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ABSTRACT  
The paper deals with experimental designs used in conjoint analysis. The described approach 

permutes the structure of the underlying fractional experimental design to make multiple 

different sets of combinations. The resulting experimental designs, suggested to be called 

Isomorphic Permuted Experimental Designs (IPED), are statistically equivalent to each other 

while combining diverse sets of the variables and levels into different designs. By facilitating 

distinctive individual designs (for each respondent) IPEDs reduce a bias caused by some 

possibly unusually strong performing combinations, allows detection and estimation of 

interactions among variables as well as identification of pattern-based segments emerging from 

individual models of utilities. The paper researches the theoretical foundation of the approach, 

formalizes the methodology for algorithmic implementation and shows a practical example of 

utilization. 
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INTRODUCTION 

Conjoint analysis has become increasingly prevalent as a major approach to studying consumer 

preferences. Green and Srinivasan (1990a, 1990b), Green and Krieger (1991), Krieger, Green 

and Wind (2004) demonstrate that conjoint analysis has multiple advantages in quantifying 

consumer preferences. Conjoint analysis assumes that a product or service can be decomposed 

into its component variables (also called attributes, silos or categories) and levels (elements). By 

presenting a series of profiles (concepts), which are combinations of levels from different 

variables, to a number of respondents and finding out which are most preferred, conjoint analysis 

allows the determination of utilities of each of the levels called the individual utilities (part-worth 

or impact scores) of levels. 

 

Experimental design, a statistical plan that lays out the combinations of the profile elements, 

is a foundation of conjoint analysis, as well as several other experimentation-based approaches. 

Despite substantial research that has been done in the field and presented in many works such as 

Cattin and Wittink 1982; Carroll and Green 1995; Atkinson and Haines 1996 and Atkinson and 

Bailey 2001, the field is still active and presents an opportunity for research. Box et al. (2005) 

compares a range of experimental designs varying in the number of variables (factors) (applied 

to attributes in conjoint analysis), and the number of levels (matched to the elements in conjoint 

analysis) combined into runs (experimental units or rows of design) (matched to profiles in 

conjoint analysis). For simplification of terminology, we will use terms ‘variables’, ‘levels’ and 

’profiles’ as applicable to both experimental design and conjoint analysis. 

 

Moskowitz et al. (2005) points to the limitations of some traditional experimental designs 

methods. First, in such approaches an experimental design is applied to a set of variables only 

once creating a single design for all respondents (optionally randomized). Second, these 

approaches in most cases utilize the complete concept approach (used in full profile conjoint 

analysis for example), in which every combination of the levels must have all the variables 

present (at least one of the levels from each variable). In that case, it is impossible to estimate the 

absolute utility value of a level. Rather, the utility values are estimated relative to a reference 

level - one of the subjectively selected levels. With the complete concepts approach, one cannot 

compare the utilities of levels across different variables. Rather, one can only compare the 

utilities of levels within the same variable. 

 

Moskowitz et al. (2005) and Gofman (2006) summarize the limitations of the existing 

approaches and argue that they present several severe interlinked statistical problems:  

Biased Results. A limited number of distinct prototypes leads to a bias in outcome as levels 

appear in a limited number of combinations and a few potentially very strong levels 

might skew the results.  
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Insufficient variation of combinations also prevents detection and estimation of interactions 

(pair wise and higher order). 

Collinearity. Complete concepts do not allow estimating the true utility value of profile 

levels due to multicollinearity.  

No True Estimate of the Basic Level of Interest. The statistical analyses of such complete 

concepts require effects model regressions, in which there is no estimate of the additive 

constant (the basic level of consumer interest), and the requirement that the utilities of the 

levels in each variable add up to zero. 

No True Estimate of the Utility Value of the Individual Levels. The requirement of the 

constant sum equal to zero means that if a new level is introduced into the study, the 

utilities of the other levels must be readjusted because they have relative value. This 

readjustment means that one cannot use the results for databasing (absolute values of the 

utilities that could not be easily, if at all, compared across the variables or projects). 

