Pig Latin

Zoran B. Djordjevic
csci €185 Big Data Analytics

@Zoran B. Djordjevic¢ 1

Pig
Map Reduce is relatively difficult to program.

Data processing is usually accomplished in terms of data flow
operations, such as loops and filters.

In Map Reduce, you think at the level of mapper and reducer
functions and job chaining.

Certain functions that are treated as first-class operations in higher-
level languages are nontrivial to implement in Map Reduce.

Pig is a Hadoop extension that simplifies Hadoop programming by
giving you a high-level data processing and data flow language
while preserving Hadoop’s scalability and reliability.

Yahoo! Research developed Pig to address the need for a higher
level language that replaces Map Reduce programming.

Yahoo runs 40 percent of all its Hadoop jobs with Pig.

@Zoran B. Djordjevi¢ 2

3/30/2013

Pig Latin

Pig has two major components:

A high-level data processing language called Pig Latin .

A compiler that compiles and runs your Pig Latin script on Hadoop.
Pig works on Hadoop clusters, but also supports a local mode for
development purposes.
Pig simplifies programming because of the ease of expressing your
code in Pig Latin.
The compiler helps to automatically exploit optimization
opportunities in your script.
As the Pig compiler improves, your Pig Latin program will also get
an automatic speed-up.
Crucial to efficient use of Pig are the design choices of its
programming language (Pig Latin), the data types it supports, and
its treatment of user-defined functions (UDFs) as first-class citizens.

@Zoran B. Djordjevi¢ 3

Pig & Pig Latin

Motivation
Map Reduce is very powerful, but:
= |t requires a Java programmer.
= User has to re-invent common functionality (join, filter, etc.)
Pig Latin is a higher level language, that:
Increases productivity.
= |n one test 10 lines of Pig Latin = 200 lines of Java.
= What took 4 hours to write in Java took 15 minutes in Pig Latin.
Opens the system to non-Java programmers.
Provides common relational-like operations like:
= join,
= group,
= filter,
= sort.

@2Zoran B. Djordjevi¢ 4

3/30/2013

Data Flow Language

Pig Latin programs are written in a sequence of steps where each step
is a single high-level data transformation.

The transformations support relational-style operations, such as filter,
union, group, and join.

A Pig Latin program processing a search query log may look like

log = LOAD 'excite-small.log' AS (user, time, query);

grpd = GROUP log BY user;

cntd = FOREACH grpd GENERATE group, COUNT (log);

DUMP cntd;

Operations are relational in style, however, Pig Latin is a data flow
language. A data flow language is friendlier to programmers who
think in terms of algorithms, which are more naturally expressed by
the data and control flows.

A declarative language such as SQL is easier for analysts who prefer to
just state the results one expects from a program.

Hive is a different Hadoop project which is closer to the SQL model.

@Zoran B. Djordjevi¢ 5

Installing Pig

We can download the latest release of Pig from
http://pig.apache.org/releases.html .

Pig requires Java 1.6 or later. We need to point JAVA_HOME to the
root of our Java installation. Windows users should install Cygwin .
Your Hadoop cluster should already be set up before installing Pig.
Both a real cluster in fully distributed mode, and a pseudo-
distributed setup is fine for practice.

You install Pig on your local machine by unpacking the downloaded
distribution. There’s nothing to modify on your Hadoop installation.
Think of the Pig distribution as a compiler and some development
and deployment tools.

Pig enhances MapReduce programming but is otherwise only
loosely coupled with the production Hadoop cluster.

If in hurry we could run Pig in the Cloud using services of AWS
Elastic Map Reduce service

@Zoran B. Djordjevi¢ 6

3/30/2013

Download and Setup on CDH4.2 VM

= For any Pig release you can go to
http://pig.hadoop.org/releases.html
= Download and untar archives and copy them to a customary place. Like:
$ tar xzf pig-0.5.0.tar.gz
$ sudo mv pig-0.5.0.tar.gz /usr/local
= To match pig with the installation of CDH4.2 we have on our VM-s
we better download the Cloudera’s Pig tarball:
pig-0.10.0-cdh4.2.0.tar.gz
= Just like the above, we will untar the tarball and move the resulting
directory to /usr/local. Subsequently we set JAVA HOME,
PIG INSTALL and PIG CLASSPATH environmental variables.
= PIG CLASSPATH points to the directory where Hadoop’s file
hadoop-site.xml resides. On our installation of CDH4.2 that
directory appears to be /etc/hadoop/conf .empty

= We add all of those variables to our .bash profile file.

@Zoran B. Djordjevi¢

.bash profile file

* The following is the relevant content of the .bash profile file:
JAVA_HOME=/usr/local/java/jdkl.6.0_31

export JAVA HOME
PIG_INSTALL=/usr/local/pig-0.10.0-cdh4.2.0

export PIG INSTALL
PIG_CLASSPATH=/etc/hadoop/conf.empty

export PIG _CLASSPATH
PATH=$JAVA_HOME/bin:$PIG_INSTALL/bin:$PATH

export PATH

= To make new variables visible to your user, type:
$ source .bash_profile

$ echo $PIG_INSTALL

/usr/local/pig-0.10.0-cdh4.2.0

$ which pig

/usr/local/pig-0.10.0-cdh4.2.0/bin/pig

NOTE: In this CDH4.2 distribution, an important jar file, piggybank.jar,

resides in the directory:
/usr/local/pig-0.10.0-cdh4.2.0/contrib/piggybank/java

@Zoran B. Djordjevic¢

3/30/2013

Pig and Elastic MapReduce

Amazon Elastic MapReduce is a web service which provides you with the
infrastructure on which you could run Pig programs.

Pig compiler generates a series of map and reduce routines that run on a
Hadoop cluster for efficient processing of large data sets.

EMR utilizes a hosted Hadoop framework running on the web-scale
infrastructure of Amazon Elastic Compute Cloud (Amazon EC2) and Amazon
Simple Storage Service (Amazon S3).

Using Amazon Elastic Map Reduce, you can instantly provision Hadoop
clusters of arbitrary size in order to perform data-intensive tasks for
applications such as web indexing, data mining, log file analysis, machine
learning, financial analysis, scientific simulation, and bioinformatics research.
Amazon Elastic Map Reduce automatically sub-divides the data in a job flow
into smaller chunks so that they can be processed by map functions in
parallel, and eventually recombined into the final solution (the “reduce”
function).

Amazon S3 serves as the source for the data being analyzed, and as the
output destination for the end results.

@Zoran B. Djordjevi¢ 9

Create a new Job Flow

= Login into AWS Management Console
= SelectElastic MapReduce
= (ClickonCreate New Job Flow

m

L O | -h s nmnasnoncdn e A R =S e e ez) e G- -
AR AMATOR.FAM fm: Zred f CAsAGTAY oW onb SRt Ovaan e Walrama, Zaran Djan

S T Amazen Elestic A

o ° Aapltmlhnz CcLcFcre

Fagen: [1 RTam = Creslshe—. ooy =

whardn: | =1 - S e e

Humik Alala Casalian Filk Flupetrrl Tiniw M
O teozlizedl SCH-Lolb AL AL Lhzuz & imnzs 1
@Zoran B. Djordjevi¢ 10

3/30/2013

3/30/2013

Select Sample Application

14 S1- 1Tk

T TR TR By W

M- &=

HE o Lol IUURY ERNE VR ST

'
AP CARSE

nom. dln .. m1 .1a mRacTr '
B T T A e T Y |
i amra A

Bhbaatar bl ghg)

A A akn md P ReE LA T LA TR

ook FEH LET S = HIEE CRE L A
i m rr i ETHEER R H S
) HEFTETr KT o ni W ke r
ARTF
FE
fer.me on.
Sl LS - |
@Zoran B. Djordjevi¢ 11

Select your S3 bucket for output

THE TP S S i A =S e

Lredle d e Job | low HLE

EFEZI®F PRAANETERS
Coooc Ectmcer crdor oeconkrg or i3 g soracor ckatrg Srovcrasaec Mg toEniz.

cho=aE maan poamdsd == S0 mes e achenoema theas ckbe & o vk le Aoks banema ot 1k Hncsar—isaees B cas

Heu mir-rash- = -m €7 1 hes e,

Sept LecatlenT: (o azhizmop zd
T=a a=sh=n =

Input Lacetan: [azizmop zd
Toa 15 -hie

achziepol |
% cksbHok cackann—-a neiE -l

arzl I |
PG ETR NI i DIV O B T ARl bl L)

4-n

1 clAnt b SerATE ==a —ATEF "aT -8 Hhe e
* nea ke

el Ea-nrsd-ad

@Zoran B. Djordjevi¢ 12

Select your Key and Number of Instances

Lredle d wew Job | low

COHFGLAE 207 IMSTALMGEE

Syxrdcrumasare bspc cFECE rezorecsscy’d 0 by wr voacE Hom o

Munaber ot Instances

= BN e R TN RTERees [Asca traclehe TSR 1S WEIECE BT

Typa at [nskence -:

g al b
<ci nlHLTT w
e un

[R TR LR

A 112 Keg Fair

P T N U R TR R TI [I TR LC T IR TR U R R TR TR R, [T IR U (L LR I T T}

Sofiper o el

P e L moee

thin 2ulin

RS]
AmAazen 53 Lop Pakh:

