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Assignment

• Before Lecture on Thursday 10/18
– Finish reading H&P Chapter 4
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Today’s Lecture

• More complex pipelining
– the MIPS R4000 pipeline
– Pentium 4

• Branch prediction
– control hazards
– static prediction
– history table
– multi-bit prediction
– branch target table
– two-level prediction

• Instruction-level parallelism
– covert vs overt 

parallelism
– parallelism in hardware 

and software
– a question of scheduling
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Example: R4000 Pipeline

• 8 Stages
– F1 - select IP, start I$ access
– F2 - complete I$ access
– D - decode, register access, check I$ tag
– A - ALU operation
– M1 - start D$ access
– M2 - complete D$ access
– M3 - check D$ tag
– W - write back result to register

• Memory access takes 3 cycles
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Instr 1 2 3 4 5 6 7 8 9 10
i F1 F2 D A M1 M2 M3 W

i+1 F1 F2 D A M1 M2 M3 W
I+2 F1 F2 D A M1 M2 M3 W
i+3 F1 F2 D A M1 M2 M3
i+4 F1 F2 D A M1 M2
i+5 F1 F2 D A M1
i+6 F1 F2 D A
i+7 F1 F2 D

Pipeline Diagram

What are the bypass paths?

A B C D E F G H
From Stage
To Stage
To Instruction
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Characteristics of this pipeline

• How many comparators are needed to implement the 
forwarding decisions?

• What instruction sequences will still cause stalls?
• What is the branch delay?
• What is the load delay?
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Example 2: Pentium 4

• Pipeline diagram (shown during lecture, available 
soon on website)
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Branch Prediction

• Depending on use, some 
branches are very predictable
– loops 

• TTT…TN

– limit checks
• almost always pass

• Some are not very predictable
– data dependent dispatch 

with equally likely cases
• Types of predictors

– static
– history
– multi-bit history
– pattern

for(j=0;j<30;j++) {

…

}

switch(mode) {

case 1: …

case 2: …

default: …

…

if(a > limit) {

…

}
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Static Prediction

• Assign a preferred direction 
to each branch
– e.g.,

• BNEZ_T  (predict taken)
• BNEZ_N (predict not 

taken)

• Base on 
– program analysis

• loops tend to be taken

– profiling of the program
• but it may be data 

dependent

A>B?
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Dynamic Predictors

• Branch history table
– indexed by IP
– stores last direction each 

branch went
– may indicate if last 

instruction at this 
address was a branch

– table is a cache of recent 
branches

IM

IP

BHT

IR

Prediction
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Multi-bit predictors

• A ‘predict same as last’ 
strategy gets two 
mispredicts on each loop
– Predict NTTT…TTT
– Actual  TTTT…TTN

• Can do much better by 
adding inertia to the 
predictor
– e.g., two-bit saturating 

counter
– Predict TTTT…TTT

for(j=0;j<30;j++) {

…

}

N2 N1 T1 T2
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Branch Target Tables

• Need to know where to go if 
the prediction is ‘taken’
– predict the target along 

with the direction
• May use different target 

prediction strategy for 
different types of branches
– subroutine returns

F R A M W

F R A M W

Predict Taken

Calculate Target

Need to guess target here
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Branch Target Prediction (2)

IM

IP

BHT

IR

Prediction
(Taken/Not)

+4

BTT Predicted
Target IP

Actual Target
IP (from A)

• Use current IP to index a cache of 
next IPs

• Use a push-down stack to record 
subroutine return addresses

• The ISA can give hints about where 
you’re going

• Compaq Alpha has 4 instructions 
with identical ISA behavior
– JMP, JSR, RET, 

JSR_COROUTINE
– specify predictor’s use of stack
– include hint of target address
– JMP R31, (R3), hint

Stack
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Branch Pattern Tables (Two-Level Predictors)

• History gives a pattern of 
recent branches
– e.g., TTNTTNTTN
– what comes next?