 

Moskowitz (1994) suggested a practical approach that permutes the structure of the 

underlying fractional design to make multiple different sets of combinations, although there is no 

generalized model / description of the approach which hinders the implementation. Initial steps 

towards formalization of the process has been described in Moskowitz and Gofman (2005) and 

Gofman (2006).  

 

This paper further develops the permutation approach to experimental designs. Increasing the 

variability of designs would  improve the reliability of data and in turn would facilitate studying 

interactions among levels and identifying pattern-based segments in individual models of 

utilities.  

PERMUTING EXPERIMENTAL DESIGNS 
 

An alternative to complete concepts approach is shown in Moskowitz et al. (2005). It is 

called incomplete concepts (or with profiles having zero conditions). By arraying the 

combinations of levels in a specified experimental design with true zero’s, i.e., with some 

combinations entirely missing a variable, the researcher can estimate the absolute values of the 

utilities. As these designs take longer to be balanced, they require more profiles. This drawback 

is more than compensated in a majority of cases by the ability of these designs to generate 

absolute values allowing for comparison between the variables and under specific situations, 

across the projects.  

 

 Let’s analyze the approach based on a particular fractional experimental design shown in  

Table 1 - the Plackett Burman 5-Level screening design (Encyclopedia of Statistical Sciences, 

1985). It enables the researcher to investigate up to 5 variables in a profile in conjoint analysis, 
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and up to 4 levels per variable. Note that while the experimental design allows for 5 levels per 

variable, the fifth level is reserved for “null” or “no level present” (depicted as ‘0’ in Table 1). 

By allowing for a true “zero condition”, the researcher can use the regression analysis to better 

estimate the contribution of every level to respondent reactions (Moskowitz et al., 2005).  

 

 

Table 1. An example of an experimental design for 25 profiles, based on the Plackett Burman screening 

design.  is a permuted design experimental unit for variable i and level  j (0 means a missing level).  

 Design   Design (cont.) 

N Var
1 Var

2 Var
3 Var

4 Var
5 N Var

1 Var
2 Var

3 Var
4 Var

5 

1      14      
2      15      
3      16      
4      17      
5      18      
6      19      
7      20      
8      21      
9      22      

10      23      
11      24      
12      25      

13            

 

A conceptual model of the traditional approaches to experiential design is shown in Figure 1 

(left) in which an experimental design is applied to a set of variables only once creating a single 

design for all respondents. Optionally, this design is randomized (the same design with limited 

number of concepts, just the order of the concepts is randomized). A drawback of this approach 

is that it tests the levels in a limited number of combinations thus preventing detection of all 

interactions. There is also a possibility of a bias introduced due to the limited and fixed number 

of concepts tested by all the respondents (Moskowitz et al., 2005).  
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Individual (per respondent)

Isomorphic Permuted Experimental 

Designs

...
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(Permutation n)

Variables/Levels
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Original Experimental Design

Variables/Levels

Variables/Levels 

(Permutation 1)

Original Experimental Design

Variables/Levels

Single Experimental Design 

(for all respondents)

Traditional Approaches Proposed Approach

 
Figure 1. Conceptual model of traditional experimental designs approaches (on the left) and proposed 

individual isomorphic permuted experimental designs (IPED) (on the right).  

 

If we randomize the sequence of the variables and levels inside the variables before applying 

the experimental design, we can theoretically create a large number of unique concepts 

comprising unique individual designs (up to statistical limits imposed by the specific design). 

The proposed approach creates isomorphic designs that are statistically equivalent to each other 

while combining different sets of the levels in different combinations. The methodology is 

suggested to be called Isomorphic Permuted Experimental Designs (IPED). The proposed 

conceptual model of IPED (Figure 1, right) shows multiple permutations of the variables/levels  

before the experimental design is applied thus creating distinct designs for each respondent with 

thousands of unique concepts tested (depending on the number of the levels and the sample size). 