W ammaat B30 - a0t s wenred b

=r= w-ain- dsh q-ma.
Enebic Hedeop Dobupping: = Hz

Tnoensha 1sdat DEh g e =1 ReAt B €T 00 R ameas SImnatl

FEa-nrsd-ad
[Lcminme 0

@Zoran B. Djordjevi¢

13

Job will run for a few minutes

S & s

™ or | O F-

BRI AMATOLLFAM fmi o Ir-d f

TA-ANTAY TaTm Rk

{ el TP Wriramea, Pavan Dlardq{suelr Sa— e

. I amAazen Elsstic Sana
Treswin 1 CaLcFoerk |

I = . |,'E_.n-|..-- |,ﬁ|._- |
£ % " =~ rov-. 3 3
Flapoteel Ti

L

liswd liea

= Hie

oLl Lhzu o J =1 J

1 Inh Fine salartad

H- wFl 1 5 T ETEN AN HETT rhowe-

RRE ST 1

3
4 [d: 1 EFIECTHA e Sur Crestan Dake: 0.0 2FCE L0 LEEET

“dunms RSN il e - b

Steta: STERTIM: End Diake:

Lasd Slale o IH HEn (RN

Avallabllity Tone: -E In=tance Caunk: 4 =]
E1 *
0T PR amaEaas sh ar-rmes L5, o1 B s Lares 31 ek recs e, Tasd=a- .

et

“wTnn cEL o
AT AMATSINL JI TR

@Zoran B. Djordjevi¢ 14

3/30/2013

[=:achclzgeaspe
11 - wFl 1

Ery Rame:

LA & B B P T

Job is Completed

[[e Wy R Y | LhouzJd s <

S LLHTIETER

A4 dan e

AACTEE A HETT

o irn-n 1

[RIITRAL]H - b,
‘Hastar Publie Db B
B R AN I T E T e T
Strps:
Step |, Stert | End ‘Haln
S [1 e | e | 7 e
i ¥ e L e ¥ e
SCNME | g pea- | ECE IE AAclazi cIprsdanToiaciss k- ifmimmrm e mrpoe] (= o g i e 2 remfm
b CCHMETED PR ET L rrer cr PelazTi eprsddz oy R ik
. e e R I EEE]
o e (IR ERY] e e AL L YT
T -t YT
1 s e
Vi iy
w
@Zoran B. Djordjevi¢ 15

Go to your Bucket, Download Result

= Click a few levels into your bucket until you find your results

S dax

idaros WU 2700 B
o oo sulm

value 625

views 426

login 224

search 195

items 112

bigtable 68

google+bigtable 59

%$23%21%2Fusr%2Fbin%2Fperl+-w
philmont+pictures 45
%$23%21%2Fusr%2Fbin%2Fperl
philmont 37
googlet+quick+links 33
pvctinstrument 33

=la-

Sl wga o R e E T S B e e w0 E] L

lic

£

514

“FC Lazikdadlce

é_ld::r.'.rlcx g 23 - g e]

46

44

@Zoran B. Djordjevic¢

16

3/30/2013

Example of a Pig Script: do-report.pig

-- setup piggyback functions
register file:/home/hadoop/lib/pig/piggybank.jar
DEFINE EXTRACT org.apache.pig.piggybank.evaluation.string.EXTRACT () ;

-- import logs and break into tuples
raw_logs =
-- load the weblogs into a sequence of one element tuples
LOAD 'S$INPUT' USING TextLoader AS (line:chararray);
logs_base =
-- for each weblog string convert the weblong string into a

—-- structure with named fields

FOREACH
raw_logs
GENERATE FLATTEN (EXTRACT (
line,
TAONSH) (ANSH) (\N\S+H) ANTON\w: /T \\s [H\N=T\\A{4}) \\T " (.+2)" (\\S+) (\\S+)
AN R R A O P)
)
AS (
remoteAddr: chararray, remotelLogname: chararray, user: chararray, time:
chararray,

request: chararray, status: int, bytes string: chararray, referrer: chararray,
browser: chararray

)

referrer matches '.*google.*'
@Zoran B. Djordjevi¢ 17
How could we Access Pig
= Submit a script directly.
= |nteractively, through Grunt, the pig shell.
= Through PigServer, a Java class, with a JDBC like interface,
that allows Java programs to execute Pig queries.
= Pig could only be run on your Client machine.
= No need to install anything extra on your Hadoop cluster.
= Jobs Pig initiates will run on the Hadoop clusters.
= Pig needs to be installed separately.
= |n order to run local tests you need both local Hadoop and Pig
installations.
= |nthe development environment, Pig could be run in a local mode
which does not use Hadoop at all.
@Zoran B. Djordjevic¢ 18

3/30/2013

How Pig Works

= You write a script:

-- max_temp.pig: Finds the maximum temperature by year

records = LOAD 'input/ncdc/micro-tab/sample.txt'
AS (year:chararray, temperature:int, quality:int);

filtered_records = FILTER records BY temperature != 9999 AND

(quality == 0 OR quality == 1 OR quality == 4 OR quality == 5 OR quality ==

9);

grouped records = GROUP filtered records BY year;

max_temp = FOREACH grouped_records GENERATE group,
MAX(filtered_records.temperature);

DUMP max_temp;

= Pig parses, checks, optimizes, creates execution plan, and submits
apig.jar toHadoop

= Execution plan contains Map and Reduce routines. Sometimes
many of them.

= Pig monitors job progress and reports on errors and results.

= |s Pig slowing you down? Pig adds 20-40% overhead.

@Zoran B. Djordjevic¢ 19

Data Types

= Basic data types of Pig Latin are:
Java like scalar type:
" int,
= long,
= double,
= chararray,
= bytearray.
Complex types:
= map: associative array (Hash table).
= tuple: ordered list of data, elements maybe of any scalar or complex type.
= bag: unordered collection of tuples

= Pig’s philosophy toward data types is summarized in its slogan of
“Pigs eat anything.” Input data can come in any format. Popular
formats, such as tab-delimited text files, are natively supported.

= Pigis architected from the ground up with support for user-defined
functions.

@Zoran B. Djordjevic¢ 20

3/30/2013

10

Getting Pig Development Environment

= One way of establishing Pig Development environment is to start an
Elastic MapReduce Job Flow and select an Interactive Pig session.

= From the list of AWS Services, select Elastic MapReduce.

My - Ve-Sphvs Haowpr = .‘|—,r.'-".'.wnu::'r.'.'.-:l-m =

T I

It % b dardibrg. B osob i dawco.. 0 onna.

PR T TR L T TR DR 1| T L DI || A R 3 s |
cadm.Alaco.. B Sk AR s B

Histary All NS Sardlcas R i A R R
- =2 . il -~ =y

B Haer e Mao=rerr Ll e brhandor - T

e Slorage S len LDz e l:' TlaalZzad
v bres raanss B oSk

[R Dxacyierld Mgz e L = IsleTivzine

W ciherags by A ers B i o

E raviae ' vz

= On the following screen select “Create New Job Flow”

@Zoran B. Djordjevi¢

21

Name the Job, select Hadoop Version

= Onthe “Create New Job Flow” screen, please name your job, and more

importantly select

= Hadoop Version 0.20.205 (MapR M3 Edition v1.2.8).
= Pig will run on other versions of Hadoop. There are just some issues with

setup on those other releases.

= Also select “Run your own application and” and “Pig Program”

Credle d Mew ol o

SEFHE 103 P

G 1T I U0 O N T T L T NS P R [T P | S S I ET R 1 PSSy e S (T (T8 T TR I U 1 R W LI O (R B R R S

Job Flow MameT: [fal e sezazk gizb o

Jhenes & cac-1th=a -a—accrota ch-as Y- -ass ncbhevs B oca nog oA,

Hedeep Verslon™ |y gop L 200 090k W0 Zdliznsl
“hen- Hew gl ni- =Hhi-ca Yack PBiclrh hen-or lsd-ncs

Crenbe 4 Job Flow™: ™ Rur vod- omr a221zater

- 2
CoAr s A Al

[Pa-rocra- B

Tad o Jzc Plp = proc-cz dassvsrg s higa e
Eroccssrg langaagz caled g Loan g raa <5
<EsTamao Svrcar bz MasxFrdacz aograTmrg
I 0270w 227 33 WM 1121 XTI TECCE

- Mlp Onberactive 52ores 2)20 = 2w =Fars =0

@Zoran B. Djordjevic¢ 22

3/30/2013

11

Select “Start an Interactive Pig Session”

el doea

&= QSRR PRI DN [N A P R B L ot L, SRR T PR S By AL |

[

R I R RN B A I S R HY R R R N BT ST TR N

DEEE T e)
BT

el e ket el e pe e m = e e e e o
E.mmd o :.el awde o m ok

FL AR H CE
Tikhar & cabForad 1’2 mn 9d
Cipdlinales

L e IR L
Hidpdinain,
TIT AL S EriFak 0 omr A A e o om

Weidiae yo 3 r T farom
L O T e R FE R S RS LR

T ml
EeAT R e I R iR . gt maade s s it A e oA

S

@Zoran B. Djordjevi¢ 23

Configure EC2 Instances

= For development and testing select the smallest available instances
and the minimal count.
circabe o ke ok Flow BRI

-

c
IR GUEF 502 1S TA)

SEedrs B4s TISIOr 230D IPC kask andms ks P vad ok Hae Focms s Ba3a 23 PSmIrcs saElRC ks 1mErsgasshen T

MBster [nstence Graup: TH: BCS rescrs 2500300 Had20a 505 550 00r 31358 roces 309 —ormers ks shaas,

Tsbonn 19es [e fang = B R S T
SpotBId Price: ‘:‘F.Jﬂ. PR T PR TN Y 1) U MY L

Core [nstence Craup: TFess SI51ak31I30 1y =2000p backs S0 soors dasi esrg b —acacp DT Evksd Aic €rnke— -DEE
Fegem—crecs ber 2aaaczks rocece ker e b b wod ck Hom

Lusk iz Cunl:
nstence YRR [opgz i o
spnl Bl B e ;.i? §amre ere e FEReE T ckaerAT

= [F zeq oare e Incanses

T lena e =l A= e ba=l= Tl Tevn prrsi=l l4- tram o Finen fie 440 0-
v

[nstence Count F

Tusfam bk [i Ty [T T T

W [EEETE = e iwe hal

@Zoran B. Djordjevi¢ 24

3/30/2013

12

Provide EC2 Key Pair & Log Path

For development always Enable Debugging.

