
EE282 Lecture 2 3/2/01 1
WJD/AW/MT

EE282
Computer Architecture

Lecture 2:
Instruction-Set Architecture: Part I

Oct 2, 2001

Marc Tremblay
Stanford University

marctrem@csl.stanford.edu

EE282 Lecture 2 3/2/01 2
WJD/AW/MT

Today

• Instruction-set architecture
– Architecture vs Implementation

– Machine state

– Opcodes and Operands

– Register Organization

EE282 Lecture 2 3/2/01 3
WJD/AW/MT

Instruction Set Architecture

• The ISA is an agreement (contract) between the
programmer and the hardware.
– Defines the visible state of the system

– Defines how the state changes in response to instructions

EE282 Lecture 2 3/2/01 4
WJD/AW/MT

Instruction-Set Architecture (ISA) at a glance

Before State

Mem
Regs

Op RaMode Rb

After State

Mem
Regs

Instruction Format
Instruction Types
Addressing Modes

Instruction

Machine state
Memory organization
Register organization

Data types
Operations
Interrupts and Events

EE282 Lecture 2 3/2/01 5
WJD/AW/MT

Why an ISA Contract?

• Programmers use the ISA to model how programs will
execute.

• Hardware implementers use the ISA as a formal definition
of the correct way to execute programs.

• Traditionally the ISA is defined in terms of the binary
encoding of the instruction set

Who is impacted by the details of the ISA?

How does the ISA impact hardware?
How does the ISA impact software?

EE282 Lecture 2 3/2/01 6
WJD/AW/MT

Architecture vs. Implementation

• Architecture defines what a computer system does in
response to a program and a set of data.
– programmer visible elements of the computer system.

• Implementation defines how a computer does it.
– Sequence of steps to complete operations

– Time it takes to execute operations

– Hidden “bookkeeping” functions

EE282 Lecture 2 3/2/01 7
WJD/AW/MT

Example:
Variations of an identical architecture

Undersea
Cable TokyoMy Desk

NEC SX3

.18 µ CMOS Vacuum Tubes

Simulator 5000 Miles away

Same Final Answer

EE282 Lecture 2 3/2/01 8
WJD/AW/MT

• Compatibility
– VAX architecture - 1 chip to mainframe

– ARM - 20x performance range

• Longevity
– X86 in 7th generation

– retain software investment

– maintain homogeneous environment

– amortize costs over multiple markets

Why separate architecture from
implementation?

EE282 Lecture 2 3/2/01 9
WJD/AW/MT

Architecture Families

• Many architectures 'grow' with time

• Manufactures produce families of chips that execute the
same programs.

• 8088, 8086, 80286, 80386, 80486, Pentium, PII, PIII, P4

• Chips have different ISA's - but all support a core set of
user instructions -this is the 'family architecture'.

EE282 Lecture 2 3/2/01 10
WJD/AW/MT

Machine State

• Registers
– size and type

• at least an instruction pointer (IP)

• accumulators

• index registers

• general registers

• control registers

• Memory
– visible hierarchy (if any)

– addressability
• word, byte, bit

• little vs big endian (aliasing)

• maximum size

– protection and relocation

Machine State

Memory
Byte Addr

Little Endian
32-bit Addr

R0-R31
32-bit

IP

EE282 Lecture 2 3/2/01 11
WJD/AW/MT

Component of Instructions

• A set of possible operations (opcode)

• For each operation:
• Number of operands
• Operand Specifiers

• In practice - there will be restrictions on operand specifiers.

• An encoding of the instructions is required.

• Typically instructions are gr ouped into cl asses with similar
formats.

EE282 Lecture 2 3/2/01 12
WJD/AW/MT

Operand Number

• No operands HALT
NOP

• 1 operand NOT AX AX <- ~AX
JMP LABEL1

• 2 operand ADD R1,R2 R1 <- R1+R2
LDI R3,#1234

• 3 operand ADD R3,R1,R2 R3 <- R1+R2

• >3 operand MADD R4,R3,R2,R1 R4 <- R3+R2*R1

EE282 Lecture 2 3/2/01 13
WJD/AW/MT

Effect of Operand Number

E = (C+D) * (C-D);
Assign

C -> r1
D -> r2
E -> r3

3 operand machine

add r3,r1,r2
sub r4,r1,r2
mult r3,r4,r3

2 operand machine

mov r3,r1
add r3,r2
sub r2,r1
mult r3,r2

EE282 Lecture 2 3/2/01 14
WJD/AW/MT

Operand Types

1) We don't. - Operands can be implicit.