This in turn creates a diverse contextual environment for concept testing producing less biased 

results (Moskowitz et al., 2005). In addition, it creates a database of information which could be 

used for identification of the interactions between the levels in the design as it evenly tests all 

pairwise and higher order interactions with a sufficient sample (Gofman, 2006). 

 

In an experimental design with variables (A1, A2, …, An), an experimental unit ci (line i of the 

design) could be described as shown in Figure  2. A randomized subset Rk ⊆ (A1, A2, …, An) is 

selected from the original set of variables A. Rk contains variable placeholders (virtual variables). 

For example, the first level of Rk ( ) might contain variable A4 from the original set of 

variables;  might contain A1, etc. In another randomization, the placeholders will contain 
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different variables. Then, the experimental units are applied to the randomized (virtual) set of 

variables to create individual designs for respondents containing the levels , where  

is the actual variable assigned to the placeholder h during randomization k;   is the level 

number in the variable  corresponding to the experimental unit ci. 
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Figure 2. Creation of isomorphic permuted experimental designs.  is the experimental unit ci for variable l. 

With a set of variables (A1, A2, …, An), the experimental units are applied to an individually randomized 

array of variables Rk ⊆ (A1, A2, …, An), where   is a variable placeholder j in randomization k;  is 

an level in the profile Ci, where R(h,k) is the actual variable assigned to the placeholder h during 

randomization k;  x(h,ci) is the level number in the variable R(h,k) corresponding to the experimental unit ci 

(shown for the experimental design with matching number of the variables in the design and in the conjoint 

analysis).  

 

Figure 3 shows an example of an application of an experimental unit to randomized sets of 

variables. A single experimental unit is shown (line 1 in Table 1). In Set 1, the original order of 

the variables (A, B, C, D, and E) is used thus creating the profile 

 , 

where  is profile i for set 1;  is level j of variable X ( . The same process 

is applied to the set of the variables for the rest of the experimental units of the current design. 

 

For Set 2, the order of the categories is different (B, E, C, A and D). The same experimental 

unit applied to the new randomization (virtual variables) would produce another profile: 
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 . 

Note that the level numbers are the same as for  although the variables are different. 

4 1 3 1 1

A B C D E

ci

Rk

A4 B1 C3 D1 E1 Ci 

4 1 3 1 1

B E C A D

B4 E1 C3 A1 D1

4 1 3 1 1

C A D E B

C4 A1 D3 E1 B1

Set 1 Set 2 Set 3

is experimental unit applied to three randomizations (Rk) of the variables A, B, C, D, E to 
create profiles Ci   

ci 

is level k of variable XXk  
Figure 3. Examples of the creation of isomorphic permuted experimental designs. The experimental unit ci is 

applied to three randomizations (Rk) of the variables (A, B, C, D, E) to create concepts Ci.  Xj is level j of 

variable X ( . In Set 1, the variables are in the original order. In Sets 2 and 3, the variables 

are randomized. 

 

For Set 3, the resulting profile is: 

 . 

To enhance the process further by making combinations of the levels more evenly 

distributed, the idea of the virtual variables could be augmented with the notion of virtual levels 

(placeholder levels). For each randomization, in addition to randomizing the variables order, the 

levels order in each variable could be randomized as well, as shown at Figure 4. 

 

Figure 4 shows the case of the experimental design with a matching number of variables 

between the underlying experimental design and conjoint analysis.  is the experimental unit ci 

for variable l. With a set of variables (A1, A2, …, An), the experimental units are applied to an 

individually randomized array of variables Rk ⊆ (A1, A2, …, An).  A variable placeholder j ( ) in 

the randomization k contains an actual variable while level placeholders (level placeholder v 

of the virtual variable u contained in the placeholder ) contain actual levels’ numbers.  