Uredle g wew Job | low

s lim

AITAAH
L Y P () HN [N QU RS Y [ae

Arszan EC2 Kew Mals

HE e e ISR SR IR P TR PR TR R RN
ezt ho =

Loamn wvsh=q A= peisba S50 me- e mascba s neds om ==a G ammn TR dd s AR TR R TERTAT

Ameren VR Sl 0 [

(T IR 0 T R U L PR Y Tt L S IR B [T PR RS

serhgdec vaa1233rg cpbars, _car —or,
nmasnn G g Balhe h:

m oy s M, vl Twn g aen g apad’s a0 Ameaw LY _uoevl
Enmblc Debupping: * wcs © Ha

LTI T) R PR R Y AR YL Y TR OISR I TR Y LR [
St adezroas ok Hom cpbors,
Eeep Alive I -q- S i cma=ed wn reereaches SEeATRG FOWSHERS mEn & b Tanehen,
Iurmi HAulw T e Aoy AT SrEUERCE =a T matAC T W th BT tasn cie b seatatkac AT
wiille o A TAR Tee, =g 5y “WE TRERE A T as S e ele b el T

LT T R TR e T |

TR 1 =Zuy 1wt hels

@Zoran B. Djordjevi¢

After Continue, Proceed with no Boostrap Action and Create Job Flow

25
fraste a e Tal Flow ®
Aresacrvrw lenrldl-a e ol M= Aarndd Sraar b =" i ain m4 keny 1 e = AT L R
Jab Flaw hoame: Bl bracl webighe 1o
Type: At e i e =4+ 353 Flom Sc-FIEcF
Hurimelurs: Cakzzeter T13 522560 130 12 Eorasouers L R e R T
aztar Instance Tepe: fhga [nstence Count 1 SpotBid PHce: §1 11
Care Instance Typr: =TT [nstence Count 1 SpotBid Pce: §1 1

I T
AmAazen ECZ Kay Malr: i o
AmAazen Subnet [d:
HINAIen 53 Lop Math: igrnea:
Eneblc Drbupping: Eaap Allve: - a-
Terminstan Frotectad: M1 Wislhlz Ta All Lsars: Mo =4- aeysrece Jakcers
Brotshap Acklons: RN EVIEE RN EEETER B L ETE Y R (TR 1T [r Ty e Ln
Hrda: Cmva =n cdek Coweba tas e
BIck Boata e sl e ag
char-a- &
@Zoran B. Djordjevi¢ 26

3/30/2013

13

This job must be manually terminated

Crears & hea Jab Mow

vaur ras Jobs fra o ek o v rLiae 2o ench, shen Rn cinne bcores vl v soe @ 128 Nols 2o gar che
iy Dbz DT Hoarsy frzy (0g b Bos ceale parn, T nmvven oviaeaesag pog sas oo, S0H m e vazvve o ik
R Tuaiengt e e Dy F 6

Foades Vel Do (uls i vas b ermen By D enmsial eal s gon Derae Guismd ralls d . This e D i iy

diblig antha ek tiesa Ietke prie ard thae dkRep b Tamelnees Qoean

e g 2a B 112 cheecd o (33 T 2130

sk PRI

In difference from the automatic jobs, these must be terminated by you.

To kill the job, go to the job console, select the job and hit Terminate button.

You can also terminate EC2 instances making the job.

Tl wiliaze b e

[T T R, -

N rrrra | T;
Huma k= Crmatinn Nuta [Flaprasd Tima
Wy Rzl ol Lom (Rt RN PRI R R R T] dreeslmnde: L

@Zoran B. Djordjevi¢

[TR T S

Harmalizad lneanss Hans

27

TR

Wait until job status changes to Waiting

B T Wihan. dassdrdn- e e .

R e e
b = arm = cE bk e B wmoame & Ll L D T . 111 e
-y & = et ke
Tme HLk Faswkal moars lom
RO L] & .. ML
Il >~ m a g= g Fow=
Il 4 d e L L L LR B L = moa

ek bmar s

Falslupe
Wimlar

L LR] B LR A H

E N AR e RN BN EICE L L

FTET THIK
e e

atapel AT

LTS
e atas | i 1=
rard (TITA]
T - N
Wmlas L R EH--gs
PUCA WS ok A T eoan Tad 4 4

e lmaTaa-
oL T

EX RS

[RTT HEE Y J)
ama IpE.

i

-l
k1
L oa.m P ml-

A w 0 am LI
Ca MRS L e

San

TSSO w4 e

Y T R R)

PRI R TTE TR RPN I DR, T

uoml

RIS Y Tur 4

g e

= [l = FR LI OSRCY P I E EIRCEICE Wi DHCCN PR ISR B 2 «| M- &

.

@Zoran B. Djordjevi¢

28

3/30/2013

14

Go to EC2 Console and Identify Master Node

We have only 2 instances, one of them is the Master, the other a slave.
The Security Group on the master contains noun master in its name. That
security group betrays the master.

Once the master is identified, right click on it and select Connect. On the
Connect wizard select the Public DNS of the master.

= PRTIT EI Leaazh roeree dedaae ™
- 4 4
N N I . BRI P - A T =
hrie T Maw T lman W Twi s lar dar LimarTrdn dhimth
::n:-':uu-.n s doe - 1 41 r dw - n R 3 = |- R B B)
= e " RU T A dl e dw - u P g om [S [RO
e I%2 0 ben wdm
EE
e B rr™dnersewmss =707k T g - -
- Ll e R N R L R [P | DT
Se A AL 1A -
i, varcpdan || o0 e 0l meew ta
R '.'J;-Iu:-r Lt om T UYMW A paLTie D00
ERETELH: BT HAS H3H LI
= TR Tau- ; 3
@Zoran B. Djordjevi¢ 29
Connection Wizard
= We use the Connection wizard to select the public DNs of the

Master.

Cenneck tooan nskance s bz

Lrralanee; =05 Hele

ormmet writh o staraloalurm S50 ae

vt fronesgone birnsesar i The e S5510Claed [oo Bagnical)

F-ta-He req 1w mbatashen noosa s ads sans by -mna— -
by avals dobe e v s i e, a ol Lulle Lz T
hoarcer a=sh=n o nemne 0 =A A= ha o

FuElc ZHE
L5373
1oy 1ae
Teaks ke ptt |

Eea g e Sment a0 vl Laostoz e pan

Sacxkovlozaker Domweeli bewcae v v

Ladazn33=Cios

@Zoran B. Djordjevic¢ 30

3/30/2013

15

Fetch Public DNS (Master), ssh tothe Master

= Use user name “hadoop”, public DNS of the Master, and our Private
Key to login into the Master of our cluster (even if we have just one
machine in that cluster ©).

= Go to your Cygwin prompt, cd to your ec?2 directory and type:

$ ssh -i ec2 hu.pem hadoop@ec2-174-129-51-185.compute-1.amazonaws.com

Welcome to Amazon Elastic MapReduce running Hadoop and Debian/Squeeze.

Hadoop is installed in /home/hadoop. Log files are in
/mnt/var/log/hadoop. Check

/mnt/var/log/hadoop/steps for diagnosing step failures.

The Hadoop UI can be accessed via the following commands:

JobTracker lynx http://localhost:9100/
NameNode lynx http://localhost:9101/
hadoop@Rip-10-125-14-184:~$

= You are on the Hadoop Master.

= Qur objective is to enter Pig command shell grunt and develop Pig scripts.

= Most of that work could be done in the “local” mode. Once we have ready
scripts and a lot of data we could switch to the mapreduce mode.

@Zoran B. Djordjevi¢ 31

Open grunt session in the local mode

= Hadoop is very good in dealing with distributed processes and big data.

= For now we want to “prototype” something and the local mode is
perfectly appropriate. Type

$ pig -x local << this brings us into grunt session
grunt> help << lists all grunt commands

Commands :

<pig latin statement>; - See the PiglLatin manual for details:

http://hadoop.apache.org/pig
File system commands:
fs <fs arguments> - Equivalent to Hadoop dfs command:
http://hadoop.apache.org/common/docs/current/hdfs sell.html

quit - Quit the grunt shell.

grunt>

= The number of commands is not enormous. Still, you need to print the
output of the grunt> help command and study it.

@Zoran B. Djordjevic¢ 32

3/30/2013

16

Pig and Hadoop support 3 File Systems

= Pig and Hadoop support three file systems: you Linux file system, denoted
by file:/, MapReduce (hdfs) file system, denoted by maprfs:/ andS3
bucket file system denoted by s3n:/.

= You navigate between those file systems using cd command and you
inquire in which file system you currently reside by typing pwd command.

grunt> pwd // pwd will tell you in which FS you are in now

maprfs:/ // we are at the root of maprfs (HDFS) file system

grunt> 1ls

maprfs:/cluster-info <dir> // These are directories in HDFS file system
maprfs:/hbase <dir>

maprfs:/var <dir>

grunt>

grunt> cd file:/// // We are switching to the Linux file system

grunt> pwd

file:/ // We are at the root of the Linux file system

grunt> 1ls

file:/bin <dir> // These are some directories at the root of Linux Fs
file:/home <dir>

file:/mnt <dir>

grunt> cd s3n://elasticmapreduce // Will take us to an s3 bucket
Grunt> pwd

Grunt> s3n://elasticmapreduce

@Zoran B. Djordjevi¢ 33

Move data from s3://elasticmapreduce/samples to local FS

= We have sample data (Apache access logs) in the bucket:

grunt> 1ls s3n://elasticmapreduce/samples/pig-apache/input

s3n://elasticmapreduce/samples/pig-apache/input/access_log 1<r 1> 8754118
s3n://elasticmapreduce/samples/pig-apache/input/access_log 2<r 1> 8902171
s3n://elasticmapreduce/samples/pig-apache/input/access_log 3<r 1> 8896201
grunt>

= However, we do not want to go “over there” for every bit of data.

