Veljko Milutinović

MPS:
Understanding the Issues

emilutiv@etf.bg.ac.yu

 Advanced RISC Microprocessors

The DEC Alpha AXP

Digital Equipment Corporation.

The first product realizing the Alpha AXP architecture is labeled 21064.

The Alpha is a 64-bit RISC-type microprocessor.

The PowerPC Family

IBM, Motorola, and Apple.

The first PowerPC implementation is the PowerPC 601 microprocessor
(also called MPC 601 by Motorola, and PPC 601 by IBM).

The Sun SPARC Family

Sun Microsystems.

The name SPARC stands for scalable processor architecture.

The SPARC architecture follows the Berkeley RISC design philosophy.

The MIPS Rx000 Family

MIPS Computer Systems.

The MIPS acronym stands for microprocessor without interlocked pipeline stages.

The MIPS system originated at Stanford University in the early eighties.

The Intel i860/i960 Family

The i860 RISC was first announced in 1989.
It features on-chip FPU, dual cache, and graphics unit
(the first microprocessor with such a feature).

The Motorola M88000 Family

The first members of the M88000 family are the MC88100 and MC88200.
They were followed by the RISC MC88110,
which is a two-issue superscalar.

The HP Precision Architecture Family

The PA-RISC architecture was designed to be scaleable
across technologies, cost ranges, performance ranges,
and to provide price-performance advantages.

Company
Internet URL of microprocessor family home page

IBM
http://www.chips.ibm.com/products/ppc/DataSheets/techlibsheets.html

Motorola
http://www.mot.com/SPS/PowerPC

DEC
http://www.europe.digital.com/semiconductor/alpha.htm

Sun
http://www.sun.com/sparc

MIPS
http://www.sgi.com/MIPS/products/index.html

Hewlett-Packard
http://hpcc920.external.hp.com/computing/framed/technology/micropro

AMD
http://www.amd.com/K6

Intel
http://www.intel.com/english/PentiumII/zdn.htm

[Stojanović96]
Stojanović, M., “Advanced RISC Microprocessors,” Internal Report, Department of Computer Engineering,
School of Electrical Engineering, University of Belgrade, Belgrade, Serbia, Yugoslavia, December 1995.

Microprocessors and Their Primary Manufacturers (source: [Prvulovic97])
Microprocessor
Company

PowerPC 601
IBM, Motorola

PowerPC 604e
IBM, Motorola

PowerPC 620*
IBM, Motorola

Alpha 21064*
Digital Equipment Corporation (DEC)

Alpha 21164*
Digital Equipment Corporation (DEC)

Alpha 21264*
Digital Equipment Corporation (DEC)

SuperSPARC
Sun Microelectronics

UltraSPARC-I*
Sun Microelectronics

UltraSPARC-II*
Sun Microelectronics

R4400*
MIPS Technologies.

R10000*
MIPS Technologies.

PA7100
Hewlett-Packard

PA8000*
Hewlett-Packard

PA8500*
Hewlett-Packard

MC88110
Motorola

AMD K6
Advanced Micro Devices (AMD)

i860 XP
Intel

Pentium II
Intel

Legend: * 64-bit microprocessors, all others are 32-bit microprocessors.

Microprocessor Technology
(sources: [Prvulovic97], [Stojanovic95])
Microprocessor
Technology
Transistors
Frequency [MHz]
Package

PowerPC 601
0.6 (m, 4 L, CMOS
2,800,000
80
304 PGA

PowerPC 604e
0.35 (m, 5 L, CMOS
5,100,000
225
255 BGA

PowerPC 620
0.35 (m, 4 L, CMOS
7,000,000
200
625 BGA

Alpha 21064
0.7 (m, 3 L, CMOS
1,680,000
300
431 PGA

Alpha 21164
0.35 (m, 4 L, CMOS
9,300,000
500
499 PGA

Alpha 21264
0.35 (m, 6 L, CMOS
15,200,000
500
588 PGA

SuperSPARC
0.8 (m, 3 L, CMOS
3,100,000
60
293 PGA

UltraSPARC-I
0.4 (m, 4 L, CMOS
5,200,000
200
521 BGA

UltraSPARC-II
0.35 (m, 5 L, CMOS
5,400,000
250
521 BGA

R4400
0.6 (m, 2 L, CMOS
2,200,000
150
447 PGA

R10000
0.35 (m, 4 L, CMOS
6,700,000
200
599 LGA

PA7100
0.8 (m, 3 L, CMOS
850,000
100
504 PGA

PA8000
0.35 (m, 5 L, CMOS
3,800,000
180
1085 LGA

PA8500
0.25 (m, ? L, CMOS
>120,000,000
250
?

MC88110
0.8 (m, 3 L, CMOS
1,300,000
50
299

AMD K6
0.35 (m, 5 L, CMOS
8,800,000
233
321 PGA

i860 XP
0.8 (m, 3 L, CHMOS
2,550,000
50
262 PGA

Pentium II
0.35 (m, ? L, CMOS
7,500,000
300
242 SEC

Legend:

x L—x-layer metal (x = 2, 3, 4);
PGA—pin grid array;

BGA—ball grid array;

LGA—land grid array;

SEC—single edge contact;

Microprocessor Architecture
(sources: [Prvulovic97], [Stojanovic95])
Microprocessor
IU registers
FPU registers
VA
PA
EC Dbus
SYS Dbus

PowerPC 601
32(32
32(64
52
32
none
64

PowerPC 604e
32(32 +RB(12)
32(64 +RB(8)
52
32
none
64

PowerPC 620
32(64 +RB(8)
32(64 +RB(8)
80
40
128
128

Alpha 21064
32(64
32(64
43
34
128
128

Alpha 21164
32(64 +RB(8)
32(64
43
40
128
128

Alpha 21264
32(64 +RB(48)
32(64 +RB(40)
?
44
128
128

SuperSPARC
136(32
32(32*
32
36
none
64

UltraSPARC-I
136(64
32(64
44
36
128
128

UltraSPARC-II
136(64
32(64
44
36
128
128

R4400
32(64
32(64
40
36
128
64

R10000
32(64 +RB(32)
32(64 +RB(32)
44
40
128
64

PA7100
32(32
32(64
64
32
?
?

