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Structure and Organization of a DSM System




Figure DSMU1: Structure and organization of a DSM system (source: [Protic96]).

Legend:

ICN—Interconnection network.

Reference:
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“Distributed Shared Memory: Concepts and Systems,”
IEEE Parallel and Distributed Technology, Vol. 4, No. 2, Summer 1996, pp. 63–79.

DISTRIBUTED SHARED MEMORY

1.
Combining the best of: SMP (programmability) and DCS (expandability)

2.
Memory: physically distributed and logically compact

3.
Implementing the DSM mechanism:

· software (library, compiler, os/outside-kernel, os/inside-kernel)

· hardware

· hybrid

4.
Implementing the DSM architecture:

· ICN (BRL or reduced or GMC)

· Cluster configuration (MPS or SMP)

· Organization of shared data (non-struct'd vs struct'd as types or objects)

· Granularity of coherence maintenance 
(word, block, page, object, segment)

  5.
Implementing the DSM algorithm:  

· SRSW

· MRSW

· MRMW

  6.
Implementing the DSM management:

· Centralized

· Distributed/fixed or distributed/dynamic

  7.
Implementing the coherence policy:

· WI or WU or TS (type-specific)

  8.
Implementing the memory consistency model:

· Restricted (strict or sequential)

· Relaxed (processor, weak, release, lazy release, entry, ...)

  9.
 New systems

10.
New research avenues

MEMORY CONSISTENCY MODELS

Implementations of MCMs (hw-mostly vs sw-mostly):

Sequential:
MEMNET+KSR1 vs IVY+MIRAGE


Delp/Farber(Delaware)+Frank(KSR) vs Li(Yale)+Fleish/Popek(UCLA)

Processor:
RM vs PLUS

Gould/Encore/DEC(USA) vs Bisiani/Ravishankar/Nowatzyk(CMU)

Weak:
TSO vs DSB 

SUN/HAL/SGI(USA) vs DuBois/Scheurich/Briggs(USC) 

Release:
Stanford-DASH vs Eager-MUNIN

Gharachorloo/Gupta/Hennessy(SU) vs Carter/Bennett/Zwaenopoel(Rice) 

LazyRel:
AURC vs TREADMARKS

Iftode/Dubnicki/Li(Princeton) vs Zwaenopoel/Keleher/Cox(Rice)

Entry:
SCOPE vs MIDWAY

Iftode/Singh/Li(Princeton) vs Bershad/Zekauskas/Sawdon(CMU)

Important Issues:

· Memory writing pattern (“through”/hw vs “back”/sw)

· Acknowledgment waiting pattern (“when” vs “what”)

Reference:

[Protic97]
Protic, J., “A New Hybrid Adaptive Memory Consistency Model,”
Ph.D. Thesis, University of Belgrade, Belgrade, Serbia, Yugoslavia, 1997.

RELEASE CONSISTENCY


Dash:





Munin:





Repeated updates of cached copies:




Figure DSMU2: Release consistency—explanation (source: [Lenoski92 + Carter91]).

Legend:

W—write,

REL—release,

ACQ—acquire.

LAZY RELEASE CONSISTENCY


Message traffic:



 

Figure DSMU3: Lazy release consistency—explanation (source: [Keleher94]).

Legend: Self-explanatory.

ENTRY CONSISTENCY

· Compile time protection of objects (simple or complex)

· Message traffic




Figure DSMU5: Entry consistency—explanation (source: [Bershad93]).

Legend:

(—protected by,

n/n—not needed.

AUTOMATIC UPDATE RELEASE CONSISTENCY


Classical LRC:





Copyset-2 AURC:





Copyset-N AURC:




Figure DSMU4: AURC—explanation (source: [Iftode96a]).

Legend:

RdFt—read fault,

AuUp—automatic update.

AURC: Revisited

1.
The hardware update mechanism works on the point-to-point basis.
Upon a write to a location, only one remote node is updated - the home,
no matter how many different nodes share that same data item.

2.
The home for a specific page is determined at run time,
as the node which writes the first into a page.
It is assumed that the first writer will become the most frequent writer.