= Pig can copy data from one file system to another.

grunt> cp s3n://elasticmapreduce/samples/pig-apache/input/access_log_1l file:///home/hadoop

2013-03-30 04:12:54,424 [main] INFO org.apache.hadoop.fs.s3native.NativeS3FileSystem -
Opening 's3n://elasticmapreduce/samples/pig-apache/input/access_log 1' for reading

2013-03-30 04:12:54,790 [main] INFO org.apache.hadoop.util.NativeCodeLoader - Loaded the

native-hadoop library

grunt> cd file:///home/hadoop

Grunt> 1ls

file:/home/hadoop/bin <dir>
file:/home/hadoop/.pig_history<r 1> 476
file:/home/hadoop/PATCHES. txt<r 1> 0
file:/home/hadoop/lib <dir>

file:/home/hadoop/contrib <dir>
file:/home/hadoop/access_log_l<r 1> 8754118
file:/home/hadoop/hadoop-0.18-test.jar<r 1> 1014156

file:/home/hadoop/.ssh <dir>

@Zoran B. Djordjevi¢ 34

3/30/2013

17

hadoop fs commands on grunt> prompt

= Wheninmaprfs:/ (HDFS) file system, you can use standard
hadoop fs commands and they will act on the HDFS as if you are
typing them on the Linux prompt. You do not type hadoop, though.

= For example:
grunt> pwd
maprfs:/

grunt> fs -1s /
Found 3 items

drwxr-xr-x - hadoop hadoop 1 2013-03-30 03:29 /cluster-info
drwxrwxrwx - root root 0 2013-03-30 03:29 /hbase
drwxr-xr-x - root root 1 2013-03-30 03:29 /var

grunt> fs -mkdir users
grunt> fs -1s
Found 4 items

drwxr-xr-x - hadoop hadoop 1 2013-03-30 03:29 /cluster-info
drwxrwxrwx - root root 0 2013-03-30 03:29 /hbase
drwxr-xr-x - hadoop hadoop 0 2013-03-30 04:54 /users
drwxr-xr-x - root root 1 2013-03-30 03:29 /var

@Zoran B. Djordjevi¢ 35

Linux shell commands on grunt> prompt

= In order to run standard Linux shell commands from the grunt> shell
prompt, just prefix them with “sn~.

= The commands will produce results as if you were on the Linux command
prompt. For example:

grunt> grunt> sh 1s

PATCHES. txt

access_log 1

bin

grunt> sh mkdir trash

grunt> sh ls -la trash

total 8

drwxr-xr-x 2 hadoop hadoop 4096 Mar 30 05:02

drwxr-xr-x 7 hadoop hadoop 4096 Mar 30 05:02

grunt> sh touch trash/somefile.txt

grunt> sh 1ls trash

somefile.txt

@Zoran B. Djordjevic¢ 36

3/30/2013

18

Processing Data

= The first step is loading data into Pig.

= LOAD command loads data into a “bag”, a collection of tuples

grunt> RAW LOGS = LOAD 'file:///home/hadoop/access log 1'
using TextLoader as (line:chararray);

= Commands are normally terminated by a semicolon (;).

= [|facommand is to continue on the next line, the prompt changes to >>.

= (Clause (line:chararray) createsaschema. It statesthatdata
are inserted into a tuple with a single column of type chararray.

= To see what we are we doing we use ILLUSTRATE command.
= Tllustrate takes asmall sample of data and presents them to us.
= [tactually presents the pipeline of processes that took place.

= If we know that we have a very small amount of data, we could also
DUMP command, which dumps raw_logs, orany other variable.

@Zoran B. Djordjevi¢ 37

[llustrate RAW_LOGS

* grunt> illustrate RAW_LOGS

| RAW_LOGS | line: bytearray

|
| | 74.125.75.17 - - [21/Jul/2009:12:28:16 -0700] "GET /gadgets/adp
owers/AlexaRank/ALL ALL.xml HTTP/1.1" 200 1160 "-" "Mozilla/5.0 (compatible) Fee

dfetcher-Google; (+http://www.google.com/feedfetcher.html)" |

| RAW_LOGS | line: chararray

|

| | 74.125.75.17 - - [21/Jul/2009:12:28:16 -0700] "GET /gadgets/adp
owers/AlexaRank/ALL ALL.xml HTTP/1.1" 200 1160 "-" "Mozilla/5.0 (compatible) Fee

dfetcher-Google; (+http://www.google.com/feedfetcher.html)" |

= Pigtreated input as a bytearray and transformed it into a chararray.
= Please note that names of variables and many functions are case sensitive.
= Most frequently used commands are not.

@Zoran B. Djordjevic¢ 38

3/30/2013

19

Function to split the line

= To split lines into tokens or sections we need special functions.

= All UDF (User Defined Functions) are created as extensions of a set of Java
classes which are stored in jar-s and then registered with the Pig.

= PiggyBank is one such library of functions. Information on functions contained
in the PiggyBank could be found at:

https://cwiki.apache.org/confluence/display/PIG/PiggyBank

= On Elastic MapReduce EC2 instance with MapR M3 0.2. version of Hadoop,
file piggybank.jar resides in the directory /home/hadoop/lib/pig.

= To use a particular function within piggybank.jar we need to create an
alias for that function using DEFINE command.

= We know that function EXTRACT breaks the line using a regular expression
and places matched regions into tuples. We use grunt command DEFINE to
create short alias EXTRACT, otherwise we will have to call the function by its
full Java path.

grunt> DEFINE EXTRACT
org.apache.pig.piggybank.evaluation.string.EXTRACT () ;

@Zoran B. Djordjevic¢ 39

Regular Expression

= The regular expression is a little tricky because the Apache log
defines a couple of fields with quotes. What you need is:

"ANSH) (\S+) (\S+) N[([\w:/T+\s[+\=1\d{4})\] "(.+2)"
(\S+) (\S+) " ([~"]*)" m([AM]x) "

= Java, and by extension, Pig need to escape all of those back slashes,
SO your expression reads:

"M ONNSH) (NASH) (AN\SH) AN OI\N\w:/T+\\s [+\\=1\\d{4})\\]
") (NNSH) (N\SH) Mt (LAtIE) ot

= Function EXTRACT takes chararray line asitfirst
argument and the above regular expression as the second and FOR
EACH line returns a tuple with matched strings, i.e. strings selected
by parenthesis (\\S+) as elements.

@Zoran B. Djordjevi¢ 40

3/30/2013

20

Pig Parsing Command

LOGS_BASE = FOREACH RAW_ LOGS GENERATE
FLATTEN (
EXTRACT (1ine, '~ (\\S+) (\\S+) (\\S+) \\[([\\w:/]+\\s
[ENN=INNA{A) NNT " (L+2) " (AN\S+) (\\S+) " ([~"]1*)" "([*"]1*x)"")
)
as (
remoteAddr: chararray,

remoteLogname: chararray,

user: chararray,
time: chararray,
request: chararray,
status: int,

bytes string: chararray,
referrer: chararray,

browser: chararray

= To see what came out, we could use: ILLUSTRATE LOGS BASE

@Zoran B. Djordjevi¢ 41
grunt> ILLUSTRATE LOGS_BASE;
| RAW_LOGS | line: bytearray
| | 85.137.49.58 - - [21/Jul/2009:13:39:28 -0700] "GET /gwidgets/go
ogle-glossary.html HTTP/1.1" 200 870 "-" "Java/1.6.0_13" |
| RAW_LOGS | line: chararray
| | 85.137.49.58 - - [21/Jul/2009:13:39:28 -0700] "GET /gwidgets/go
ogle-glossary.html HTTP/1.1" 200 870 "-" "Java/1.6.0_13" |
| LOGS_BASE | remoteAddr: chararray | remoteLogname: chararray | user: chara
rray | time: chararray | request: chararray
| status: int | bytes_string: chararray | referrer: chararray | browser: chararr
ay |
| | 85.137.49.58 | - |-
| 21/Jul/2009:13:39:28 -0700 | GET /gwidgets/google-glossary.html HTTP/1.1
| 200 | 870 | - | Java/1.6.0_13
|
grunt>
= We did split every line into a tuple
@Zoran B. Djordjevi¢ 42

3/30/2013

21

FOR ... EACH

= FOREACH .. GENERATE command creates a tuple for every (each)
row of data.

= The “FLATTEN” command flattens nested structures.

* FLATTEN generates a new row for every element of a nested data
bag.

= For example:

FLATTEN { (‘foo.txt’, (‘bar’, ‘baz’, ‘bam’))}

Creates:

{ (‘foo.txt’, ‘bar’),
(‘foo.txt’, ‘baz’),

(‘foo.txt’, ‘bam’) }.

@Zoran B. Djordjevi¢ 43
Schema
= Clause:
as (
remoteAddr: chararray,

remoteLogname: chararray,

user: chararray,
time: chararray,
request: chararray,
status: int,

bytes string: chararray,

referrer: chararray,

browser: chararray
)i

= defined the schema for generated tuples. Most elements of LOGS_BASE
bag of tuples are chararrays. status isapparently and int.

= If schema is not defined, Pig tries to infer it based on element usage.

@Zoran B. Djordjevi¢ 44

3/30/2013

22

Narrow Query

= We want to determine the top 50 search terms used to refer to the
website. This site apparently has the UTL: http://example.com

= We need to look at the referrer element in the tuples.

= The first thing to do is create a bag containing tuples with just this

element:

grunt> REFERRER_ONLY =

FOREACH LOGS_BASE GENERATE referrer;

= We want to see more tuples of data than ILLUSTRATE would provide.