PA8000
32(64 +RB(56)
32(64
48
40
64
64

PA8500
32(64 +RB(56)
32(64
48
40
64
64

MC88110
32(32
32(80
32
32
none
?

AMD K6
8(32 +RB(40)
8(80
48
32
64
64

i860 XP
32(32
32(32*
32
32
none
?

Pentium II
?
8(80
48
36
64
64

Legend:
IU—integer unit;
FPU—floating point unit;
VA—virtual address [bits];
PA—physical address [bits];

EC Dbus—external cache data bus width [bits];

SYS Dbus—system bus width [bits];
RB—rename buffer [size expressed in the number of registers];

*
Can also be used as a 16(64 register file.

Microprocessor ILP Features
(sources: [Prvulovic97], [Stojanovic95])
Microprocessor
ILP issue
LSU units
IU units
FPU units
GU units

PowerPC 601
3
1
1
1
0

PowerPC 604e
4
1
3
1
0

PowerPC 620
4
1
3
1
0

Alpha 21064
2
1
1
1
0

Alpha 21164
4
1
2
2
0

Alpha 21264
4
1
4
2
0

SuperSPARC
3
0
2
2
0

UltraSPARC-I
4
1
4
3
2

UltraSPARC-II
4
1
4
3
2

R4400
1*
0
1
1
0

R10000
4
1
2
2
0

PA7100
2
1
1
3
0

PA8000
4
2
2
4
0

PA8500
4
2
2
4
0

MC88110
2
1
3
3
2

AMD K6
6**
2
2
1
1***

i860 XP
2
1
1
2
1

Pentium II
5**
?
?
?
?

Legend:
ILP = instruction level parallelism;

LSU = load/store or address calculation unit;
IU = integer unit;
FPU = floating point unit;
GU = graphics unit;

*
Superpipelined;

**
RISC instructions, one or more of them are needed to emulate an 80x86 instruction;

MMX (multimedia extensions) unit.

Microprocessor Cache Memory
(sources: [Prvulovic97], [Stojanovic95])
Microprocessor
L1 Icache, Kbytes
L1 Dcache, Kbytes
L2 cache, Kbytes

PowerPC 601
32, 8WSA, UNI
—

PowerPC 604e
32, 4WSA
32, 4WSA
—

PowerPC 620
32, 8WSA
32, 8WSA
—*

Alpha 21064
8, DIR
8, DIR
—*

Alpha 21164
8, DIR
8, DIR
96, 3WSA*

Alpha 21264
64, 2WSA
64, DIR
—*

SuperSPARC
20, 5WSA
16, 4WSA
—

UltraSPARC—I
16, 2WSA
16, DIR
—*

UltraSPARC—II
16, 2WSA
16, DIR
—*

R4400
16, DIR
16, DIR
—*

R10000
32, 2WSA
32, 2WSA
—*

PA7100
0
—**

PA8000
0
—**

PA8500
512, 4WSA
1024, 4WSA
—

MC88110
8, 2WSA
8, 2WSA
—

AMD K6
32, 2WSA
32, 2WSA
—*

i860 XP
16, 4WSA
16, 4WSA
—

Pentium II
16, ?
16. ?
512, ?***

Legend:
Icache—on-chip instruction cache;

Dcache—on-chip data cache;
L2 cache—on chip L2 cache;

DIR—direct mapped;
xWSA—x-way set associative;

UNI—unified L1 instruction and data cache;
*
on-chip cache controller for external L2 cache;

**
on-chip cache controller for external L1 cache;

L2 cache is in the same package, but on a different silicon die.

Miscellaneous Microprocessor Features
(source: [Prvulovic97])
Microprocessor
ITLB
DTLB
BPS

PowerPC 601
256, 2WSA, UNI
—*

PowerPC 604e
128, 2WSA
128, 2WSA
512(2BC

PowerPC 620
128, 2WSA
128, 2WSA
2048(2BC

Alpha 21064
12
32
4096(2BC

Alpha 21164
48 ASSOC
64 ASSOC
ICS(2BC

Alpha 21264
?
?
?

SuperSPARC
64 ASOC, UNI
?

UltraSPARC-I
64 ASOC
64 ASOC
ICS(2BC

UltraSPARC-II
64 ASOC
64 ASOC
ICS(2BC

R4400
48 ASOC
48 ASOC
—

R10000
64 ASOC
64 ASOC
? (2BC

PA7100
16
120
?

PA8000
4
96
256(3BSR

PA8500
160, UNI
>256(2BC

MC88110
40
40
?

AMD K6
64
64
8192(2BC, 16(RAS

i860 XP
64, UNI
?

Pentium II
?
?
?