3.
On the next acquire point, the acquiring node sends messages to the homes,
to obtain the current versions of all pages (in jurisdiction of these homes) 
to be needed during the critical region which is just about to start.

4.
Homes return the current version number of each page,
and the requesting node compares it with the version number 
of the corresponding page in its possession. 

5.
The version at the node might be older, 
but still usable,
if its version corresponds to the last update made by the same lock.

The current version might be #21, and the node may have the version #18,
but #18 may be the last version written to by the lock (process),
which is related to the acquire point in question.

If the node already has the last version of interest for it,
the page will not be ported over the network;
otherwise, it will.

6.
The major issue here is to minimize the negative effects of false sharing,
in cases when page sizes are relatively large,
and several processes (locks) share the same page.

7.
Home keeps the copy set (list of sharers) and the updated "version vector"
telling which locks were writing to a particular version of each page,
in the set of pages for which he/she is the home.

Each node keeps just one element of the "version vector."

This is the vector element related to the pages 
replicated in that specific node.

8.
During the execution of the code in the critical region,
the node will update both itself and the home,
on each write, as indicated earlier.

Others will be updated after they acquire the lock
and after they contact the home 
to obtain the last update of the page.

This decreases the ICN traffic,
in comparison with some other reflective (write-through-update) schemes,
which update ALL sharers using a hardware reflection mechanism (RM and/or MC).

9.
The above implements the lazy release consistency model 
through a joint effort of hardware and software 
(unlike TreadMarks, which does the entire work in software).

10.
The AURC scheme has been implemented in the SHRIMP-II project
at Princeton.

Reference:
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SCOPE: Revisited

1.
The SCOPE is the same as the AURC, except for the following differences.

2.
The version update vector at the home includes one more field,
telling which variables (addresses) were written into,
by a given lock; this is repeated for each version of the page.

3.
Consequently, the home is not checked at the next acquire point,
but after that point, when the variable is invoked,
which corresponds to the ENTRY consistency model.

4.
However, unlike with the ENTRY, the activity upon invoking a variable
is related to the entire page,
i.e. the entire page is brought over, if so necessary,

5.
This means page-based maintenance and more traffic,
rather than object-based maintenance and less traffic (like in Midway).
In principle, Midway can also do page-based maintenance, but it does not.

6.
The SCOPE is faster, although it is page-based rather than object-based,
since it does a part of the protocol in hardware,
using the same automatic update hardware as the AURC.

7.
In conclusion,
SCOPE can be treated as a hw/sw implementation of ENTRY.

8.
Its advantage over ENTRY is in complete avoidance of compiler assistance.

9.
The SCOPE was not implemented in any of the Princeton DSM machines.

10.
The SCOPE research brings up a number of new ideas: merge, diff-avoid.

Reference:

[Iftode96b]
Iftode, L., Singh, J. P., Li, K.,
“Scope Consistency: A Bridge Between RC and EC,”
Proceedings of the 8th ACM Symposium in Parallel Algorithms and Architectures, Padova, Italy, June 1996.

SOFTWARE IMPLEMENTED DSM

Name and Reference
Type of Implementation
Type of Algorithm
Consistency Model
Granularity Unit
Coherence Policy

IVY

[Li88]
user-level library + OS modification
MRSW
sequential
1Kbyte
invalidate

Mermaid

[Zhou90]
user-level library + OS modifications
MRSW
sequential
1Kbyte, 8Kbyte
invalidate

Munin

[Carter91]
runtime system + linker + library + preprocessor + 
OS modifications
type-specific (SRSW, MRSW, MRMW)
release
variable size objects
type-specific (delayed update, invalidate)

Midway

[Bershad93]
runtime system + compiler
MRMW
entry, release, processor
4Kbyte
update

TreadMarks

[Keleher94] 
user-level
MRMW
lazy release
4Kbyte
update, invalidate

Blizzard

[Schoinas94]  
user-level + OS kernel modification
MRSW
sequential
32-128 byte
invalidate

Mirage

[Fleisch89]
OS kernel
MRSW
sequential
512 byte
invalidate

Clouds

[Ramachandran91]
OS, out of kernel
MRSW
inconsistent, sequential
8Kbyte
discard segment when unlocked

Linda

[Ahuja86]
language
MRSW
sequential
variable     (tuple size)
implementation dependent

Orca

[Bal88]
language
MRSW
synchronization dependent
shared data object size
update
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Software Practice and Experience, Vol. 21, No. 5, May 1991, pp. 443-464.
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Schoinas, I., Falsafi, B., Lebeck, A., R., Reinhardt, S., K., Larus, J., R., Wood, D., A.,
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Figure DSMU6: A summary of software-implemented DSM (source: [Protic96a]).

