Veljko Milutinović

CACHING IN SMP:
Understanding the Essence

emilutiv@etf.bg.ac.yu

Partial source: [Tomasevic96]
Tomasevic, M., Milutinovic, V.,
“Tutorial on the Cache Coherence Problem
in Shared Memory Multiprocessors: Hardware Solutions”
(Lecture Transparencies; the 1996 update),
IEEE CS Press, Los Alamitos, California, USA, 1993.

Shared Memory Multiprocessing

Architecture (MIMD):

Shared memory

Shared bus

A set of independent (off-the-shelf) processors with L1 (and L2)

Programming model:

Simple—essentially the same as for SISD

Scalability:

Limited—memory and bus are the bottleneck

Major problem:

Cache consistency maintenance (hw, sw, or hybrid)

Major hardware protocols:

Snoopy

Directory

Snoopy protocols

Characteristics

Fully distributed information related to coherence

Responsibility for coherence maintenance on local cache controllers

Broadcast notification

Snooping capability

Ideally suited for bus-based multiprocessors

+
Efficient, flexible, low-cost implementation
(almost exclusively used in commercial multiprocessors)

Limited scalability

Basic classes

Write-invalidate (WI) protocols

Write-update (WU) protocols

Write-invalidate protocols

Multiple copies with simultaneous read permission

Only one copy with write permission at a time

Figure SMPU1: Explanation of a write-invalidate protocol (source: [Tomasevic96]).

Legend:

M—memory,

Ci—cache memory of processor #i,

V—validity bit.

Write to a shared copy preceded by an invalidation signal
(to prevent the use of stale copies)

Cheap, local writes to an exclusive copy

 Write-update (WU) protocols

Multiple copies with write permission

Distributed write approach (updated word broadcast to other sharers)

Figure SMPU2: Explanation of a write-update protocol (source: [Tomasevic96]).

Legend: Self-explanatory.

Special bus line for dynamic detection of sharing

Write-back for private data (local writes)

Write-through for shared data

MOESI

Sweazy + Smith, 1986

Standardization of snoopy cache coherence protocols

Class of compatible protocols

Figure SMPU3: Explanation of the MOESI protocol (source: [Tomasevic96]).

Legend: Self-explanatory.

MOESI (Modified, Owned, Exclusive, Shared, Invalid) state model

Standard superset protocol for the IEEE Futurebus

Seven special bus lines

Coexistence of modules in the same system with different protocols
and
memory update policies (write-back, write-through, and non-caching)

Memory system state is consistent
as long as any system component
dynamically selects any action permitted by any protocol

Number of earlier protocols falls within this class,
as proposed (Berkeley, Dragon) or
with some modifications (Illinois, Firefly, Write-Once)

Derived protocol - MESI
implemented in a number of contemporary microprocessors
(another derived protocol - SI)

Directory protocols

Responsibility for coherence maintenance on centralized controller

[image: image1.wmf]
Figure SMPU4: Explanation of a directory protocol (source: [Tomasevic96]).

Legend:
ICN—interconnection network.

Individual commands to known locations

Write-invalidate protocols (most often)

Suitable for general ICN

Global information organized in a form of directory:

1.
full-map directory

2.
limited directory

3.
chained directory

Full-map directory schemes

DirN NB - complete bit vector (a presence bit per processor + dirty bit)

Two bits in a cache directory entry (valid + modified)

[image: image2.wmf]
Figure SMPU5: Explanation of a full-map directory scheme (source: [Tomasevic96]).