Legend:
ITLB—translation lookaside buffer for code [entries];
DTLB—translation lookaside buffer for data [entries];
2WSA—two-way set associative; ASOC = fully associative;
UNI—unified TLB for code and data;

BPS—branch prediction strategy;

2BC—two-bit counter;

3BSR—three bit shift register;
RAS—return address stack;
ICS—instruction cache size (2BC for every instruction in the instruction cache);

* hinted instructions available for static branch prediction.

intel®
PENTIUM™ PROCESSOR

 Binary Compatible with Large Software Base

– MS-DOS, Windows, OS/2, UNIX SVR4, NeXTstep 486, Solaris 2.0

 32-bit Microprocessor
– 32-bit Addressing

– 64-bit Data Bus

 Superscalar architecture

– Two pipelined integer units

– Under one Clock per Instruction

– Pipelined Floating Point Unit

 Separate Code and Data Caches

– 8K Code, 8K Write Back Data

– 2-way 32-byte Line Size

– Software Transparent

– MESI Cache Consistency Protocol

 Advanced Design Features

 273-Pin Grid Array Package

 BiCMOS Silicon Technology

 Increased Page Size

– 4M for Increased TLB Hit Rate

 Multi-Processor Support

– Multiprocessor Instructions

– Support for Second Level Cache

 Internal Error Detection

– Functional Redundancy Checking

– Built in Self Test

– Parity testing and checking

 IEEE 1149.1 Boundary Scan Compatibility

 Performance Monitoring

– Counts Occurrence of Internal Events

– Traces Execution through Pipelines

The Pentium processor provides the new generation of power for high-end workstations and servers. The Pentium processor is compatible with the entire installed base of applications for DOS, Windows, OS/2, and UNIX. The Pentium processor’s superscalar architecture can execute two instructions per clock cycle. Branch prediction and separate caches also increase performance. The pipelined floating point unit of the Pentium processor delivers workstation level performance. Separate code and data caches reduce cache conflicts while remaining software transparent. The Pentium processor has
3.1 million transistors and is built on Intel’s .8 micron BiCMOS silicon technology.
[image: image1.png]

Pentium™ Processor Pinout (Top View)

[image: image2.wmf]1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

A

B

C

D

E

F

G

H

J

K

L

M

N

P

Q

R

S

T

U

V

W

A

B

C

D

E

F

G

H

J

K

L

M

N

P

Q

R

S

T

U

V

W

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

TOP VIEW

Figure MPSS1: Pentium pin layout (source: [Intel93])

Legend: Self-explanatory.
Architecture Overview:

· 100% binary compatible with ancestors.

· Enhancements and additions to i486:

· Superscalar Architecture

· Dynamic Branch Prediction

· Pipelined Floating-Point Unit

· Improved Instruction Execution Time

· Separate 8K Code and Data Caches

· Writeback MESI Protocol (Data Caches)

· 64-Bit Data Bus

· Bus Cycle Pipelining

· Address Parity

· Internal Parity Checking

· Functional Redundancy Checking

· Execution Tracking

· Performance Monitoring

· IEEE 1149.1 Boundary Scan

· System Management Mode

· Virtual Mode Extensions

· New instructions
to accommodate the additional functionality.

· The MMU fully compatible with i386 and i486.

· The floating-point unit completely redesigned,
compared with i486.

Pin Functional Grouping

Function
Pins

Clock
CLK

Initialization
RESET, INIT

Address Bus
A31–A3, BE7#–BE0#

Address Mask
A20M#

Data Bus
D63–D0

Address Parity
AP, APCHK#

Data Parity
DP7–DP0, PCHK#, PEN#

Internal Parity Error
IERR#

System Error
BUSCHK#

Bus Cycle Definition
M/IO#, D/C#, W/R#, CACHE#, SCYC, LOCK#

Bus Control
ADS#, BRDY, NA#

Page Cacheability
PCD, PWT

Cache Control
KEN#, WB/WT#

Cache Snooping/Consistency
AHOLD, EADS#, HIT#, HITM#, INV

Cache Flush
FLUSH#

Write Ordering
EWBE#

Bus Arbitration
BOFF#, BREQ, HOLD, HLDA

Interrupts
INTR, NMI

Floating Point Error Reporting
FERR#, IGNNE#

System Management Mode
SMI#, SMIACT#

Functional Redundancy Checking
FRCMC# (IERR#)

TAP Port
TCK, TMS, TDI, TDO, TRST#

Breakpoint/Performance Monitoring
PM0/BP0, PM1/BP1, BP3–2

Execution Tracing
BT3–BT0, IU, IV, IBT

Probe Mode
R/S#, PRDY

Figure MPSS2: Pentium pin functions (source: [Intel93])

Legend:

TAP—Processor boundary scan.

Pentium™ Processor Block Diagram

Figure MPSS3: Pentium block digaram (source: [Intel93])

Legend:

TLB—Translation Lookaside Buffer.

Intel486™ Pipeline Execution

PF
I1
I2
I3
I4

D1

I1
I2
I3
I4

D2

I1
I2
I3
I4

EX

I1
I2
I3
I4

WB

I1
I2
I3
I4

Pentium™ Pipeline Execution

PF
I1
I3
I5
I7

I2
I4
I6
I8

D1

I1
I3
I5
I7

I2
I4
I6
I8

D2

I1
I3
I5
I7

I2
I4
I6
I8

EX

I1
I3
I5
I7

I2
I4
I6
I8

WB

I1
I3
I5
I7

I2
I4
I6
I8

Figure MPSS4: Intel 486 pipeline versus Pentium pipeline (source: [Intel93])

Legend:

PF—Prefetch;

D1/2—Decoding 1/2;

EX—Execution;

WB—Writeback.

Instructions Prefetch:

· In the PF stage,
two independent prefetch buffers
and the branch target buffer
operate in conjunction.

· One prefetch buffer requests prefetches
at any given time.

· Prefetches are requested sequentially,

until a branch is fetched.

· If a branch is fetched,
BTB predicts whether it will be taken or not.

· If predicted “not taken,”
prefetch requests continue sequentially.
If predicted “taken,”
the other prefetch buffer is enabled
and begins to prefetch as if the branch was taken
(if mispredicted, instruction pipes are flushed).

Pipeline Stage D1 (Decode 1):

· Two parallel decoders attempt to decode and issue
the next two sequential instructions.