Example: RET (Top of stack is implicit (via SP))

2) We include operand specifiers.

a) Name (usually explicit)

b) Name Space (usually implicit)

How do we specify an operand?

EE282 Lecture 2 3/2/01 15
WJD/AW/MT

Name Spaces

• Each name space contains a separately enumerable set of names.

• For a typical GPR machine, this includes:
– Register Numbers

– Memory Addresses

• Name space is usually implied for each operand by the opcode.

ADD r1,4000,r5

Register
Name

Register
Name

Memory
Address

Examples:
SHR AX Register Name

• Some ISA (VAX) include name space descriptor in the operand specifier.

EE282 Lecture 2 3/2/01 16
WJD/AW/MT

• Other name spaces often exist
as well.

• Condition Codes

• Immediate Data

• I/O space
1M
Addresses

64K
Addresses

8086

Memory I/O

CHIP

IOWR

IORD
MEMWR
MEMRD

Alternate Name Spaces

EE282 Lecture 2 3/2/01 17
WJD/AW/MT

• Architectures can define an
arbitrary number of name spaces

• Instructions must specify or
imply the name space for
each operand.

• Hardware must be able to
address each name space
properly 16Kx32 4Kx24

Typical DSP

Code X Data

Multiple Name Spaces

4Kx24

Y Data

EE282 Lecture 2 3/2/01 18
WJD/AW/MT

Name space overlap (aliasing)

64K
Addresses

Memory

Page 0

• On M6800 - Page 0 is a 256 byte separate address space.

Regular address space can also address page 0

EE282 Lecture 2 3/2/01 19
WJD/AW/MT

Name Space Name

Implicit

Register 5

Memory 0x2000

OP

RET

INC

DEC

Name

5

0x2000

OP

RET

INCR

DECM

OR

Describing Operands

• 2 choices

• Universal Operand Specifiers
– Include space and name

• Name space specific
– Space is implied by operation

– Name is specified in Operand Field.

EE282 Lecture 2 3/2/01 20
WJD/AW/MT

Evolution of Register Organization

• In the beginning, there was the
accumulator
– two ‘working’ instruction

types: op and store
A ← A op M

A ← A op *M

*M ← A

– a oneaddress architecture
• each instruction encodes a

single memory address

– two addressing modes
• immediate,M

• directaddressing, *M

– Typical of early machines
• EDSAC, EDVAC, …

Memory

0

FFF

Accumulator

Op Address, M

Machine State

Instruction Format

IP

(Op indicates addressing mode)

EE282 Lecture 2 3/2/01 21
WJD/AW/MT

Why Accumulator Architectures?

• Registers (flip-flops) were very expensive in early
implementation technologies.

• Instruction decoding was simple
– Logic was expensive as well

– Critical programs were small - extra instructions no problem

• Minimal cycle time
– Hardwired programs were fast - logic was slow

• Model matched earlier ‘tabulating’ machines
– Think “adding machine”

EE282 Lecture 2 3/2/01 22
WJD/AW/MT

The Index Register

• Add an indexedaddressing mode
A ← A op *(M + I)

*(M + I) ← A

– facilitates array accesses
x[j]

• address of x[0] in instruction

• j in index register, I

– one register for each key function
• IP points to instructions (addresses)

• I points to data (addresses)

• A holds data values

– Logic optimized for each type
• eg. Counters used for IP, I

– Indirect addressing is a special case
A ← A op *(I)

Memory

0

FFF

Accumulator

Machine State

Index

IP

Op Address, M

Instruction Format

EE282 Lecture 2 3/2/01 23
WJD/AW/MT

Example of Indexed Addressing

sum = 0 ;

for(i=0;i<n;i++)

sum = sum + y[i] ;

START: CLRA
CLRX

LOOP: ADDA y(X)
INCX
CMPX n
BNE LOOP

START: CLR i
CLR sum

LOOP: LOAD IX
AND #MASK
OR i
STORE IX
LOAD sum

IX: ADD y
STORE sum
LOAD i
ADD #1
STORE i
CMP n
BNE LOOP

With index register

Without index register

EE282 Lecture 2 3/2/01 24
WJD/AW/MT

But what about

sum = 0 ;

for(i=0;i<n;i++)

for(j=0;j<m;j++)

sum = sum + x[j]*y[i] ;

EE282 Lecture 2 3/2/01 25
WJD/AW/MT

More Registers give Denser Code

• Keep several variables in
accumulators, pointers in index
registers
– fewer loads and stores

Ai ← Ai op Aj

Ai ← Ai op *(M+Xj)

– includes a registermode

– called a two-addressmachine
because each instruction
contains two names.