is an level in the profile Ci, where R(h,k) is the actual variable assigned to the placeholder h 

during randomization k;  x(h,ci) is the actual level number in the variable placeholder R(h,k) with 

levels placeholders corresponding to the experimental unit ci . 
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Figure 4. Creation of augmented isomorphic permuted experimental designs that includes permutation of the 

levels and the variables.  is the experimental unit ci for variable l. With a set of variables (A1, A2, …, An), 

the experimental units are applied to an individually randomized array of variables Rk ⊆ (A1, A2, …, An), 

where   is a variable placeholder j in randomization k; is an level v of the actual variable u contained 

in the placeholder ;  is an level in the profile Ci, where R(h,k) is the actual variable assigned to the 

placeholder h during randomization k;  x(h,ci) is the actual level number in the variable placeholder R(h,k) 

with levels placeholders  corresponding to the experimental unit ci (shown for the experimental 

design with matching number of the variables in the design and conjoint analysis).  

 

Figure 5 shows examples of the augmented IPED. It uses the same experimental unit as in 

the example above. In Set 1, the original order of the variables (A, B, C, D, and E) as well as the 

original order of the levels are utilized thus creating the profile: 

 , 

where  is profile i for Set 1;  is level j of variable X ( . The same process 

is applied to the set of the variables for the rest of the experimental units in the current design. 
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Figure 5. Examples of the creation of augmented isomorphic permuted experimental designs that include 

permutations of both variables and levels. The experimental unit ci is applied to three randomizations (Rk) of 

the variables (A, B, C, D, E) to create profiles Ci.  Xj is level j of variable X ( .  Each 

variable contains four levels (Ek). In Set 1, the variables and the levels are in the original order. In Sets 2 and 

3, the variables and levels are randomized.  

 

For Set 2, not only is the order of the categories different (B, E, C, A and D) but the levels 

are also randomized in each variable. The same experimental unit applied to the new set (virtual 

variables and levels) would produce another profile: 

 . 

 

For Set 3, the resulting profile is: 

 . 

 

Further throughout the text the term IPED is applied to the augmented IPEDs. 

 

If the number of levels exceeds the capacity of the design selected, it is possible to apply the 

same design iteratively to parts of the variables and levels thus allowing for testing of different 

configurations of the variables and levels. To achieve this, two new data objects are introduced 

to the model: variable utilization array Wc: 

Wc ≡ (w1, w2, …, wn)   

and levels utilization matrix Me:  

Me  , 



Isomorphic Permuted Experimental Designs And Their Application In Conjoint Analysis 

  Page 10 of 19 

 

where wi is variable utilization frequency (how many times variable i has been selected in the 

permutations);  is levels utilization frequency (it keeps the number of times level j of variable i 

has been utilized);  – the largest number of the levels in the variables A1, A2, …An  (the 

empty cells are padded with zeros up to the maximum size of m). 

 

In the first iteration, a random subset R1 of variables A is chosen: R1
 

 A. The elements of 

the array Wc corresponding to the selected variables are adjusted (incremented to reflect the 

utilization of the variable in the iteration). This means that if variable Aj has been selected for the 

current iteration (permutation) of the experimental design, then wj = wj +1. After all the 

experimental units of the current iteration have been used, a new selection of the variables is 

executed:  

R2  A,  

where R1 ≠ R2  if the structure of the design does not exactly match the size of the project. 

 

This process continues until all variables are tested. During the selection process for R2 (and 

following iterations if required by a specific set of variables), array Wc is checked to balance 

utilization of the variables. In the ideal case, every variable should be selected an equal number 

of times across multiple iterations of the experimental design. In reality, the process aims to 

minimize the standard deviation of the number of tested variables contained in the array Wc: 

 
where   is the mean of variable utilization array levels. 

 

For practical purposes such as simplification of algorithmic implementation, the previous 

expression could be simplified as the following: 

 
where  is a minimization criterion for selecting variables in IPED. 

 

A similar approach is applied when the number of levels in the variables exceeds the number 

of the levels in the experimental design. In the first iteration, a random subset of levels  in 

each variable i is chosen: 

 , 

where  is a full set of the levels in variable i. 