· The decoders determine whether one or two instructions can be issued, based on the instructions pairing rules.

· If prefixes, an extra D1 clock is needed.

· Prefixes go only to the u-pipeline,

one per clock cycle;
base instruction is issued and paired with others,
after all prefixes have been issued.

· One exception!

Pipeline Stage D2 (Decode 2):

· The addresses of memory resident operands
are calculated.

· One clock cycle for both address calculations,
in displacement + immediate data instructions,
and base + index addressing instructions
(i486 requires two cycles).

Pipeline Stage EX (Execute):

· Used for both, ALU operations and data cache access.

· Two clocks if both present,
ALU operation + data cache access.

· All u-pipe instructions,
and all v-pipe instructions except conditional branches,
verified for correct branch prediction.

Pipeline Stage WB (Writeback):

· Instructions enabled to modify processor state,
and to complete the execution.

· The v-pipe conditional branches
verified for correct branch prediction.

Stall:

· Instructions in both pipes may stall
due to certain conditions.

· Stages D1 and D2 always entered and left at unison.
This means,
if one stalls, the other one will stall, too.

· Stage EX always entered in unison.

If u-pipe is stalled, the v-pipe is stalled, too.

If v-pipe is stalled, the u-pipe proceeds.

No successive instructions into EX
before both pipes advanced to WB.

Instruction Pairing Rules:

· Conditions for pairing:

(a) Both must be “simple”

(b) No RAW or WAW dependencies

(c) Neither can contain both,

a displacement and an immediate

(d) Instructions with prefixes

(other than 0f of JCC)

can occur only in the u-pipe.

· Exceptions: business as usual!

· Simple instructions are entirely hardwired,
and execute in one clock,
except ALU mem, reg (2 cycles)
and ALU reg, mem (3 cycles).

· Simple:
mov, alu, inc, dec, push, pop, lea, jmp, call, jccnear, nop.
Branch Prediction:

· BTB used to predict
the outcome of branch instructions.

· Current address in D1 is applied to BTB.

· If hit,
the assumption is that the branch will be taken
(if the assumption is correct,
execution goes without stalls and flushes).

· If miss,
the assumption is the branch will not be taken.

· A mispredicted branch
(weather BTB hit or miss)
causes the pipeline to be flushed.

· The number of delay clocks
depends on the branch type.

· Write Buffers + Memory Ordering:

· Two write buffers (one per pipe)
to enhance the performance of
consecutive writes to memory.

· Can be filled in one clock,

by two simultaneous write misses
in the two instruction pipes.

· Writes into these buffers are driven out
on the external bus,
using the strong write ordering.

Example:

· Loop for computing prime numbers:

for(k=i+prime; k<=SIZE; k+=prime)

flags[k]=FALSE;

· Allocation:

prime - ecx

k - edx

FALSE - al

· Assembly code:

inner_loop:

mov byte ptr flags[edx], al

add edx, ecx

cmp edx, FALSE

jle inner_loop

· Pairing: mov+add and cmp+jle

Execution time:

Texe[Pentium (with branch prediction)]=2

Texe[i486]=6

External Event Synchronization:

· When the system changes the value of
NMI, INTR, FLUSH#, SMI#, or INIT,
as the result of executing an OUT instruction,
these inputs must be at a valid state
three clocks before BRDY# is returned,
to ensure that the new value is recognized,
before the next instruction is executed.

· An OUT instruction can be used
to modify AZOM#.

Serializing Operations:

· After executing certain instructions,
the Pentium processor serializes instruction execution.

· This means that any modifications
to flags, registers, and memory,
for previous instructions are completed,
before the next instruction is fetched and executed.

· The prefetch queue is flushed
as a result of the serializing operations.

· The Pentium processor serializes
the instruction execution
after executing one of the instructions:
MSR (Move to Special Register),
INVD, INVLPG, IRET, IRETD, CPUID, ...

External Interrupt:

· Pentium recognizes 7 external interrupts
with the following priority:

BOSCHK#

R/S#

FLUSH#

SMI#

INIT

NMI

INTR

· Interrupts are recognized
at instruction boundaries.

· In Pentium, the instruction boundary is
at the first clock in the execution stage
of the instruction pipeline.

· Before an instruction is executed,
Pentium checks if any interrupts are pending.
If yes, it flushes the instruction pipeline,
and services the interrupt.

Writeback Buffers:

· In addition to two write buffers,
Pentium processor has three writeback buffers
(1-line-deep and 32-bytes-wide).

· First:
A dedicated replacement writeback buffer,
which causes writebacks due to linefill
that replaces a modified line in the data cache.

· Second:
One external snoop writeback buffer,
to store writeback caused by an inquire cycle
that hits a modified line in the data cache.

· Third:
One internal snoop writeback buffer,
to store writebacks
caused by a modified line in the data cache.

Model Specific Registers:

· Model specific registers (MSRs) are used in
execution tracing, performance monitoring, testing,
and machine check errors.

· Two new instructions are used
to access these registers:

RDMSR

WRMSR

· When these instructions are executed,
the value in ECX specifies
which MSR is being accessed.

Value
Register Name
Description

00H
Machine Check Address (MCA)
Stores address of cycle causing the execution

01H
Machine Check Type (MCT)
Stores cycle type of cycle causing the execution

0EH
Test Register 12 (TR12)
New feature control

Figure MPSS5: Model specific register manipulation (source: [Intel93])

Legend:

H—Hexadecimal.

Floating-Point Unit:

· On the same chip with the CPU.

· Heavily pipelined.

· One floating-point instruction (FPI)
in every clock cycle.

· It can receive up to two FPIs,
one of which must be an exchange instruction.

