptions

– all ops on all registers

Data Types

O
pe

ra
tio

ns

Add Modes

F
orm

ats

Regs

• Frequency
– make the common case fast

• some instructions (cases) are
more important than others

0%

10%

20%

30%

40%

50%

60%

IN T L O AD ST O RE JM P F L O AT

4

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Principles of Instruction Set Design (part 2)

• Generality
– not all problems need the same

features/instructions

– principle of least surprise

– performance should be easy to
predict

• Locality and concurrency
– design ISA to permit efficient

implementation
• today

• 10 years from now

0%

10%

20%

30%

40%

50%

60%

INT LOA D ST O RE JMP FL O AT CHA R

vs

F D R E W

F D R E W

F D R E W

F D R E W

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Instruction Types

• Operations
– arithmetic

– logical

– data type conversions

• Data Movement
– memory reference

– register to register

• Control
– what instruction to do next

– tests (compare)

– branches and jumps

– support for procedure call

– operating system entry

• Misc. Junk

5

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Data Types

• How the contents of memory
and registers are interpreted

• Can be identified by
– tag
– use

• Driven by application
– Signal processing

• 16-bit fixed point (fraction)
• 32-bit fixed point (fraction)

– Text processing
• 8-bit characters

– Scientific computing
• 64-bit floating point

– Multimedia
• 8-bit vectors of length 3 or 4

• Most general purpose
computers support several types
– 8, 16, 32, 64-bit

– signed and unsigned

– fixed and floating

0x41424344int

“abcd”str

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Example, 32-bit Floating Point

• Type specifies mapping from
bits to real numbers (plus
symbols)
– format

• S, 8-bit exp, 23-bit mantissa

– interpretation
• mapping from bits to abstract

set

– operations
• add, mult, sub, sqrt, div

mantissaexps

2381

M
S E−

()
()

1 2 1
127

6

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Addressing Modes
Driven by Program Usage

double x[100] ; // global
void foo(int a) { // argument

int j ; // local
for(j=0;j<10;j++)

x[j] = 3 + a*x[j-1] ;

bar(a);
}

Memory

foo

Stack

j

a

bar

x
procedure

constant argument

array reference

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Addressing Modes

• Stack relative for locals and
arguments

*(R30+x)

a, j

• Short immediates (small
constants)

3

• Long immediates (global
addressing)

&x[0], &bar

0x3ac1e400

• Indexed for array references
*(R4+R3)

*(R4+R3*S)

Memory

foo

Stack

j

a

bar

x

SP

7

EE282 - Class 3 – 10/04/01
WJD/AW/MT

VAX-11 Had 27 Addressing Modes (Why?)

#n immediate

Rn Register

(Rn) Direct

-(Rn) predecrement

(Rn)+ postincrement

@(Rn)+ Indirect postincrement

d(Rn) Displacement (b,w,l)

@d(Rn)

(Rn)[Rx] Indexed

(Rn)+[Rx]

-(Rn)[Rx]

@(Rn)+[Rx]

d(Rn)[Rx]

@d(Rn)[Rx]

@#addr[Rx]

(PC)+ immediate

@(PC)+ absolute

@d(PC)+ immediate

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Addressing Mode Summary

1) Implied addressing - operand is specified within the operation.

2) Immediate addressing - Operand data is included in the
instruction.

add r4,#5 r4 ← r4+5

3) Register addressing - Operand data is in a register.

add r4,r5 r4 ← r4+r5

8

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Memory Addressing

When operands reside in memory - more complex modes may exist.

1) Direct Addressing.

add r4,(0x300) r4 ← r4+M[0x300]

2) Indirect addressing - register contains the operand address.

add r4,(r5) r4 ← r4+M[r5]

3) Indirect displaced -

add r4,100(r5) r4 ← r4+M[r5+100]

4) Indexed -

add r4,(r5+r6) r4 ← r4+M[r5+r6]

5) Memory Indirect (or Double Indirect) -

add r4,@(r5) r4 ← r4+M[M[r5]]

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Other Addressing Modes

1) Autoincrement

add r4,(r5)+ r4 ← r4+M[r5] r5 ← r5 + 1

2) Autoincrement (by word size)

add r4,(r5)+ r4 ← r4+M[r5] r5 ← r5 + d

3) Autoincrement (by stride)

add r4,20(r5) r4 ← r4+M[r5] r5 ← r5 + 20

4) Autodecrement

add r4,-(r5) r5 ← r5 - 1 r4 ← r4+M[r5]

Both Preincrement and Postincrement modes are sometimes available.