 

The elements of the matrix Me corresponding to  are adjusted (incremented to reflect the 

utilization of the levels in the profile). This means that if the level j in variable Ai ( ) has been 

selected for the current iteration of the experimental design to the array , then  =  +1. 

After all the experimental units of the current iteration have been used, a new selection of the 

variables is executed: 
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, 

where  

 

This process continues until all levels are tested. During the selection process for  (and 

following iterations if required by the specific set of levels), matrix Mc is used to balance 

utilization of the levels. In the ideal case, every level should be selected an equal number of 

times across multiple iterations of the experimental design. It might be difficult or even 

impossible to achieve that if the variables have unequal sizes. In that case, the process aims to 

minimize standard deviation of the tested levels distribution for each row of the matrix Mc (levels 

of the same variable). For the row c (variable c): 

 
with parsimoniously simplified expression for implementation: 

 

where  is a minimization criterion of selecting levels into IPED;  is mean of the row c of 

matrix levels utilization Me; mc is the number of levels in variable c. 

 

Furthermore, if the levels have some constraints (mutual restriction, e.g., cannot appear 

together due to semantic or technological incompatibility), a new data object, levels constrains 

matrix, is introduced: 

 

where  is the level j of the variable i (the first row and the first column, shaded, are shown as 

captions);  is a restriction between the level v of the variable u and the level y of the variable 

x. 

In most practical cases, this matrix is either empty (no constraints) or sparsely populated. 

During the process of level selection the levels constrains matrix is checked to each new levels 

(and if needed variables) selection and the randomization is performed until the constrains are 

satisfied. The levels in the same variable are always restricted each to another as no two levels 

from a variable could appear together in one profile. 

  

It is possible to accommodate variable constraints as well by introducing a variables 

constraints matrix: 

 

where  is the variable i;  is the restriction between variables i and j. 

 



Isomorphic Permuted Experimental Designs And Their Application In Conjoint Analysis 

  Page 12 of 19 

 

If two variables are restricted, they can’t appear together. This means that the variable 

selection step should be repeated until the unrestricted variables are selected. Of course, the 

number of variables in the project should be larger than the number of the variable in the 

experimental design. Otherwise, any restriction would fail the project. 

A DEMONSTRATION OF THE APPROACH 
Following the steps described in Gofman and Moskowitz (2009), which analyzes a study of 

consumer preferences in a mature food category, we will demonstrate the approach on the 

example of donuts concepts. For demo purposes, sensory, image, usage and other descriptions of 

donuts are structured as a set of four variables with three levels in each (Table 2). The study 

utilizes the Plackett Burman 4-Factor 4-Level screening design (Encyclopedia of Statistical 

Sciences, 1985) with one level in each factor reserved for ‘zero condition’. This fractional design 

requires 20 profiles for each respondent (Table 3). Here,  represents ‘zero condition’ for 

category i when the category is not present in the test profile. Each level  (experimental unit 

for factor i, variable j) is applied to a set of variables and levels from a specific project. In our 

case, it would be an individually permuted selection of variables and levels. The process results 

in individual experimental designs for each respondent that are unique (to statistically possible) 

yet isomorphic. Table 4 shows examples of two permuted individual experimental designs for 

two respondents in a form prepared for dummy variable regression. In this table, levels of the 

study  (level j of variable i) have value ‘1’ if they are present in concepts (rows) and ‘0’ if they 

are absent. Together, the levels are independent variables in regression with the rating serving as 

the dependent variable (the last column in Table 4).  