Legend: OS—Operating System.

HARDWARE IMPLEMENTED DSM

Name and Reference
Cluster Configuration
Type of Network
Type of Algorithm
Consistency Model
Granularity Unit
Coherence Policy

Memnet [Delp91]
single processor, Memnet device
token ring
MRSW
sequential
32 bytes
invalidate

Dash [Lenoski92]
SGI 4D/340 
(4 PEs,  2-L caches), 
loc. mem.
mesh
MRSW
release
16 bytes
invalidate

SCI [James94]
arbitrary
arbitrary
MRSW
sequential
16 bytes
invalidate

KSR1 [Frank93]
64-bit custom PE, I+D caches, 
32M loc.mem.
ring-based
hierarchy
MRSW
sequential
128 bytes
invalidate

DDM [Hagersten92]
4 MC88110s, 
2-L caches, 
8-32M local memory
bus-based
hierarchy
MRSW
sequential
16 bytes
invalidate

Merlin [Maples90]
40-MIPS computer
mesh
MRMW
processor
8 bytes
update

RMS [Lucci95]
1-4 processors, caches, 
256M local memory
RM bus
MRMW
processor
4 bytes
update
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Figure DSMU7: A summary of hardware-implemented DSM (source: [Protic96a]).

Legend:

RM—Reflective Memory,

RMS— Reflective Memory System,

SCI—Scalable Coherent Interface,

DDM—Data Difusion Machine.

HYBRID IMPLEMENTED DSM

Name and Reference
Cluster Configuration + Network
Type of Algorithm
Consistency Model
Granularity Unit
Coherence Policy

PLUS [Bisani90]
M88000, 32K cache, 
8-32M local memory, mesh
MRMW
processor
4K bytes
update

Galactica Net [Wilson94]
4 M88110s, 2-L caches 
256M local memory, mesh
MRMW
multiple 
8K bytes
update/
invalidate

Alewife [Chaiken94]
Sparcle PE, 64K cache, 
4M local mem, CMMU, mesh
MRSW
sequential
16 bytes
invalidate

FLASH [Kuskin94]
MIPS T5, I+D caches, 
MAGIC controller, mesh
MRSW
release
128 bytes
invalidate

Typhoon [Reinhardt94]
SuperSPARC, 2-L caches, 
NP controller
MRSW
custom
32 bytes
invalidate custom

Hybrid DSM [Chandra93]
FLASH-like
MRSW
release
variable
invalidate

SHRIMP 

[Iftode96]
16 Pentium PC nodes,

Intel Paragon routing network
MRMW
AURC,

scope
4Kbytes
update/ 

invalidate
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Figure DSMU8: A summary of hybrid hardware/software-implemented DSM (source: [Protic96a]).

Legend:

CMMU—Cache Memory Management Unit,

NP—Network Protocol.
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S3.mp and BEYOND

Origin and Environment

· Nowatzyk, et al.

· SUN Microsystems

· Major Highlights

· Going towards the DSM based workstation (S3.mp)

· Going towards the siliconless motherboard (LEGO)

· Using many less powerful CPUs, rather than a few brainiacs 
since the performance is limited by the “memory wall”

· Simulation studies oriented to 0.25 (m 256 Mbit DRAM

· Reference:

[Nowatzyk93]
Nowatzyk, M., Monger, M., Parkin, M., Kelly, E., Browne, M., Aybay, G., Lee, D.,
“S3.mp: A Multiprocessor in Matchbox,” Proceedings of the PASA, 1993.

[Saulsbury96]
Saulsbury, A., Pong, F., Nowatzyk, A.,
“Missing the Memory Wall: The Case for Processor/Memory Integration,”
Proceedings of the ISCA, 1996, pp. 90–101.