= The DUMP command outputs the complete contents of a bag to the
screen. There is usually too much data to display so we add a LIMIT

instruction:

@Zoran B. Djordjevi¢ 45
DUMP TEMP
grunt> DUMP TEMP;
2010-03-08 20:30:36,540 [main] INFO org.apache.pig.backend.local.executionengin
e.LocalPigLauncher
2010-03-08 20:30:36,540 [main] INFO org.apache.pig.backend.local.executionengin
e.LocalPigLauncher
2010-03-08 20:30:36,540 [main] INFO org.apache.pig.backend.local.executionengin
e.LocalPigLauncher
2010-03-08 20:30:36,540 [main] INFO org.apache.pig.backend.local.executionengin
e.LocalPigLauncher
2010-03-08 20:30:36,540 [main] INFO org.apache.pig.backend.local.executionengin
e.LocalPigLauncher
(=)
(=)
(http://example.org/)
(http://example.org/)
(=)
grunt>
= Messages with dash (-) values don't have referrers.
= http://example.org/ isjustthe site referring to itself.
@Zoran B. Djordjevi¢ 46

3/30/2013

23

Add FILTER to select google and bing

grunt> FILTERED = FILTER REFERRER ONLY BY referrer matches '.*bing.*'
OR referrer matches '.*google.*';

grunt> TEMP = LIMIT FILTERED 10;

grunt> DUMP TEMP;

(http://www.bing.com/search?g=value)

(http://www.bing.com/search?g=philmont)

(http://www.bing.com/search?g=value)

(http://www.bing.com/search?g=philmont)
(http://images.google.co.th/imgres?imgurl=http://example.org/images/toothin
imgrefurl=http://example.org/%3Fnews%3Dall&usg=_ KOkVEAOKxJVHgGDP2VTY1XLJKZN
340&w=640&sz=488hl=th&start=7&tbnid=CFyUh41SsH2g9M: &tbnh=73&tbnw=137&prev=/
s%$3Fg%3Dapple%$2Badvertisement$26gbv$3D2%26h1%3Dth%26sa%$3DX)
(http://images.google.co.th/imgres?imgurl=http://
imgrefurl=http://example.org/%3Fnews%3Dall&usg=__
340&w=640&sz=488hl=thé&start=7&tbnid=CFyUh41SsH2g9M: &tbnh=73&tbnw=137&prev=/
s%$3Fg%3Dapple%$2Badvertisement%$26gbv%$3D2%26h1%3Dth%26sa%$3DX)

@Zoran B. Djordjevi¢ 47

Extract Search Queries

= Both search engines indicate the beginning of the query string using a key
of "g="and then separating query terms with "+".

= To extract these, the first step is to use our EXTRACT function to grab
everything from the "g="up to the end of a string or an ampersand (&).

= We then FILTER out any string that does not match our regular expression.

grunt> SEARCH TERMS = FOREACH FILTERED GENERATE

>> FLATTEN (EXTRACT (referrer, '.*[&\\2]g=(["&]+).*"))

>> as terms:chararray;

grunt> SEARCH TERMS FILTERED = FILTER SEARCH TERMS BY NOT $0 IS
NULL;

grunt> DUMP SEARCH TERMS FILTERED

(search)

(value)

(about+me+website)
(linux+%2Fusr%2Fbin%2Fperl)
(%$21%2Fusr%2Fbin%2Fperl+-w)
(

value)

@Zoran B. Djordjevi¢ 48

3/30/2013

24

Count the Search Terms

= To count most frequently used terms we use Pig operators GROUP

and COUNT:

Grunt> SEARCH_TERMS_COUNT = FOREACH (GROUP SEARCH_TERMS_FILTERED BY $0)
GENERATE $0, COUNT($1) as num;

Grunt> SEARCH_TERMS_COUNT_SORTED = LIMIT (ORDER SEARCH_TERMS_COUNT BY num

DESC) 50;

Grunt > DUMP SEARCH_TERMS_COUNT_SORTED;

@Zoran B. Djordjevi¢ 49

Most Frequently Queried Terms

(value, 100L)

(views, 70L)

(login, 39L)

(search, 37L)

(items, 19L)

(bigtable, 12L)
(google+bigtable, 9L)
(%$23%21%2Fusr%2Fbin%2Fperl, 8L)
(philmont+pictures, 7L)
(%23%21%2Fusr%2Fbin%2Fperl+-w, 6L)
(philmont, 6L)
(google+quick+links, 5L)
(pig, 5L)
(pvc+instrument, 5L)
(vegas, 5L)
(about+me+website, 4L)
(google+big+table, 4L)
(pig+the+pc+nerd, 4L)
(seattle, 4L)

(walla, 4L)

(bikes, 3L)

(biking, 3L)

(comments, 3L)

escalator, 3L)
fishing, 3L)
hadoop+0.20, 3L)
homemade, 3L)
mOnOwall+ipvé, 3L)
pebble, 3L)

eahawks, 3L)

ravis, 3L)
21%2Fusr%2Fbin%2Fperl+-w, 2L)
22rm+-rf%22,2L)
23!%2Fusr%2Fbin%2Fperl+-w, 2L)
23%21%2Fusr%2Fbin%2Fperl+-wT, 2L)
Andrew+sample, 2L)

BigTable,2L)

Google+BigTable, 2L)
Website+about+me, 2L)

o
o
o
o

apple, 2L)

(
(
(
(
(
(
(
(
(s
(t
(
(
(
(
(
(
(
(
(
(
(b1g+table 2L)
(bigtable+example, 2L)
(bigtable+google, 2L

@Zoran B. Djordjevic¢ 50

3/30/2013

25

Store Your Results
Store your data with STORE:

STORE SEARCH TERMS COUNT_SORTED into

'file:///home/hadoop/output/run0";
Examine the file with CAT

CAT file:///home/hadoop/output/run0

To get out we type:

grunt> quit;

@Zoran B. Djordjevic¢ 51

Store Your Script

We do not want to keep repeating this typing over and over again and
keep working in the interactive mode.

We can save out commands in a file (script), save that script in an S3
bucket and in the future invoke that script for another job on, perhaps, a
different machine.

We will do that on the command prompt of the remote machine, where
we could open vi or vim and save the script.
Note that all command lines end with semicolon “;”.

Also, while working in the interactive mode our input file was accessed as:
RAW LOGS = LOAD 'file:///home/hadoop/access log 1°
That is not convenient. We might have that file in another location.

We “parameterize” log location by introducing place holder *$INPUT' .

Similarly we parameterize the output file with *SOUTPUT”

@Zoran B. Djordjevic¢ 52

3/30/2013

26

Saved Script

register file:/home/hadoop/lib/pig/piggybank.jar
DEFINE EXTRACT org.apache.pig.piggybank.evaluation.string.EXTRACT () ;
RAW_LOGS = LOAD '$INPUT' USING TextLoader as (line:chararray);

LOGS_BASE = foreach RAW LOGS generate FLATTEN (EXTRACT (line, '~ (\\S+)
(A\\S+) (AN\S+) ANTOO\N\w:/T+H\\s [H\\=1\\A{4) \\T " (.+2)" (\\S+) (\\S+)
T([AMYIEF)" " ([~"]*)"')) as (remoteAddr:chararray,

remotelLogname:chararray, user:chararray, time:chararray,
request:chararray, status:int, bytes string:chararray,
referrer:chararray, browser:chararray) ;

REFERRER _ONLY = FOREACH LOGS_BASE GENERATE referrer;

FILTERED = FILTER REFERRER ONLY BY referrer matches '.*bing.*' OR referrer
matches '.*google.*';

SEARCH_TERMS = FOREACH FILTERED GENERATE FLATTEN (EXTRACT (referrer,
'or[&\\?]g=(["&]+).*")) as terms:chararray;

SEARCH_TERMS_FILTERED = FILTER SEARCH TERMS BY NOT $0 IS NULL;

SEARCH_TERMS_COUNT = FOREACH (GROUP SEARCH TERMS FILTERED BY $0) GENERATE
$0, COUNT ($1) as num;

SEARCH_TERMS_COUNT_SORTED = LIMIT (ORDER SEARCH TERMS_ COUNT BY num DESC) 50;
STORE SEARCH_TERMS COUNT_SORTED into 'S$OUTPUT';

= Save in /home/hadoop/script.pig

@Zoran B. Djordjevi¢ 53

Run Script from the Command Line

= To run your Pig job from the command line do the following:

On the command prompt of your Hadoop system type:

$ pig -p INPUT=file:///home/hadoop/access log 1

-p OUTPUT=file:///home/hadoop/output/run?2
file:///home/hadoop/script.pig

The output should end up in /home/hadoop/output/run2 directory.

@Zoran B. Djordjevi¢ 54

3/30/2013

27

Upload Script to S3

= Hadoop’s df s command, executed on the command prompt of the
remote (Hadoop) system will copy the script to a properly named
S3 bucket:

$ hadoop dfs -copyFromLocal /home/hadoop/script.pig
s3://zoran0302mr/pig/scripts/script.pig

Sndaz Sla-

inpko BECo.. plnd B oeaimih aghoains [
LoD e e e Lozl kA2 e
.. | |
Wiy [iR T TEE
j.'J Laaed - _;J'-.:'.'.'F:-:‘c' =) Rebezy
— - o -

Since we are done with the interactive job flow we could terminate it.

@Zoran B. Djordjevi¢ 55

Pig Latin
Syntax

Zoran B. Djordjevic¢

csci e185 Big Data Analytics

56

3/30/2013

28

Data Types

= Pig Latin statements work with relations.
= Arelation can be defined as follows:

A relation is a bag (more specifically, an outer bag).
A bag is a collection of tuples.
A tuple is an ordered set of fields.
A field is a piece of data.
= A Pigrelation is similar to a table in a relational database, where the
tuples in the bag correspond to the rows in a table.