 



Isomorphic Permuted Experimental Designs And Their Application In Conjoint Analysis 

  Page 13 of 19 

 

Table 2. Variables and levels of the sample project 

Code ELEMENTS 

VARIABLE A: BENEFIT 

A1 Simply the best cinnamon rolls in the whole wide world 

A2 Made fresh … especially for you … by you 

A3 From your favorite local bakery or pastry shop 

VARIABLE B: EMOTIONAL 

B1 A joy for your senses.. seeing, smelling, tasting 

B2 It feeds THE HUNGER 

B3 When you think about it, you have to have it… and after you have it, you can't stop eating it 

VARIABLE C: PRIMARY ATTRIBUTE 

C1 
Big, 3 inch spiraled rounds of dense chewy pastry like a donut with sweet cinnamon inside, 

covered with sweet icing 

C2 
Huge, thick, 4 inch spiraled rounds of light flaky pastry with sweet cinnamon inside, covered in 

a cream cheese frosting 

C3 
The ultimate chocolate indulgence with rich chocolate inside a huge, thick and gooey spiraled 

cinnamon bun with sweet icing and a gooey chocolate dripping over the top 

VARIABLE D: MOOD 

D1 Premium quality… that great classic taste, like it used to be 

D2 With extra chocolate, cream cheese, or sugary icing on the side just waiting for dipping 

D3 100% natural… and new choices every month to keep you tantalized 

 

 Table 3. Example of original (source) experimental design utilized for individual permutations.  

 Design  Design (cont.) 

Unit Var
1
 Var

2
 Var

3
 Var

4
 

 

Unit Var
1
 Var

2
 Var

3
 Var

4
 

1     11     

2     12     

3     13     

4     14     

5     15     

6     16     

7     17     

8     18     

9     19     

10     20     

 

Figure 6 shows sample screen captures of the interview in which a respondent evaluated 

experimentally designed concepts on a 1 to 9 rating scale.  
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Table 4. Examples of two permuted individual experimental designs (for two respondents) with ratings assigned by respondents to each 

individual profile. The permuted designs are based on the source design (Table 3). 

 

U
n

it
 Levels 

R
a

ti
n

g
 

 

U
n

it
 Levels 

R
a

ti
n

g
 

                        