– A three-address machine
allows the destination to be
separately specified

Ai ← Aj op Ak

– but takes more bits

Memory

0

FFFFF

A0

Machine State

X0

IP

Op M

2-Address Instruction Format

A1

X1

i j

EE282 Lecture 2 3/2/01 26
WJD/AW/MT

General Registers

• Eliminate distinction between
accumulatorsand index regs
(i.e. data reg vs address reg)

• Use any register as a variable or
pointer
– simpler
– more orthogonal
– better utilization of fast storage
– but - assumes addresses & data are

similar sizes.

• How many registers should there be?
– More - fewer loads/stores

– but - more bits of instruction
• PDP-11 (16), VAX (32), EPIC (128)

Memory

0

FFFFF

R0

Machine State

Rn-1

IP

Op M

3-Address Instruction Format

R1

i j k

EE282 Lecture 2 3/2/01 27
WJD/AW/MT

Specialized Registers

• Specialized registers complicate the architecture model but often
simplify implementation

• Some architectures use specialized data or address registers in addition
to or instead of general-purpose registers.

SP

LOOP

Remainder

Dedicated stack pointer

Dedicated loop counter

Extended divide precision

EE282 Lecture 2 3/2/01 28
WJD/AW/MT

Load/Store Machines

• Only load and storeinstructions
reference memory

• All arithmetic is performed on
registers
– requires more instructions

• sparser code

– uses more visible registers

– same number of operations

– easier for compiler
• enables re-use of results,

variables loaded

– easier to implement
• simpler pipeline

• limits certain exceptions

LOAD R1 <- A
ADD R2 <- R1 + B
ADD C <- R2 + 3

LOAD R1 <- A
LOAD R2 <- B
ADD R3 <- R1 + R2
ADD R4 <- R3 + 3
STORE C <- R4

Memory Operands Allowed

Strict Load/Store

EE282 Lecture 2 3/2/01 29
WJD/AW/MT

Stack Machines

• Register state is IP and SP

• All instructions performed on
TOS (top-of-stack) and SOS
– pushes and pops implied

op TOS SOS

op TOS M

op TOS *M

op TOS *(M+SP)

• Many instructions are zero
address

• Stack cache is required for
performance

MemoryIP

SP

Code

Stack

Stack $
TOS

Cur Inst

TOS
SOS

EE282 Lecture 2 3/2/01 30
WJD/AW/MT

Example of Stack Code

a = b + c * d ;

e = a + f[j] + c ;

PUSH d
MUL c
ADD b
PUSH j
PUSHX f
ADD c
ADD
POP e

One Address Stack

8inst, 7addr

PUSH d
PUSH c
MUL
PUSH b
ADD
PUSH j
PUSHX f
PUSH c
ADD
ADD
POP e

Pure Stack
(zero address)
11inst, 7addr

LOAD R1, d
LOAD R2, c
MUL R3,R1,R2
LOAD R4, b
ADD R5,R4,R3
LOAD R6, j
LOAD R7, f(R6)
ADD R8,R7,R2
ADD R9,R5,R8
STORE e, R10

Load/Store
(many GP registers)

10inst, 6addr

EE282 Lecture 2 3/2/01 31
WJD/AW/MT

Instruction Semantics

• The ISA definition includes
– system state

– the effect of each operation on system state

• and actually one more item
– the relationship between instructions

• Most traditional ISA definitions specify sequential execution
– Each instruction completes all state changes in program order

• Some modern ISAs define relationships between instructions

EE282 Lecture 2 3/2/01 32
WJD/AW/MT

Non-sequential semantics

LBL: add R3,R1,R3
bne R0,R4,LBL
subi R4,R4,#1

MIPS - delayed branch

EPIC - concurrent execution

EE282 Lecture 2 3/2/01 33
WJD/AW/MT

Next Time

• Instruction-set architecture
– Addressing Modes

– Data Types

– Common instruction types

– ISA Design Styles

– Binary Encodings

– Interrupts & Events