• Predict next branch by 
looking up history of 
branches for a particular 
pattern

• Two-level predictor
– first level - find history 

(pattern)
– 2nd level - predict 

branch for that pattern
• Correlating predictors

IP

BHT

110110

110110

BPT

State f
Prediction

BPT may be 
Independent for 
each BHT entry or 
shared
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Branch Performance

F D1 D2 D3 R T A1 ...

Consider a modern pipeline with a long decode stage

Predict Discover its
a branch

Resolve direction
and calculate target

Penalty for mispredicted branch is _____

If 10% of instructions are branches what is CPI
With no prediction?
With 70% accurate prediction (static)
With 85% accurate prediction (2-bit)
With 95% accurate prediction (2-level)
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Alternatives to Prediction

• Predication
– guard instructions with 

predicate, cancel if false
– when is this a good idea?

• What length conditional 
segment?

• Delay slots
– make branch delay explicit
– exposes implementation in 

the ISA
• makes life difficult for 

future implementations

– compiler tries to fill delay 
slot with useful instruction 
(possibly predicated)

• ISA support
– hints to the predictor

• let the compiler pass along 
the information it has

– separate the components of 
the branch

• target address calculation
– prepare to branch (Tera)

• determining direction
• actually branching
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To Unity and Beyond (Below 1 CPI)

• No reason to limit pipelines to process 1 instruction 
per cycle

• Can predict next several (2-6) instructions and 
execute them simultaneously

• Need to resolve data dependencies
• Several approaches

– VLIW - compiler schedules instructions
– Multi-issue - issue instructions in order, but in parallel
– Superscalar - issue instructions out of order 
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Parallelism
Overt vs Covert (1 of 2)

Dusty
Deck

Compiler

Computer
Pipelined
and/or 

Multiple Issue

Sequential
Program

Covert approach

Programmer doesn’t see 
parallelism, just speed

Compiler may discover parallelism 
(e.g., in loops) and/or reorganize code 
to remove dependencies

Code generated usually has 
sequential semantics for 
compatibility with ISA

Hardware executes in parallel 
while preserving sequential 
semantics
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Parallelism 
Overt vs Covert

Problem
Dusty
Deck

Compiler

Pipelined
and/or 

Multiple Issue
CPU

Sequential
Program

Parallel
Program

Parallelizer

Compiler

Parallel
Program

Parallel
Computer

Program with multiple 
threads that explicitly 
communicate and 
synchronize

Exploits only 
ILP

Exploits ILP and 
thread-level parallelism

In addition to threads, 
object code may make 
ILP explicit, encoding 
dependencies
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Problem vs Program

Find the maximum element of an array, a

max = a[0] ;
for(i=1;i<n;i++) {
if(a[i] > max) max = a[i] ;

}

return max ;

for(i=1;i<=logn;i++) {
m = 1<<(logn-i) ; p = i&1 ; q = p^1 ; 
forall(j=0;j<m;j++){

a[j,p] = max(a[2*j,q],a[2*j+1,q]);
}

}
return a[0,p] ;



EE 282:  Fall  2001/02 Lecture 6, 10/16/01

11

EE282 Lecture 6 10/16/2001WJD/AW/MT 21

Parallelism and Hardware

Chip
100mm2

64-bit ALU
.5mm2

Technology gives us lots of
function units

They get only slightly faster 
each year

The wires get slower

Pipeline

Parallel or
Interleave

Pipeline or replicate at bit, word, vector, 
subroutine levels
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Parallelism and Software

a = (b + c) * (d + e + f) ;Independent Operations (ILP)

Function decomposition

Domain decomposition

xform clip render

1

2

3

4

xform/clip

xform/clip

xform/clip

xform/clip

render

render

render

render
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How Are We Going to Get There?

• Microarchitecture support for lowering the CPI < 1.0
– Issuing more than 1 instruction per cycle
– Speculation beyond going past a branch
– Latency issues
– Memory hierarchy needed to support aggressive 

compute engines
• Caches
• TLBs
• Memory banks
• Etc.