Floating-Point Pipeline Stages:

· The Pentium FPU has 8 pipeline stages;
the first 5 are shared with the integer unit.

· The floating-point pipeline stages are:

PF

Prefetch;

D1

Instruction decode;

D2

Address generation;

EX

Memory and register read;

X1

Floating-point execute stage # one;

X2

Floating-point execute stage # two;

WF
Rounding and writing the floating-point result
 to register file;

ER

Error report + update status word.

On-Chip Caches:

· One 8-KB data cache and
one 8-KB code cache.

· The data cache fully supports the MESI
writeback cache consistency protocol:
MESI = modified/exclusive/shared/invalid.

· The data cache is configurable as write-back
or write-through,
on a line by line basis.

· Parts of data memory
can be defined as non cacheable,
by software or external hardware.

· The code cache is inherently write protected,
and supports a subset of MESI called SI.

Cache Organization:

· Each cache is 2-way set associative,
with 128 sets in each cache,
each set containing two 32-bytes wide lines.

· Both caches use the LRU replacement,
which requires one bit per set,
in each one of the caches.

· Data cache includes two state bits to support MESI.
· Code cache includes one state bit to support SI.
· The operating modes of the caches are controlled
by the CD (code disable)
and NW (not write through) bits in CR0.

· For best performance:

CD=NW=0

· After reset:

CD=NW=1

· To disable a cache,
one must perform two steps:

CD=NW=1

Cache must be FLUSHed.

Organization of Instruction
and Data Caches

MESI State

MESI State

(
(

LRU

(
(

Set
TAG Address

((

TAG Address

WAY 0

WAY 1

Data Cache

State Bit (S or I)

State Bit (S or I)

(

LRU

(

Set
TAG Address

((

TAG Address

WAY 0

WAY 1

Instruction Cache

Figure MPSS6: Organization of instruction and data caches (source: [Intel93])

Legend:

MESI—Modified/Exclusive/Shared/Invalid;

LRU—Least Recently Used.

PCD and PWT Generation

Figure MPSS7: Generation of PCD and PWT (source: [Intel93])

Legend:

PCD—a bit which controls cacheability on a page by page basis;

PWT—a bit which controls write policy for the second level caches;

PTRS—Pointers.

Page Cacheability:

· Two bits for cache control (PWT and PCD)
are defined in the page table
and page directory entries.

· The states of these bits are driven out
on the PWT and PCD pins
during memory access cycles.

· The PWT bit controls write policy
for the second level caches:

PWT=1 (write through)

PWT=0 (write back)

· The PCD bit controls cacheability
on a page by page basis:

PCD=0 (caching enabled)

PCD=1 (caching disabled)

· The PCD bit is internally ANDed
with the KEN# signal,
to control cacheability
on the cycle by cycle basis.

Inquire Cycles:

· Inquire cycles are initiated by the system
to determine if a line is present
in the code or data cache,
and what its state is
(term “snoop cycle” has the same meaning).

· If the inquired (snooped) line is in data cache,
and in the “modified” state,
processor has the most recent information,
and must schedule a writeback.

Cache Flushing:

· The on-chip caches can be flushed
by external hardware or internal software.

· Flushing by hardware:
driving the FLUSH# pin low.

· Flushing by software:
The INVD and WBINVD instructions
cause on-chip caches to be invalidated.

The MESI Protocol:

· Every line in the Pentium processor data cache
is assigned a state.

· This is a set of rules
by which states are assigned to cache entries (lines),
based on Pentium activities,
and the activities of other bus masters.

· The states define whether a line is valid
(hit or miss),
whether it is available to other caches
(exclusive or shared),
and whether it has been modified
(modified or not).

M - Modified:
An M-state line is available in ONLY one cache,
and it is also MODIFIED (different from main memory).
An M-state line can be accessed (read/written to)
without sending a cycle out on the bus.

E - Exclusive:
An E-state line is also available in only one cache in the system, but the line is not MODIFIED
(i.e., it is the same as main memory).
An E-state line can be accessed (read/written to)
without generating a bus cycle.
A write to an E-state line will cause the line to become MODIFIED.

S - Shared:
This state indicates that the line is potentially shared
with other caches
(i.e., the same line may exist in more that one cache).
A read to an S-state line will not generate bus activity,
 but a write to a SHARED line
will generate a write-through cycle on the bus.
The write-through cycle may invalidate this line in other caches. A write to an S-state line will update the cache.

I - Invalid:
This state indicates that the line is not available in the cache.
A read to this line will be a MISS,
and may cause the Pentium processor to execute LINE FILL.
A write to an INVALID line causes the Pentium processor
to execute a write-through cycle on the bus.

Figure MPSS8: Definition of states for the MESI and the SI protocols (source: [Intel93])

Legend:

LINE FILL—Fetching the whole line into the cache from main memory.

Present State
Pin

Activity
Next

State
Description

M
n/a
M
Read hit;
data is provided to processor core by cache.
No bus cycle is generated.

E
n/a
E
Read hit;
data is provided to processor core by cache.
No bus cycle is generated.

S
n/a
S
Read hit;
data is provided to processor core by cache.
No bus cycle is generated.

I
CACHE# low

AND

KEN# low

AND

WB/WT# high

AND

PWT low
E
Data item does not exist in cache (MISS).
A bus cycle (read) will be generated
by the Pentium™ processor.
This state transition will happen
if WB/WT# is sampled high
with first BRDY# or NA#.

I
CACHE# low

AND

KEN# low

AND

(WB/WT# low

OR

PWT high)
S
Same as previous read miss case
except that WB/WT# is sampled low
with first BRDY# or NA#.

I
CACHE# high

AND

KEN# high
I
KEN# pin inactive;
the line is not intended to be cached
in the Pentium processor.