Legend:
V—validity bit,

M—modified bit,

D—dirty bit,

K—processor which modifies the block.
+
The best performance (the least coherence traffic)

 O(N2): not scalable
Directory storage O(MN)

Centralized controller: a potential fault-tolerance bottleneck
and a performance degradation factor

Inflexible for expansion: adding a new node requires system changes

Limited directory schemes

prevalent type of sharing:
block is shared by a small number of processors

Results of several sharing studies

Diri X - limited number of pointers (i < N)

Mechanism to handle pointer overflow

No-broadcast (X = NB) and broadcast (X = B) variants

+
Scalable in terms of directory storage overhead = O(M*log N)

Performance affected by increased sharing

Diri NB (No-broadcast scheme)

Agarwal, et al., 1989.

 one shared copy is invalidated to free a pointer

Pointer overflow

[image: image3.wmf]
Figure SMPU6: Explanation of the no-broadcast scheme (source: [Tomasevic96]).

Legend: Self-explanatory.

Restriction on the number of simultaneously cached copies
(overhead even for read sharing)

Performance

Degradation for intensive sharing of read-only and read-mostly data,
due to increased miss ratio

Diri B (Broadcast scheme)

No restriction on read sharing

 broadcast bit set

Pointer overflow
 invalidation broadcast (some of them unnecessary)

Subsequent write

[image: image4.wmf]
Figure SMPU7: Explanation of the broadcast scheme (source: [Tomasevic96]).

Legend:
D—dirty bit,

B—broadcast bit.
Performance

Increased write latency and wasting the communication bandwidth

Chained directory schemes

Distributed directories spread across local caches (chains of pointers)

Shared copies of a block chained into a list
(head pointer kept in memory)

Singly- (e.g., SDD) or doubly-linked (e.g., SCI) lists

[image: image5.wmf]Figure SMPU8: Explanation of chained directory schemes (source: [Tomasevic96]).

Legend:
H—header.
+ Reduced directory storage (O(log N)), without the restriction of sharing

+ No serialization of replies in main memory (no bottleneck)

 Higher write latency and increased complexity

 Performance close to the full-map schemes [Chaiken90]

Veljko Milutinović

CACHING IN SMP:
State of the Art

emilutiv@etf.bg.ac.yu

LimitLESS Directory Protocols

Agarwal et al., MIT.

Standard limited directory protocol (diriB or diriNB),
with a software mechanism to handle pointer overflow.

If pointer overflow, then interrupt:
hardware pointers get stored to memory,
to free up directory space for lower-intensity sharers.

[image: image6.wmf]
Figure SMPS1: LimitLESS directory protocol (source: [Agarwal90], [Agarwal91]).

Legend:
D—dirty bit; T—trap bit; SwMaintTableOverPtrs—Software Maintained Table of Overflow Pointers.

References:

[Agarwal90]
Agarwal, A., Lim, B.-H., Kranz, D., Kubiatowicz, J., “April: A Processor Architecture for Multiprocessing,”
Proceedings of the ISCA-90, May 1990, pp. 104–114.

[Agarwal91]
Agarwal, A., Lim, B.-H., Kranz, D., Kubiatowicz, J., “LimitLESS Directories: A Scalable Cache Coherence Scheme,”
Proceedings of the ASPLOS-91, April 1991, pp. 224–234.

Dynamic Pointer Allocation Protocols

Simoni, Stanford.

Directory entry:

1.
Short directory: directory header (DirtyState bit + HeadLink field)

2.
Long directory: pointer/link store (set of two-field linked lists)

Pointer/link store:

1.
One linked list of free pointer/link store entries

2.
Linked lists for shared cache blocks (processor pointer + link)

A hardware implementation of LimitLESS!

[image: image7.wmf]
Figure SMPS2: Dynamic pointer allocation protocol (source: [Simoni90, Simoni91, Simoni92]).

Legend:
X—CacheBlock; LT—list terminator; DirtyState (1 bit); HeadLink (22 bits); Pointer (8 bits); Link (22 bits); P/L—Pointer/Link Store.

References:

[Simoni90]
Simoni, R., “Implementing a Directory-Based Cache Coherence Protocol,” Stanford University, CSL-TR-90-423, Palo Alto, California, USA, March 1990.