9

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Instruction Formats

• Different instructions need to
specify different information
– return

– increment R1

– R3 ← R1 + R2

– jump to 64-bit address

• Frequency varies
– instructions

– constants

– registers

• Can encode
– fixed format

– small number of formats

– byte/bit variable

Op R1 R2 R3 Const
6 5 55 10

Op R1 R2 Const
6 5 5 16

1

Op R1 Const
6 5 21

Fixed-Format (Alpha)

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Side Effects

C

+

A B

C=A+B;

add R3,R1,R2

E

+
-

A B

-

C D

C=(A-B)+(C-D);

sub R5,R1,R2
sub R6,R3,R4
add R5,R5,R6

10

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Side Effects (2)

C

+

A B

C=A+B;

add R3,R1,R2

Flags

• Side Effects are additional state
changed by an operation
– Flags registers

– Changes to source registers

– Multiple results

– Exception conditions

• Disturb clean dataflow models

• Particularly vile when side effects
change special-purpose registers in a
general-purpose register machine.

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Side Effects (3)

Advantages
– Implied concurrency

– Reduced instruction count

– Reduced program size

– Powerful atomic operations

Disadvantages
– Hard to optimize programs

– Complex compiler structures

– Multiple register writes
• can limit issue rate

– Special-purpose registers

11

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Variable-Length Instructions

• Variable-length instructions
give more efficient encodings
– no bits to represent unused

fields/operands

– can frequency code operations,
operands, and addressing
modes

– Examples
• VAX-11, Intel x86 (byte

variable)

• Intel 432 (bit variable)

• But - can make fast
implementation difficult
– sequential determination of

location of each operand

Op

Op
8

8
R M
4 4

R M
4 4

R M
4 4

Op
8

R M
4 4

Op
8

R M
4 4

Disp
32

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Compromise: A Few Good Formats

• Gives much better code density
than fixed-format
– important for embedded

processors

• Simple to decode

Op R1 R2 R3 Const
6 5 55 101

Op R1 R2
6 5 5

Op R1 R2 R3
4 4 44

12

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Constant Encoding

• Integer constants
– mostly small

– positive or negative

• Bit fields
– contiguous field of 1s within

32bits (64 bits)

• Other
– addresses, characters, symbols

• A good architecture
– uses a few bits to encode the

most common.

– allows any constant to be
generated (table reference)

Op
6

VAX short literal
-32 to 31

E
5

S
5

00000001111111111000000000000000

Symbolics 3600
Bit Fields

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Control Instructions

• Implicit control on each
instruction

IP ← IP + 4

• Unconditional jumps
IP ← X

IP ← IP + X

X can be constant or register

• Conditional jumps (branches)
IP ← IP + ((cond) ? X : 4)

• Predicated instructions

• Conditions
– flags

– in a register

– fused compare and branch

LOOP: LOAD R1 <- *(R5+R2)
ADD R3 <- R3 + R1
ADD R2 <- R2 + 4
CMP R4 <- R2 == 8
JNE R4, LOOP

13

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Support for Procedures

• Branch and Link
– store return address in reg and

jump
Rx ← IP + 4

IP ← Dest

• Subroutine call
– push return address on stack

and jump

BRL foo

foo

Return Here
IP

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Events

• Implied multi-way branch after
every instruction
– external events (interrupts)

• completion of I/O operations

– internal events (faults or
exceptions)

• arithmetic overflow

• page fault

Inst 1

Inst 2

P
ag

e
F

lt

D
is

k
I/O

R
T

C

O
ve

rf
lo

w

14

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Mapping Applications to Hardware

Application

HLL Program

Assembly Code

Object Code

Microcode

1:1 mapping

• Each mapping translates a more abstract description of what is to be
done at execution time to a less abstract description.

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Application

HLL Program

Assembly Code

Object Code

Microcode

1:1 mapping

Programming

Compilation

Assembly

Instruction
Execution

Why do so many levels exist?

Common Terms for Mappings

15

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Application

HLL Program

Assembly Code

Object Code

Microcode

Programming

Compilation

Assembly

Instruction
Execution

Which ma ppings should be sim ple?

The “Semantic Gap”

Simple

Simple

ComplexSimple

Simple

Complex

1990’s 1970’s

Complex ma ppings are o pportunities for o ptimization

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Complex

Application

HLL Program

Assembly Code

Object Code

Microcode

Programming

Compilation

Assembly

Instruction
Execution

The Performance Challenge

Simple

Simple

ComplexSimple

Simple

Complex

1990’s 1970’s

Simple

Complex

Now

16

EE282 - Class 3 – 10/04/01
WJD/AW/MT

Next Time

• Implementation
– building blocks

– simple implementation of the DLX