Figure MPSS9:
Data cache state transitions for UNLOCKED Pentium™ processor initiated read cycles*
(source: [Intel93])

Legend:

*—Locked accesses to the data cache will cause the accessed line to transition to the Invalid state.

Present State
Pin

Activity
Next

State
Description

M
n/a
M
write hit; update data cache. No bus cycle generated to update memory.

E
n/a
M
Write hit; update cache only. No bus cycle generated; line is now MODIFIED.

S
PWT low

AND

WB/WT# high
E
Write hit; data cache updated with write data item. A write-through cycle is generated on bus to update memory and/or invalidate contents of other caches. The state transition occurs after the writethrough cycle completes on the bus (with the last BRDY#).

S
PWT low

AND

WB/WT# low
S
Same as above case of write to S-state line except that WB/WT# is sampled low.

S
PWT high
S
Same as above cases of writes to S state lines except that this is a write hit to a line in a write through page; status of WB/WT# pin is ignored.

I
n/a
I
Write MISS; a write through cycle is generated on the bus to update external memory. No allocation done.

Figure MPSS10:
Data cache state transitions for UNLOCKED Pentium™ processor initiated write cycles* (source: [Intel93])

Legend:

WB/WT—Writeback/Writethrough.

Present State
Next

State

INV=1
Next

State

INV=0
Description

M
I
S
Snoop hit to a MODIFIED line indicated by HIT# and HITM# pins low. Pentium™ processor schedules the writing back of the modified line to memory.

E
I
S
Snoop hit indicated by HIT# pin low;
no bus cycle generated.

S
I
S
Snoop hit indicated by HIT# pin low;
no bus cycle generated.

I
I
I
Address not in cache; HIT# pin high.

Figure MPSS11: Data cache state transitions during inquire cycles (source: [Intel93])

Legend:

INV—Invalid bit.

Reference:
[Intel93]
“Pentium Processor User’s Manual,” Intel, Santa Clara California, USA, 1993.

Veljko Milutinović

MPS:
State of the Art

emilutiv@etf.bg.ac.yu

Pentium MMX

New instructions of the Pentium MMX processor (source: [Intel97])
EMMS—Empty MMX state

MOVD—Move doubleword

MOVQ—Move quadword

PACKSSDW—Pack doubleword to word data (signed with saturation)

PACKSSWB—Pack word to byte data (signed with saturation)

PACKUSWB—Pack word to byte data (unsigned with saturation)

PADD—Add with wrap-around

PADDS—Add signed with saturation

PADDUS—Add unsigned with saturation

PAND—Bitwise And

PANDN—Bitwise AndNot

PCMPEQ—Packed compare for equality

PCMPGT—Packed compare greater (signed)

PMADD—Packed multiply add

PMULH—Packed multiplication

PMULL—Packed multiplication

POR—Bitwise Or

PSLL—Packed shift left logical

PSRA—Packed shift right arithmetic

PSRL—Packed shift right logical

PSUB—Subtract with wrap-around

PSUBS—Subtract signed with saturation

PSUBUS—Subtract unsigned with saturation

PUNPCKH—Unpack high data to next larger type

PUNPCKL—Unpack low data to next larger type

PXOR—Bitwise Xor

Legend:
MMX—MultiMedia eXtension.

Pentium Pro:

Basic features:

· Birthday: Nov 1, 1995 (10 months after 1st silicon)

· Technology:
BiCMOS 0.6(m (0.3(m) 150MHz (200MHz) 5.5MTr

· Performance:
6.1 (8.1) SPECint95 + 5.5 (6.8) SPECfp95

· Processor: 32 bits (40 registers) BTB
Bus: 64 bits (internal and external) 50 MHz (66 MHz)

· Split transactions: Decoupled address/data cycles

· Superpipelined: 14 stages

· Superscalar (SHT)
IFU fetches 16 bytes per clock cycle;
IDU decodes 3 instructions per clock cycle

· Speculative and out-of-order execution

· On-chip L1 cache: 8KB (inst) + 8KB (data) 2wSA
+ buffers for 4 outstanding misses

· On-package L2 cache: 256 KB (dual-cavity PGA) 4wSA + 8ECC bits per 64 data bits

· Support for SMP/DSM:
MESI + dedicated ports (1 In + 1 Out)

· Dedicated I/O ports: 1 In + 1 Out (MCS + DCS)

Pentium Pro Block Diagram
(source: [Papworth96])

Legend:

AGU
Address generation unit
L2
Level-2 cache

BIU
Bus interface unit
MIS
Microinstruction sequencer

BTB
Branch target buffer
MIU
Memory interface unit

DCU
Data cache unit
MOB
Memory reorder buffer

FEU
Floating-point execution unit
RAT
Register alias table

ID
Instruction decoder
ROB
Reorder buffer

IEU
Integer execution unit
RRF
Retirement register file

IFU
Instruction fetch unit

(with I-cache)
RS
Reservation station

Pentium Pro and Pentium II Bus Structures
(source: [Intel97])

[image: image3.wmf]SB

DIB

CPU

L2

DRAM

CLC

¢

cache

chipset

memory & I/O

Pentium Pro

L2

CLC

²

CPU

DRAM

memory & I/O

chipset

Pentium II

cache

Legend:

SB—single independent bus;

DIB—dual independent bus;

CLC—control logic chipset;

L2—second level cache.

References:

[Papworth96]
Papworth, D. B.,
“Tuning the Pentium Pro Microarchitecture,”
IEEE Micro, April 1996, pp. 8–16.

[Intel96]
http://www.intel.com/procs/p6/p6white/index.html,
Intel, Santa Clara, California, USA, 1996.