= Unlike a relational table, Pig relations don't require that every tuple
contain the same number of fields or that the fields in the same
position (column) have the same type.

= Relations are unordered which means there is no guarantee that
tuples are processed in any particular order.

= Processing may be parallelized in which case tuples are not
processed according to any ordering.

57

Referencing Relations, Fields

= Names are assigned by you using schemas (or, in the case of the
GROUP operator and some functions, by the system).

= You can use any name that is not a Pig keyword;

= When you names are assigned to fields we can still refer to the
fields using positional notation. For debugging and comprehension,
better use names.

A = LOAD 'student' USING PigStorage() AS (name:chararray,
age:int, gpa:float); << A isarelation

X = FOREACH A GENERATE name, $2; << Could mix notations
DUMP X;

(John, 4.0F)

A = LOAD 'data' AS (fl:int,f2:int,f3:int);

B = FOREACH A GENERATE $3; << Will generate an error.
DUMP B;

2009-01-21 23:03:46,715 [main] ERROR
org.apache.pig.tools.grunt.GruntParser - java.io.IOException:

Out of bound access. Trying to access non-existent : 3. Schema
{fl: bytearray,f2: bytearray,f3: bytearray} has 3 column(s).

58

3/30/2013

29

Referencing Fields of Complex Types

= Fields in a tuple could be atomic or complex type: bag, tuple, and maps.
= Schemas could name fields in complex data types.

= Dereference operator (dot, ".") is used for referencing fields in complex types.
= A schema for complex data types (in this case, tuple)is used to load the data. Then,

dereference operators (the dot in t1.t1a and t2.50) accesses fields in the tuples.
cat da;

(3,8,9) (4,5,6) Note that tuple is key word

(1,4,7) (3,7,5) and the data type

(2,5,8) (9,5,8)

A = load 'da' as (tl:tuple(tla:int,tlb:int,tlc:int),t2:tuple(t2a:int,t2b:int,t2c:int));
DUMP A;

((3,8,9),(4,5,6))
((1,4,7),(3,7,5))
((2,5,8),1(9,5,8))
X = FOREACH A GENERATE tl.tla,t2.$50;

DUMP X;
(3,4)
(1,3)
(2,9)
59
Data Types

Simple Data Types Description Example
Scalars
int Signed 32-bit integer 10
long Signed 64-bit integer Data: 10L or 101

Display: 10L
float 32-bit floating paint Data: 10.5F or 10.5f or 10.5e2f or 10.5E2F

Display: 10.5F or 1050.0F
double 64-bit floating point Data: 10.5 or 10.5e2 or 10.5E2

Display: 10.5 or 1050.0
Arrays
chararray Character array (string) in Unicode UTF-8 format hello world
bytearray Byte array (blob)
Complex Data Types
tuple An ordered set of fislds, (19,2)
bag An collection of tuples, {{19,2), (18,13}
map & set of key value pairs, [open#apache]

60

3/30/2013

30

Implicit Conversion, Casting
Use schemas to assign types to fields. Untyped fields default to
bytearray.

Implicit conversion applied based on context in which that data is
used.

A = LOAD 'data' AS (f1,f2,f£3);
B = FOREACH A GENERATE fl1l + 5; << fl converted to int
C = FOREACH A generate fl + f2; << fl and f2 converted to double
= |f the data does not conform to the schema, the loader will
generate a null value or an error.
A = LOAD 'data' AS (name:chararray, age:int, gpa:float);
= |f an explicit cast is not supported, an error will occur. Cannot cast a
chararray to int.
A = LOAD 'data' AS (name:chararray, age:int, gpa:float);
B = FOREACH A GENERATE (int)name; << Will cause an error
= |ncompatible types that could not be cast implicitly cause an error.
= For example, you cannot add chararray and float.
A = LOAD 'data' AS (name:chararray, age:int, gpa:float);
B = FOREACH A GENERATE name + gpa; 61
Tuple
= Atupleis an ordered set of fields.
= Syntax
(field [, field ..])
A tuple is enclosed in parentheses ().
Afield in a tuple is a piece of data.
A field can be any data type (including tuple and bag).
= Atupleis a row with one or more fields, where each field can be
any data type and any field may or may not have data.
= |f a field has no data, then the following happens:
In a load statement, the loader will inject null into the tuple.
The actual value that is substituted for null is loader specific;
PigStorage substitutes an empty field for null.
In a non-load statement, if a requested field is missing from a tuple,
Pig will inject null.
62

3/30/2013

31

3/30/2013

Bag

= A bagis a collection of tuples.

= Syntax: Inner bag

{ tuple [, tuple ..] }

= Aninner bag is enclosed in curly brackets { }.

= A bag can have duplicate tuples.

= A bag can have tuples with differing numbers of fields.

If Pig tries to access a field that does not exist, a null value is
substituted.

= A bag can have tuples with fields that have different data types.

For Pig to effectively process bags, the schemas of the tuples within
those bags should be the same.

If half of the tuples include chararray fields and while the other half
include float fields, only half of the tuples will participate in any kind
of arithmetics because the chararray fields will be converted to null.

= Bags have two forms: outer bag (or relation) and inner bag.

63

Outer Bag

A = LOAD 'data' as (fl:int, f2:int, £3;int);
DUMP A;

= Ais arelation or bag of tuples. This is an outer bag.

64

32

X

Inner Bag

We could group relation A by the first field to form relation X.
X is a relation or bag of tuples.

The tuples in relation X have two fields.

The first field is type int.

The second field is type bag; That bag is an inner bag.

= GROUP A BY f1;

DUMP X;

(L, {(1,2,3)1})
(4,{(4,2,1),(4,3,3)1})
(8,{(8,3,4)1})

65

Map

A map is a set of key value pairs.
Syntax
[key#value <, key#value .>]
Maps are enclosed in straight brackets [].
Key and value in a pair are separated by the pound sign #.

Key : Must be chararray data type. Must be a unique value in a
relation.

Value: Any data type.

Key values within a relation must be unique.

In the following example the map includes two key value pairs.
[name#John, phone#555-1212]

keys are: name and phone, corresponding values are John and 555-

1212

66

3/30/2013

33

Nulls

= Nulls are implemented using the SQL meaning of unknown or non-
existent.

= Nulls can occur naturally in data or can be the result of an operation.

B I ACHTED avharnccinn raciilte in nullvualiia tha filtar dance nat nace

CHerata Tresult of Tntern ction wifh ™ml
Plizmparizin eparatizeg I ither aotim a4 nmll e veznlt ix o

I hcaming fudnp meibial e peiaanen ooll the veall i 00
Soriekssapr wssparses If =rnhoer sob seperasmize i5 null, the pezules g smeessmne iswnll,
= =7 Tmmedata,
FeaM ezl fa null I e tamatene] vali iz oo™ vadomes P eslboa e ias v omes Tla
Froleese: 25 noonuldl Tt cheremed valueis mon wall, r2reoms tras; cekhereiss, raooms false.
Phacleme o ppamalior I e Teme o] mple e mege iomll - setnrng oo™ Lol @ s mzge (83
Ilmat spnaatan Iimatingea ol Pz e L bz amesdbea Lppss mesalis oo ol

S, MM, WA, STR Thess funcicns ignere zolls.

T “Thi= i el W7 eslues Gncdinding nulle
ianera” I either aobeespreasian @ nnll the vaenlting eapmessim sl
SI1ZL Ifchztesied pbiject 35 woll, cecoms ol
67
Operations producing Nulls
= Nulls can be the result of:
Division by zero
User defined functions (UDFs)
Dereferencing a field that does not exist.
Dereferencing a key that does not exist in a map
Accessing a field that does not exist in a tuple.
= Example: Accessing a field that does not exist in a tuple
cat data;
2 3
4
A = LOAD 'data' AS (fl:int,f2:int,f3:int)
DUMP A;
(,2,3)
(4,,)
B = FOREACH A GENERATE f1,f2;
DUMP B;
(,2)
(4,)
68

3/30/2013

34

Nulls and Load Function

Nulls can occur naturally in the data.

If nulls are part of the data, it is the responsibility of the load
function to handle them correctly. What is considered a null value is
loader-specific.

The load function should always communicate null values to Pig by
producing Java nulls.

The Pig Latin load functions (for example, PigStorage and
TextLoader) produce null values wherever data is missing. Empty
strings (chararrays) are not loaded; instead, they are replaced by
nulls.

PigStorage is the default load function for the LOAD operator.
In the following "is not null" operator is used to filter names with
null values.

LOAD 'student' AS (name, age, gpa);

FILTER A BY name is not null

69

Constants

Pig provides constant representations for all data types except

bvtearravc
Dara Iype Examplc
Yealar.
inr L5
Tane 14
Phaal THCVE e [W82

deukle [5.2 op 12222

& rrana
itararmmy Hadle wenelid
neanEy Mot applicakle.
Cumgilee By giee
aple 01302 13 A iareabanlin thix T ewealioz s gl
ax (012,20l 11 Acomstoet zo this fopm oeares & bag,
e | et et il & SNSS T & pandianl i this Tere envalie @ oo

Complex constants (either with or without values) can be used in the same places
scalar constants can be used; that is, in FILTER and GENERATE statements.

A = LOAD 'data' USING MyStorage() AS (T: tuple(name:chararray,
age: int));

B = FILTER A BY T == ('john', 25); 70

PN DonmaoIr o Do ooamo o LoC urC 2 L2 C

3/30/2013

35

Expressions

= Expressions are language constructs used with the FILTER,
FOREACH, GROUP, and SPLIT operators as well as the eval functions.
= Expressions are written in conventional mathematical infix notation
and are adapted to the UTF-8 character set. Depending on the
context, expressions can include:
Any Pig data type (simple data types, complex data types)

Any Pig operator (arithmetic, comparison, null, boolean, dereference,
sign, and cast)

Any Pig built-in function.
Any user-defined function (UDF) written in Java.