Respondent 1 Respondent 2 

1 0 0 0 0 1 0 0 0 1 1 0 0 9 1 1 0 0 0 0 1 0 0 0 0 1 0 1 

2 0 0 1 0 0 1 0 0 0 1 0 0 5 2 0 0 1 1 0 0 0 0 0 0 0 0 4 

3 0 0 1 1 0 0 0 0 1 0 0 0 5 3 0 0 0 1 0 0 0 0 0 1 0 0 1 

4 1 0 0 1 0 0 1 0 0 0 0 0 5 4 0 0 0 0 0 1 1 0 0 0 0 1 1 

5 0 1 0 0 1 0 0 1 0 0 1 0 5 5 0 0 1 0 0 0 0 1 0 0 1 0 3 

6 0 1 0 0 0 0 1 0 0 1 0 0 5 6 0 1 0 0 0 0 0 0 1 0 0 0 7 

7 0 0 1 0 0 0 0 0 1 0 0 1 5 7 0 1 0 0 1 0 1 0 0 0 1 0 2 

8 0 0 0 0 0 0 0 1 0 0 1 0 9 8 0 0 0 0 0 1 1 0 0 1 0 0 1 

9 0 1 0 0 0 0 0 1 0 1 0 0 9 9 0 1 0 1 0 0 0 0 1 0 0 0 1 

10 0 1 0 0 0 1 0 0 1 0 0 1 7 10 0 0 1 0 0 1 0 0 1 0 1 0 1 

11 0 0 1 0 1 0 1 0 0 0 0 0 5 11 1 0 0 1 0 0 0 1 0 0 0 1 1 

12 1 0 0 0 0 1 0 0 0 0 1 0 2 12 0 0 1 0 0 0 0 0 1 0 0 1 5 

13 0 0 0 0 0 1 0 1 0 0 0 0 2 13 1 0 0 0 0 0 0 1 0 0 0 1 1 

14 0 0 1 0 1 0 1 0 0 0 1 0 5 14 0 0 0 0 1 0 0 0 0 0 0 1 1 

15 0 0 0 1 0 0 0 0 0 0 1 0 7 15 0 0 1 0 1 0 1 0 0 0 0 0 1 

16 1 0 0 0 1 0 0 1 0 0 0 1 2 16 1 0 0 1 0 0 1 0 0 1 0 0 1 

17 1 0 0 1 0 0 0 0 1 1 0 0 2 17 0 1 0 0 0 0 0 0 0 1 0 0 7 

18 0 1 0 1 0 0 0 0 0 0 0 1 6 18 0 1 0 0 0 1 0 1 0 0 0 0 1 

19 1 0 0 0 0 1 0 0 0 0 0 0 3 19 0 0 0 0 1 0 0 1 0 0 1 0 1 

20 0 0 0 0 0 0 1 0 0 0 0 1 9 20 1 0 0 0 1 0 0 0 1 1 0 0 1 
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Figure 6. Sample screen captures of a respondent interview (utilizing Ideamap.NET online tool). The first profile has one variable missing. 
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The detailed results interpretation, pattern based segmentation of consumers and interaction 

analyses could be found in Gofman and Moskowitz (2009) and in Gofman (2006).  

DISCUSSION AND CONCLUSIONS 
 

The permuted designs are pivotal to the ability to detect any and all interactions, introduced 

in Moskowitz and Gofman (2005) and Gofman (2006). Due to the randomized permutation of 

the design, IPED could create hundreds of isomorphic executions that are unique (up to 

statistically possible in a specific design). As a result, a sufficiently large sample of respondents 

could evenly test every possible pairwise combination (and higher order interactions if needed) 

of the levels multiple times thus creating an opportunity to analyze their contribution to the 

additive model through a regression.  

 

The application of IPEDs to individual respondents models provides the following benefits: 

 elimination of selection bias 

 homogeneous testing of the levels of the conjoint analysis ensuring multiple exposure 

of each possible combination of the level to the respondents (with a reasonable 

number of respondents)  

 facilitation of detecting and estimation of the interactions between the levels 

(including the higher order interactions) 

 facilitation of segmentation of the respondents based on the patterns of their 

responses. 

 

The researched approach tests multiple prototypes with unique combinations of levels on an 

individual basis thus improving the robustness of the predicted consumer preferences data 

compared to the traditional approaches of evaluating a limited number of pre-selected prototypes 

or utilizing a single experimental design for every respondent. This results in better products and 

launches that are more successful.  

 

The nature of isomorphic permuted experimental designs facilitates the discovery of the latent 

consumer needs and wishes that they might not be able to identify themselves or articulate in an 

actionable way. Resulting patterns-based segmentation and discovery of any and all interactions 

lead to the rules (quantitative relationships between the features) that make the products or 

services more targeted and competitive.  

 

There are many new applications of the approach to the emerging areas such as Web page 

design and package optimization (Gofman 2007; Gofman, Moskowitz, and Mets 2009a,b). The 

advantages of the approach, such as the ability to database and compare results, opened doors to 



Isomorphic Permuted Experimental Designs And Their Application In Conjoint Analysis 

  Page 18 of 19 

 

a new science Mind Genomics (Moskowitz, Gofman, Beckley and Ashman 2006; Moskowitz, 

Gofman and Beckley 2006; Gofman, Moskowitz, and Mets 2009c). 

  

Some practical limitations should be accounted for in the applications of the methodology. An 

average respondent has an attention span of about 15 minutes (Moskowitz et al., 2005) and thus 

could evaluate up to 60-75 concepts (approximately up to 40 levels). For this size of conjoint 

analysis project, a sample of 200 or more respondents would produce a dataset for statistically 

significant analyses of pairwise interactions between the levels. Furthermore, with a larger 

amount of data it is possible to detect and estimate explicit interactions between every 

combination of three levels in the projects although the empirical data is not sufficient at the 

point of writing this paper to decide about the importance of the third and higher levels of 

interactions.  

 

In the majority of practical applications, the projects are executed without restrictions to avoid 

the complexity of setting and satisfying the constraints. In addition, any constraint would make 

the experimental design less robust. In some cases, they should be considered during the analysis 

stage rather than during the data collection. 
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