The Sequent STiNG

Origin and environment

· Lovett + Clapp

· Sequent Computer Systems, Beaverton, Oregon, USA

· A CC-NUMA for the commercial market (1996)

· Major highlights:

· Combines 4 quads using SCI

· Quad is based on Intel P6

· Quad includes up to 4GB of system memory, 2 PCI buses for I/O,
and a LYNX board for SCI interface and system-wide cache cons

· Architecture similar to Encore Mongoose (1995)

· Processor consistency MCM

· Applications: OLTP + CDSS

· Reference

[Lovett96]
Lovett, T., Clapp, R., “Sting,”
Proceedings of the IEEE/ACM ISCA-96,
Philadelphia, Pennsylvania, May 1996, pp. 308–317.

The IFACT RM/MC for Networks of PCs

Origin and Environment

· Milutinović + Tomašević + Savić + Jovanović + Grujić + Protić +
Aral + Gertner + Natale + Gupta + Tran + Grant

· Supported by Encore on a contract for DEC

· Major highlights:

a)
Basic research and design in 1993

b)
Board implementation and testing in 1994

c)
Five different concept improvements for higher node counts:

· Efficient integration of RM and MC

· Write filtering

· Transmit FIFO priorities

· Caching of reflective memory regions

· Duplication of critical resources

· The last one in the series of references:

[Savić95]
Savić, S., Tomašević, M., Milutinović, V., Gupta, A., Natale, M., Gertner, I.,
“Improved RMS for the PC Environment.”
Microprocessors and Microsystems, Volume 19, Number 10, December 1995, pp. 609–619.

The DEC MC for NOWs

Origin and Environment

· Gillett

· A follow-up on the “Digital/Encore MC team” (1994/95)

· Major highlights

a)
A PCI version of the IFACT RM/MC board

b)
Digital UNIX cluster team: Better advantage of MC

c)
Digital HPC team: Optimized application interfaces (including PVM)

d)
Reason for adoption:

· Performance potentials over 1000 times the conventional NOW

· No compromise in cost per added node

· Computer architecture for availability

· Error handling at no cost to the applications

· Reference

[Gillett96]
Gillett, R.B., “Memory Network for PCI,” IEEE MICRO, February 1996, pp. 12–18.

The IFACT RM/MC for Infinity SP

· Origin and Environment

· Milutinović + Protić + Milenković + Rašković + Jovanović + 
Denton + Aral

· Supported by Encore, on a contract for IBM

· Major highlights:

a)
Basic research in 1996

b)
Goal: Continuing to be the highest performance I/O processor on planet

c)
Five different ideas introduced for higher performance:

· Separation of temporal and spatial data in DSM

· Direct cache injection mechanisms in DSM

· Distributed shared I/O on top of DSM

· Moving to more sophisticated memory consistency models (MIN)

· Moving to more sophisticated memory consistency models (MAX)

· Reference:

[Milutinović96]
Milutinović, V. (Invited paper), “Solutions for Critical Problems of DSM: New Ideas to Analyze,”
IEEE TCCA Newsletter, September 1996.

Typhoon

Origin and Environment

· Reinhardt + Pfile + Wood

· University of Wisconsin

· Hardware supported software DSM in NOW

· Major highlights

· Decoupling the functional hardware, for higher off-the-shelf utilization

· Typhoon-0: An off-the-shelf protocol processor + network interface

· Typhoon-1: Higher level of hardware integration

· Basic DSM functions to decouple:
Messaging and networking (doing internode communications)
Access control (detecting memory references for non-local action)
Protocol processing (maintaining the global consistency)

· Commodity components in MN+AC; now also for PP (FPGAs + (Ps)

· Reference:

[Reinhardt96]
Reinhardt, S. K., Pfile, R. W., Wood, D .A., “Decoupled Hardware Support for DSM,” 
Proceedings of the IEEE/ACM ISCA-96, Philadelphia, Pennsylvania, May 1996, pp. 34–43.
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The NextGen IFACT RM Board

Current Research

· Cache Injection Control Architecture

· Memory Injection Control Architecture

· Min Complexity MCM

· Max Performance MCM
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