[Simoni91]
Simoni, R., Horowitz, M., “Dynamic Pointer Allocation for Scalable Cache Coherence Directories,”
Proceedings of the International Symposium on Shared Memory Multiprocessing, Stanford University, Palo Alto, California, USA, April 1991, pp. 72–81.

[Simoni92]
Simoni, R., “Cache Coherence Directories for Scalable Multiprocessors,” Ph.D. Thesis, Stanford University, Palo Alto, California, USA, 1992.

SCI: A Cache-Based Doubly-Linked-List Protocol

Problem: Scalability and Standardization

Idea: IEEE 1596–1992 SCI Standard

Reading a shared value:

1. Finding the current head of the list in memory

2. Adding itself as the new head

Writing to a shared value:

1. Sending the invalidation signal sequentially down the list

2. Creating the new list header

Advantages of doubling the links:

1. Extracting the corresponding list element, on block replacement

2. Bidirectional traversal opportunities

[image: image8.wmf]
Figure SMPS3: An explanation of the SCI protocol (source: [James90]).

Legend:
V—validity (1 bit); MemHeadPtr (8 bits); State (5 bits); ForwPtr (8 bits); BackPtr (8 bits).

Reference:

[James90]
James, D., Laundrie, A., Gjessing, S., Sohi, G., “Distributed-Directory Scheme: Scalable Coherent Interface,”
IEEE Computer, Vol. 23, No. 6, June 1990, pp- 74–77.

RST (Reduced State Transitions)

Prete, University of Pisa, 1991.

Goals:

a.
to minimize the write-backs (due to replacements of mod-shd copies)

b.
to simplify the implementation

Based on Dragon (and Firefly):

Difference to Dragon:

a.
every write transaction updates the memory block involved

b.
unmod-shd to mod-shd transaction avoided

Difference to Firefly:

shared memory includes a data buffer

only one supplier (modified copy or memory) on read miss

Performance
+
Reduced number of write-backs

Lower probability of cache supply

Reference:

[Prete91]
Prete, C. A.,
“RST,”
IEEE Micro, April 1991, pp. 16–19, 40–52.

USCR (Useless Shared Copies Removal)

Problem for WU: false sharing due to process migration

Idea: detecting and destroying the remaining copies
from previous processes

Protocol requirements (in addition to Dragon):

a)
Invalid state

b)
LUP (Last Using Process) bit for each cache block

c)
CP (Current Process) bit in control register

d)
Dirty line

Basic protocol actions (for reducing of false sharing)

a)
CP is stored in LUP on each processor operation on this block

b)
CP is complemented on every process switch

c)
on each bus operation, check for an unused copy of the block
(CPLUP), and its invalidation (if found)

d)
when a dirty copy is to be invalidated, requester inherits the ownership

Performance
+
Lower false sharing lower bus usage, cache interference,

Not all unused copies eliminated

Reference:
Prete, C. A., Riccardi, L., Prina, G., “Reducing Coherence-Related Overhead in Multiprocessor Systems,”
Proceedings of the IEEE/Euromicro Workshop on Parallel and Dstributed Processing, San Remo, Italy, January 1995, pp. 444–451.

UPCR (Useless Passive Copies Removal)

Problem for WU: passive sharing due to process migration

Idea: modification of the general UCR strategy

Reference:

[Prete97]
Prete, C. A., “UPCR,” IEEE TCCA Newsletter, March 1997, pp. ___–___.

Veljko Milutinović

CACHING IN SMP:
IFACT

emilutiv@etf.bg.ac.yu

WIN (Word INvalidate protocol)

Tomašević + Milutinović, University of Belgrade, 1991.

Finer-grain, partial block invalidation

Full Block Invalidation
Partial Block Invalidation

Figure SMPI1: Explanation of the WIN protocol—essence (source: [Tomasevic92a], [Tomasevic92b]).