71

Examples of Expressions

= An arithmetic expression could look like this:

X = GROUP A BY f2*f3;

= A string expression could look like this, where a and b are both
chararrays:

X = FOREACH A GENERATE CONCAT (a,b);

= A boolean expression could look like this:

X = FILTER A BY (f1==8) OR (NOT (f2+£f3 > fl1));

72

3/30/2013

36

[s¢)

Star Expression

The star symbol, *, can be used to represent all the fields of a tuple.
It is equivalent to writing out the fields explicitly.

In the following example the definition of B and C are the same

MyUDF will be invoked with exactly the same arguments in both
cases.

= LOAD 'data' USING MyStorage() AS (name:chararray, age: int);
= FOREACH A GENERATE *, MyUDF (name, age);
= FOREACH A GENERATE name, age, MyUDF (*);

A common error when using the star expression is the following:
= GROUP A BY $0;

= FOREACH G GENERATE COUNT (*)

In this example, the programmer really wants to count the number
of elements in the bag in the second field: COUNT(S1).

73

Schemas

Schemas enable you to assign names to and declare types for fields.

Schemas are optional but encouraged.

Type declarations result in better parse-time error checking and efficient code.
Defined with AS keyword with LOAD, STREAM, and FOREACH operators.

You can define a schema that includes both the field name and field type.

You can define a schema that includes the field name only; in this case, the field
type defaults to bytearray.

You can choose not to define a schema; in this case, the field is un-named and the
field type defaults to bytearray.

If you assign a name to a field, you can refer to that field by name or by position.

If you don't assign a name to a field (the field is un-named) you can only refer to
the field using positional notation.

If you assign a type to a field, you can subsequently change the type using the cast
operators.

If you don't assign a type to a field, the field defaults to bytearray; you can
change the default type using the cast operators.

74

3/30/2013

37

Schemas with LOAD, Stream, FOREACH

be enclosed in parentheses.

A = LOAD 'data' AS (fl:int, f2:int);

= With FOREACH statements, the schema following the AS keyword must be
enclosed in parentheses when the FLATTEN operator is used. Otherwise, the

schema should not be enclosed in parentheses.

With LOAD and STREAM statements, the schema following the AS keyword must

This LOAD statement includes a schema definition for simple data types.

= This FOREACH statement includes FLATTEN and a schema for simple

types.

X = FOREACH C GENERATE FLATTEN(B) AS (fl:int, f2:int, £3:int);
The following FOREACH statement includes a schema for simple types and no

parenthesis
X = FOREACH A GENERATE fl1+f2 AS x1:int;
Syntax
(alias[:typel) [, (alias[:typel]) ..])
alias: The name assigned to the field.
type: (Optional) The data type assigned to the field.
The alias and type are separated by a colon (:).

75
Schema Examples with Simple Types
cat student;
John 18 4.0
Mary 19 3.8
Joe 18 3.8
A = LOAD 'student' AS (name:chararray, age:int, gpa:float);
DESCRIBE A;
A: {name: chararray,age: int,gpa: float}
DUMP A;
(John,18,4.0F)
(Mary,19,3.8F)
(Joe, 18,3.8F)
cat student;
John 18 4.0
Mary 19 3.8
Joe 18 3.8
A = LOAD 'data' AS (name:chararray, age:int, gpa);
DESCRIBE A;
A: {name: chararray,age: int,gpa: bytearray}
DUMP A;
(John,18,4.0)
(Mary,19,3.8)
(Joe, 18,3.8)
76

3/30/2013

38

A Schema with one tuple

= Syntax

alias[:tuple] (alias[:typel) [, (alias[:type]l)
1)

alias: The name assigned to the tuple.

:tuple (Optional) The data type, tuple (case insensitive).
() The designation for a tuple, a set of parentheses.
alias[:type] :The constituents of the tuple.

= Next schema defines one tuple. The load statements are equivalent.

cat data;

(3,8,9)

(1,4,7)

(2,5,8)

A = LOAD 'data' AS (T: tuple (fl:int, f2:int, f£3:int));
A = LOAD 'data' AS (T: (fl:int, f2:int, £3:int));
DESCRIBE A;

A: {T: (fl: int,f2: int,f3: int)}

DUMP A;

((3,8,9))

((1,4,7))

((2,5,8)) 77

A Schema with two tuples

cat data;

(3,8,9) (mary,19)

(1,4,7) (john,18)

(2,5,8) (joe,18)

A = LOAD data
AS(F:tuple(fl:int, f2:int, £3:int), T:tuple(tl:chararray,t2:int));

DESCRIBE A;

A: {F: (fl: int,f2: int,f3: int),T: (tl: chararray,t2: int)}

DUMP A;

((3,8,9), (mary,19))
((1,4,7), (john, 18))
((2,5,8),(joe,18))

78

3/30/2013

39

Bag Schema

= A bagis a collection of tuples.
= Syntax
alias[:bag] {tuple}
= {}The designation for a bag, a set of curly brackets.
= This schema defines a bag. The two load statements are equivalent.

L] cat data;

- {(3,8,9)}

- {(1,4,7)}

- {(2,5,8)}

= A = LOAD 'data' AS (B: bag {T: tuple(tl:int, t2:int, t3:int)});
= A = LOAD 'data' AS (B: {T: (tl:int, t2:int, t3:int)});
= DESCRIBE A:

= A: {B: {T: (tl: int,t2: int,t3: int)}}

= DUMP A;

- ({(3,8,91)

- ({(1,4,7)})

- ({(2,5,8)1)

79
Map Schema
= A map is a set of key value pairs.
= Syntax
alias<:map> []
= [] The designation for a map, a set of straight brackets.
= This schema defines a map. The load statements are equivalent.
cat data;
[open#apache]
[apache#hadoop]
A = LOAD 'data' AS (M:map []):
A = LOAD 'data' AS (M:[]);
DESCRIBE A;
a: {M: map[]}
DUMP A;
([open#apache])
([apache#hadoop])
80

3/30/2013

40

Schemas with Multiple Types

You can define schemas for data that includes multiple types.

These schemaa inlcude a tuple, bag, and map.

A = LOAD 'mydata' AS (Tl:tuple(fl:int, f2:int),
B:bag{T2:tuple(tl:float,t2:float)}, M:mapl[]);

A = LOAD 'mydata' AS (Tl:(fl:int, f2:int),
B:{T2:(tl:float,t2:float)}, M:[]);

81

Parameter Substitution

= Pig allows you to substitute values of parameters at run time.

= We could pass parameters to pig, exec, run, and
explain commands.

= Parameters are passed at the command line or using preprocessor
statements:

= Specifying parameters using the Pig command line
pig {-param param name = param value | -param file
file name} [-debug | -dryrun] script

= Specifying parameters using preprocessor statements in a Pig script

{%declare | %default} param name param value

82

3/30/2013

41

Preprocessor Statements

%declare
Preprocessor statement included in a Pig script.
Use to describe one parameter in terms of other parameters.
The declare statement is processed prior to running the Pig script.

The scope of a parameter value defined using declare is all the lines
following the declare statement until the next declare statement that
defines the same parameter is encountered.

= |n this example the command is executed and its stdout is used as the

parameter value.

$declare CMD ‘generate date’;

A = LOAD '/data/mydata/$CMD';

B = FILTER A BY $0>'5';
= In this example the characters are enclosed in single or double quotes, and the

quote within the sequence of characters is escaped.

%declare DES 'Joe\'s URL';

A = LOAD 'data' AS (name, description, url);

B = FILTER A BY description == '$DES';

83

Preprocessor Statements

%default
Preprocessor statement included in a Pig script.
Provides a default value for a parameter. The default value has the
lowest priority. Used if a parameter value has not been defined by
other means.
The default statement is processed prior to running the Pig script.
The scope is the same as for $declare.
= |n this example the parameter (pATE) andvalue ('20090101")
are specified in the Pig script using the default statement.
= |f a value for DATE is not specified elsewhere, the default value
20090101 is used.

$default DATE '20090101';
A = load '/data/mydata/$DATE';

84

3/30/2013

42

Parameters on the command line

= Suppose we have a data file called 'mydata' and a pig script called
'myscript.pig’'.

mydata

1 2 3
4 2 1
8 3 4

myscript.pig
A = LOAD '$data' USING PigStorage() AS (fl:int, f2:int, £3:int);
DUMP A;

The parameter (data) and the parameter value (mydata) are specified in the
command line.

If the parameter name in the command line (data) and the parameter name in the
script (Sdata) do not match, the script will not run.
pig —-param data=mydata myscript.pig

1,2,3)
4,2,1)
8,3,4)

’

$
(
(
(

’

85
Parameters in a parameter file
= We could have a parameter file called 'myparams.” with the
following content:
my parameters
datal = mydatal
cmd = ‘generate name’
= The parameters and values are passed to the script using that file.
$ pig -param file myparams script2.pig
86

3/30/2013

43

Arithmetic Operators

Operator Symbol Description
addition +

subtraction o

multiplication &
division f
modulo % Returns the remainder of a divided by b (a%h).

Works with integral numbers (jpf. long).
bincond ?: (condition ? yalue,.if true - value if false)
The hincond should be enclosed in parenthesis.

The schemas forthe two conditional outputs of the hincond should match.

Use expressions only (relational operators are not allowed).

Pig has a sign operator, as well.

+ does nothing, - changes the sign.
LOAD 'data' as (x, vy, z);
FOREACH A GENERATE -x, y;

W = =

87

Example of an arithmetic calculation

= Suppose we have relation A.