Intel COO Craig Barrett’s Vision: 2000

· 1000M transistors per chip

· <40 Å gate oxide thickness

· <0.10 (m minimum lithographic dimension

· 4000 MHz

· 100 BIPS

Microprocessor Performance Trends

· Microprocessor’s performance trend:
2(every 18 months (performance at year 2001
should reach 100 SPECint95 (3500 SPECint92)

· How to design future microprocessors
so as to maintain the performance trend?

Process Technology: Delay Trends

[image: image4.wmf]1

10

100

1000

1.50

1.00

0.80

0.60

0.35

0.25

0.18

0.10

Technology Generation

m

m

Delay ps

Metal 2 (2 mm)

Transistor

Figure MPSS1: Microprocessor chip delay trends (source: [Sheaffer96])

Legend:
Metal 2 (2 mm)—Two level metal.

Process Technology: Area Trends

Silicon process technology
1.5 (m
1.0 (m
0.8 (m
0.6 (m
0.35 (m
0.25 (m

Intel386TM DX

Processor

Intel486TM DX

Processor

Pentium®
Processor

Pentium® Pro

Processor

est

est

Figure MPSU2: Microprocessor chip area trends (source: [Sheaffer96])

Legend:

est—estimated.

Frequency of Operation

[image: image5.wmf]1

10

100

1000

1970

1975

1980

1985

1990

1995

2000

Year

Frequency MHz

8080

8085

8086

8088

80286

386DX-16

486DX-25

386DX-33

486DX-33

486DX-50

486DX2-66

PP-66

PP-90

PPro-225

PPro-300

Figure MPSS3: Microprocessor chip operation frequency (source: [Sheaffer96])

Legend:
PP—Pentium Processor;

PPro—Pentium Pro Processor.

Microprocessor Complexity

[image: image6.wmf]1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

1965

1970

1975

1980

1985

1990

1995

2000

Year

Transistors Per Die

Microprocessor

Memory

4K

1K

16K

64K

256K

1M

4M

16M

64M

4004

8080

8086

80286

Intel386

TM

Intel486

TM

Pentium

®

Pentium

®

Pro

Figure MPSS4: Microprocessor and memory complexity (source: [Sheaffer96])

Brainiacs and Speedemons

[image: image7.wmf]0

0,5

1

1,5

2

0

50

100

150

200

250

300

350

400

MHz

SPECInt92/MHz

PowerPC

X86

ALPHA

Speedemons

Brainiacs

21064

21164

Pentium

PentiumPro

21264

Figure MPSS5: Microprocessor sophistication (source: [Sheaffer96])

Current Trends in Design

[image: image8.wmf]"Brainiacs" Time Budget

execution

instruction

fetch

memory

(data)

misprediction

L1 (data)

Figure MPSS6: Microprocessor time budget (source: [Sheaffer96])

Legend:
L1/2—First/second level cache.

[Sheaffer96]
Sheaffer, G.,
“Trends in Microprocessing,”
Keynote Address,
YU-INFO-96,
Brezovica, Serbia, Yugoslavia,
April 1996.

Veljko Milutinović

MPS:
IFACT

emilutiv@etf.bg.ac.yu

Ten Example Models of a RISC Design

Models:

· UCB RISC

· SU MIPS

· INTEL i86, i486, i860, i960

· MOTOROLA mc68000, mc88100

· SGI r4000

· SUN sparcV8

· DEC alpha21064

· IBM power601*

· HP pa7*

· AMD k5*

References:

[Milićev97]
Milićev, D., Petković, Z., Rašković, D., Stefanović, D., Živković, M., Jelić, D., Robal, M., Jelisavčić, M., Milenković, A., Milutinović, V.,
“Models of Modern Microprocessors,”
IEEE Transactions on Education, 1997.

[Milićev96]
http://ubbg.etf.bg.ac.yu/~emiliced/,
University of Belgrade, Belgrade, Serbia, Yugoslavia, 1996.

“Any clod can have the
facts, but having
opinions is
an art.”
Charles McCabe,
San Francisco Chronicle

120

[image: image9.wmf]C

h

a

n

n

e

l

T

h

e

Editor: Will Tracz, Loral Federal Systems, MD 0210, Owego, NY 13827; Internet, tracz@lfs.loral.com

Ten lessons learned from a RISC design

L
essons can be learned anywhere on earth, and we’ve accumulated a few from our international project—a 64-bit RISC processor design using silicon compilation (with 2.5 million transistors) that took two years to complete. Project teams were located on three continents: a US company provided the hardware description language; a European group (the two of us) was responsible for generating the HDL-based model that correctly described all signals on all pins for each instruction and every operational mode; and a Japanese company generated over 10 Mbytes of tests. Our team’s task was then to successfully pass these tests, after which another US company did the silicon compilation. Finally, another Japanese company did the fabrication. You can imagine the possibilities for complexity! Here are a few of the many lessons we learned.

Lesson #1: It’s tough for just one person to understand everything. A silicon compiler’s essential value is that it enables one person to fully understand a relatively complex design task; however, it’s extremely difficult for one person to manage every detail. In our case, the details were all signals on all pins for every instruction executed in each operational mode. It’s important that future HDL extensions contain language constructs to efficiently express such details!

Lesson #2: Coding rules for silicon compilation are underdeveloped. One nice thing about HDLs is that they let you adequately exploit the full parallelism at the lowest hardware levels for efficient programming. However, current silicon compilers get “confused” with too much parallelism, so the HDL programmer must serialize the description, which negatively affects programmer productivity. The solution? Develop design rules characterized by maximum parallelism yet without negative effects on synthesis efficiency!

Lesson #3: Don’t let silicon compiler warnings get you down. We’ve noticed that many silicon compilers generate correlated warnings. Consequently, a huge number of warnings results in a mere handful of coding rule violations. Therefore, the generated warnings must be orthogonalized!