Legend:
M—memory.
 existence of partially valid blocks:

Word invalidation
1.
IW1 - one invalid word in a partially valid block

2.
IW2 - two invalid words in a partially valid block

Block ownership

Dynamic recognition of sharing status

Pollution point - criterion of inactive sharing

(when reached, invalidation of the entire block)

Read word bus operation

Operation
C1
C2
C3

initial state
unmod-shd
mod-shd
unmod-shd

P1: Write X(3)
mod-shd
IW1(3)
IW1(3)

P1: Write X(4)
mod-shd
IW2(3,4)
IW2(3,4)

P3: Read X(2)
mod-shd
IW2(3,4)
IW2(3,4)

P3: Read X(3)
mod-shd
IW2(3,4)
IW1(4)

P3: Write X(4)
IW1(4)
IW2(3,4)
mod-shd

P3: Write X(1)
IW2(1,4)
invalid
mod-shd

P3: Write X(2)
invalid
invalid
mod-exc

Figure SMPI2: Explanation of the WIN protocol—details(source: [Tomasevic92a], [Tomasevic92b]).

Legend:
IW1/2—newly introduced states.
Performance

 better data utilization

Less invalidation misses, higher hit ratio

Reduced false sharing

Appropriate sequential pattern of sharing

Additional complexity: one state bit per block + one valid bit per word

Reference:

[Tomasevic92a]
Tomasevic, M., Milutinovic, V.,
“A Simulation Study of Snoopy Cache Coherence Protocols,”
Proceedings of the HICSS-92, Koloa, Hawaii, USA, 1992, pp. 427–436.

[Tomasevic92b]
Tomasevic, M.,
“A New Snoopy Cache Coherence Protocol,”
Ph.D. Thesis, University of Belgrade, Belgrade, Serbia, Yugoslavia, 1992.

The STS/MOESIA

Current Research:

STS/MOESIA

STS/SMP (SiliconCompilationVLSI)

STS/DSM (SiliconCompilationVLSI)

References:

[Milutinović95a]
Milutinovć, V.,
“The Split Temporal/Spatial Cache Memory,”
UBTR, Belgrade, Serbia, Yugoslavia, 1995.

[Milutinović95b]
Milutinović, V.,
http://ubbg.etf.bg.ac.yu/~emilutiv/ieee90.html
Comment:

SUN - JAVA’/JAVA”

The CICA/RM

Current Research:

MemoryLess

MemoryFull

SmartHybrid

References:

[Milutinović95c]
Milutinović, V.,
“New Ideas for SMP/DSM,”
UBTR, Belgrade, Serbia, Yugoslavia, 1995.

[Milutinović95d]
Milutinović, V.,
http://ubbg.etf.bg.ac.yu/~emilutiv/ieee90.html

Comment:

INTEL - P7/P8

Prepared by Jelica Protić, Milo Tomašević, and Veljko Milutinović

_906971448.doc
��

N

2

1

C

C

C

X

inv

V

N

C

V

L

L

X

WRITE

—

0

M

V

—

0

V

X'

1

V

—

0

X

READ

X

1

M

V

X

1

V

2

C

X

1

V

1

C

X

1

_920713597.unknown

_920716438.unknown

_920718179.unknown

_920719167.unknown

_920713688.unknown

_906971473.doc
��

N

C

2

C

1

C

V

N

C

V

L

L

X

WRITE

X'

1

M

V

X'

1

V

X'

1

V

X'

1

X

READ

X

1

M

V

X

1

V

2

C

X

1

V

1

C

X

1

_906971667.doc
���

X

X

C

C

:

:

2

1

2

1

P

P

(1)

X

WRITE

(2)

X

READ

X

READ

X

inv

2

1

V

X

0

2

1

V

X

1

M

_906446796.unknown

_906447103.unknown

_906468246.unknown

_906468775.doc
���

X(1)

inv

1

1

0

V

1

X

X

C

C

:

:

2

1

2

1

P

P

(1)

X

WRITE

(2)

X

READ

2

1

2

1

V

M

_906446972.unknown

_906445551.unknown

_906445558.unknown

_906445542.unknown