Lesson #4: Be careful when naming variables. A silicon compiler shouldn’t specify how variable names are created. For example, our register variable names had to start with “r_.” This can be confusing, especially of required of the HDL programmers after they’ve mostly completed their task.

Source:

Milutinovic, V., Petkovic, Z., “Ten lessons learned from a RISC design,” IEEE Computer, March 1995, pp. 120. (Figure MPSI1)
Lesson #5: The environment keeps changing. The silicon compiler was fully developed by the time we started our work, but the programming rules that enabled synthesis were not. Consequently, creating rules was a trial-and-error experience. Also, the silicon-compilation design process is still lengthy, so the project requirements are likely to change during the design process. Nothing new!

Lesson #6: Testing is still the bottleneck. The first 90 percent of the project—design—was completed in six months, while the remaining 10 percent—testing—needed another 18 months!

Lesson #7: Beware the NIH problems. People who work in high tech tend to think very highly of themselves, and that characteristic caused some problems of the NIH (“not invented here”) variety. When a test failed, entirely too much time was spent trying to determine who made the error rather than getting on with fixing it. The typical reaction was always to blame someone else for the error.

Lesson #8: Working on three continents is both pleasure and pain. If the phone woke you up in the early morning, you knew the call was from Japan. If the phone woke you up late at night, you knew the call was from the USA. After awhile, you learned the best time to send e-mail to get a prompt response. Cultural differences, although a source of fun, can provoke misunderstandings that create hard feelings.

Lesson #9: Time to market is still an issue. A major driver of silicon compiler development is fast time to market. However, the goal has not yet been met to accelerate very sophisticated processor-logic designs adequately. There’s lots of research room for new methodologies in the over-one-million-transistor arena.

Lesson #10: We’re always more clever after the fact! As the saying goes, “hindsight is 20-20.” Looking back, it’s obvious that better planning up front would have eliminated many problems (although, unfortunately, none of the above!). Better planning would definitely have reduced the 18 months it took to eliminate the last 10 percent of errors. Also, we’re all now older and wiser, with two years’ more experience!

OUR PROCESSOR DESIGN PROJECT—with all its lessons learned—was one of life’s special experiences. During the two long years of work, one of the project team members passed away, and another one received a beautiful new baby. Sometimes, life resembles engineering so much!

Veljko Milutinovic and Zvezdan Petkovic

University of Belgrade

emilutiv@ubbg.etf.bg.ac.yu

Prepared by Jelica Protić, Milo Tomašević, and Veljko Milutinović

_898683982.unknown

_925559201.xls
Sheet: 桃牡ㅴ

Sheet: 桓敥ㅴ

㄁⸀

㄁⸀

㄁⸀

㄁⸀

、⸀

、⸀

、⸀

、⸀

、⸀

、⸀

、⸀

、⸀

、⸀

、⸀

、⸀

、⸀

9.0

600.0

10.0

400.0

40.0

300.0

50.0

250.0

80.0

125.0

100.0

100.0

110.0

80.0

130.0

60.0

_925739965.xls
Sheet: 桃牡ㅴ

Sheet: 桓敥ㅴ

1972.0

1969.0

1976.0

1973.0

1979.0

1975.0

1982.0

1977.0

1985.0

1981.0

1989.0

1985.0

1994.0

1989.0

1996.0

1992.0

1994.0

2000.0

4000.0

6000.0

16000.0

20000.0

64000.0

150000.0

256000.0

300000.0

1024000.0

1200000.0

4000000.0

3100000.0

1.6E7

2.1E7

6.4E7

2.56E8

_925836118.vsd

_925740021.xls
Sheet: 桃牡ㅴ

Sheet: 桓敥ㅴ

90.0

40.0

40.0

120.0

50.0

50.0

125.0

60.0

60.0

130.0

70.0

70.0

140.0

80.0

90.0

166.0

100.0

130.0

175.0

110.0

200.0

160.0

250.0

200.0

300.0

350.0

0.5

0.3

0.8

0.55

0.6

0.8

0.6

0.7

1.25

0.6

1.0

1.25

0.7

1.0

1.5

0.8

1.0

1.8

0.75

1.0

0.7

1.5

1.2

1.5

1.25

1.3

_925735635.xls
Sheet: 桃牡ㅴ

Sheet: 桓敥ㅴ

1974.0

1976.0

1979.0

1980.0

1982.0

1985.0

1989.0

1989.0

1991.0

1992.0

1993.0

1994.0

1995.0

1996.0

1997.0

2.0

4.0

5.0

6.0

8.0

16.0

33.0

25.0

33.0

50.0

66.0

66.0

90.0

225.0

300.0

_925559593.xls
Sheet: 桃牡ㅴ

Sheet: 桓敥ㅴ

攁砀攀挀�

椁渀猀琀爀甀挀琀�

洁攀洀漀爀礀�

䰁㈀ ⠀�

洁椀猀瀀爀攀�

55.0

7.0

8.0

15.0

15.0

55.0

7.0

8.0

15.0

15.0

_899019160.vsd

_925305822.vsd

_898691277.vsd

_898084179.unknown

_898084239.unknown

_898084268.unknown

_898683981.unknown

_898423354.xls
Sheet: Chart1

Sheet: Sheet1

execution

instruction fetch

memory (data)

L1 (data)

L2 (data)

misprediction

30.0

20.0

8.0

12.0

15.0

15.0

"Brainiacs" Time Budget

execution

30.0

instruction fetch

20.0

memory (data)

8.0

L1 (data)

12.0

L2 (data)

15.0

misprediction

15.0

_898084261.unknown

_898084254.unknown

_898084206.unknown

_898084219.unknown

_898084192.unknown

_898084142.unknown

_898084161.unknown

_898084122.unknown