A = LOAD 'data' AS (fl:int, f2:int,
B:bag{T:tuple(tl:int,t2:int)});

DUMP A;

(10,1, {(2,3), (4,6)})

(10,3,{(2,3),(4,6)})

(10,6,{(2,3),(4,6),(5,7)})

= The modulo operator is used with fields f1 and f2.

X = FOREACH A GENERATE f1, f2, f1%£f2;
DUMP X;
(10,1,0)
(10,3,1)
(10,6,4)

88

3/30/2013

44

Example of an arithmetic calculation

= In this example the bincond operator is used with fields f2 and B.
= The conditionis "f2 equals 1";

= if the condition is true, return 1; if the condition is false, return the
count of the number of tuples in B.

X = FOREACH A GENERATE f2, (£2==1?1:COUNT(B))
DUMP X;
(1,1L)
(3,2L)
(6,3L)

= Fortunately, there are no fractions.

89

Comparison Operators

Operator Symbol Notes

equal s

notequal I=

less than <

greater than >

less than or equal fo <=

greater than or equal to »=

pattern matching matches Regularexpression matching.

Usethe Java format for reqular expressions.

20

3/30/2013

45

Examples of use of Comparison Operators

Use comparison operators with numeric and string data

Example: numeric
= FILTER A BY (fl1 ==

Example: string
= FILTER A BY (f2 ==

Example: matches

) ;

'apache');

= FILTER A BY (fl matches '.*apache.*');
Types Table: equal (==) and not equal (!=) operators

91

Boolean Operators

Pig supports Boolean operators: AND, OR and NOT.

Pig does not support a Boolean data type.

However, the result of a Boolean expression (an expression that
includes Boolean and comparison operators) is always of type

Boolean (true or false).
Example
= FILTER A BY (f1==8)

OR (NOT (f2+f3 > f1));

92

3/30/2013

46

Dereference Operators

= Tuple dereferencing can be done by name
(tuple.field name) oOF position

(mytuple.$0) .
= |f 3 set of fields are dereferenced
(tuple. (namel, name2)) or

(tuple. ($0, s$1))
= the expression represents a tuple composed of the specified fields.

= |f the dot operator is applied to a bytearray, the bytearray will be
assumed to be a tuple.

93
Example, Dereferencing Tuples
= Suppose we have relation A.
LOAD 'data' as (fl:int, f2:tuple(tl:int,t2:int,t3:int));
DUMP A;
(1, (1,2,3))
(2,(4 5,6))
(3,(7,8,9))
(4,(1,4,7))
(5,(2,5,8))
= In this example dereferencing is used to retrieve two fields from tuple £2.
X = FOREACH A GENERATE f2.tl,f2.t3;
DUMP X
(1,3)
(4,6)
(7,9)
(1,7
(2,8)
94

3/30/2013

47

Dereference Operators

= Bag dereferencing can be done by name
bag.field name or position
bag.$0.

= |f a set of fields are dereferenced

bag. (namel, name2 or
bag. ($0, $1)),

= the expression represents a bag composed of the specified fields.

= Map dereferencing must be done by key

field name#key Of position
SO#key) .

= |f the pound operator is applied to a bytearray, the bytearray is
assumed to be a map.

= |f the key does not exist, the empty string is returned.

95

Examples of Dereference Operator with Bags

= Suppose we have relation B, formed by grouping relation A.
A = LOAD 'data' AS (fl:int, f2:int,f3:int);

DUMP A;

(4,2,1)
(8,3,4)
(4,3,3)
(8,4,3)

B = GROUP A BY f1;
DUMP B;
(4,{(4,2,1),(4,3,3)})
(8,{(8,3,4),(8,4,3)})
ILLUSTRATE B;

= We want to project the first field (f1) of each tuple in the bag (a).
X = FOREACH B GENERATE a.fl;

DUMP X;

({(4), ()}

({(8),(8)1})

96

3/30/2013

48

Dereferencing a Map

= Suppose we have relation A.

A = LOAD 'data' AS (fl:int, f2:mapl]);
DUMP A;

(1, [open#tapache])

(2, [apache#hadoop])
(3, [hadoop#pig])

(4, [pig#grunt])

’

= In this example dereferencing is used to look up the value of key
‘open’.

X = FOREACH A GENERATE f2#'open';

DUMP X;

(apache)

()
()
()

97

Dereferencing Tuple and Bag

= Suppose we have relation B, formed by grouping relation A.
A = LOAD 'data' AS (fl:int, f2:int, f3:int);

DUMP A;

(1,2,3)

(4,2,1)

(8,3,4)

(4,3,3)

B = GROUP A BY (fl,f2);

DUMP B;

((1,2),{(1,2
((4,2),{(4,2,
((4,3),{(4,3
((8,3),{(8,3,
ILLUSTRATE B;

73

| b | group: tuple({fl: int,f2: int}) | a: bag({fl: int,f2: int,f3: int})

= Project a field (f1) from a tuple (group) and a field (f1) from a bag (a) .
X = FOREACH B GENERATE group.fl, a.fl;

DUMP X;
1, M
(4,141
(4,14
(8,{(8)1})

98

3/30/2013

49

FLATTEN Operator

The FLATTEN operator changes the structure of tuples and bags.

Flatten un-nests tuples as well as bags. The idea is the same, but
the operation and result is different for each type of structure.

For tuples, flatten substitutes the fields of a tuple in place of the
tuple.

For example, if a relation has a tuple of the form
(a, (b, ¢))

Expression
GENERATE $0, flatten($1),

will cause that tuple to become
(a, b, c).

99

FLATTEN Operator

For bags, the situation becomes more complicated.
When we un-nest a bag, we create new tuples.
If we have a relation that is made up of tuples of the form
({(b,c), (d,e) })
and we apply
GENERATE flatten ($0),
we end up with two tuples
(b,c) and (d,e).
When we remove a level of nesting in a bag, sometimes we cause a
cross product to happen.

Consider a relation that has a tuple of the form (a, {(b,c),
(d,e)}), commonly produced by the GROUP operator.

If we apply the expression GENERATE $0, flatten($1) to

this tuple, we will create new tuples: (a, b, c¢) and (a, d,
e). 100

3/30/2013

50

3/30/2013

Cast

= Cast operators enable you to cast or convert data from one type to
another, as long as conversion is supported.

= Suppose you have an integer field, myint, which you want to
convert to a string. You can cast this field from int to chararray using
(chararray)myint.

= A field can be explicitly cast. Once cast, the field remains that type
(it is not automatically cast back). In this example S0 is explicitly
cast to int.

B = FOREACH A GENERATE (int)$0 + 1;

= Where possible, Pig performs implicit casts. In this example SO is
cast to int (regardless of underlying data) and S1 is cast to double.

* B = FOREACH A GENERATE $0 + 1, $1 + 1.0

= When two bytearrays are used in arithmetic expressions or with
built-in aggregate functions (such as SUM) they are implicitly cast to
double.

= |f the underlying data is really int or long, you’ll get better
performance by declaring the type or explicitly casting the data. 101

Supported Casts
To
From bag | tupke map | It ong Tost | double chararray | bySesrray
bag “C nz TS Nz o 2= nx w3
2 - - 2 . na ol
int n "z n wis per | ger na a1
(=1, na e na oL O s n =
Toat s = u pHm yen eH= s "
double n g nx PRI VIS ELH nx SC
sharamey. b 1Y T i b 2
bytearray vos | ez wis | wes wis wen | wecs
Syntax
{(data type)| (tuple(data type)) | (bag{tuple(data type)}) | (map[]) } field
102

51

Examples of Cast

= |nthis example a bytearray (£f1d in relation A) is cast to type
map .

cat data;

[openfapache]

[apachef#hadoop]

A = LOAD 'data' AS fld:bytearray;

DESCRIBE A;

A: {fld: bytearray}

DUMP A;

([open#tapache])

([apache#hadoop])

B = FOREACH A GENERATE ((mapl[])fld;
DESCRIBE B;

B: {map[1}

DUMP B;

([open#tapache])

([apache#hadoop])

103

bytearray Cast to type bag

= |nthis exampleabytearray (fld inrelation A)is cast to type
bag.

cat data;

{(4829090493980522200L) }

{(4893298569862837493L) }

A = LOAD 'data' AS fld:bytearray;

DESCRIBE A;

A: {fld: bytearray}

DUMP A;

({(48290904939805222001L) })

({(48932985698628374931L) })

B = FOREACH A GENERATE (bag{tuple(long)})fld;

DESCRIBE B;

B: {{(long)}}

DUMP B;

({(48290904939805222001L) })

({(48932985698628374931L) })

104

3/30/2013

52

bytearray Casttotype tuple

= |n this example a bytearray (fld in relation A) is cast to type tuple.
cat data;

(1,2,3)

(4,2,1)

A = LOAD 'data' AS fld:bytearray;

DESCRIBE A;

a: {fld: bytearray}

DUMP A;

((1,2,3))

((4,2,1))

B = FOREACH A GENERATE (tuple (int,int,float)) fld;
DESCRIBE B;

b: {(int,int, float)}

DUMP B;

((1,2,3))

((4,2,1))

105

Relational Operators

Pig offers a number of operators which provide some of the standard
functionality found in relational database system.

= GROUP, Groups the data in one or multiple relations

= COGROUP, the same as GROUP but used with multiple relations
= CROSS, Computes the cross product of two or more relations.

= DISTINCT, Removes duplicate tuples in a relation.

= FILTER, Selects tuples from a relation based on some condition
(where).

= FOREACH ... GENERATE, Generates data by picking some columns of
data

= JOIN (inner), Performs inner, equijoin of two or more relations
based on common field values

= JOIN (outer), Performs an outer join of two or more relations based
on common field values.

= LIMIT, Limits the number of output tuples.
* LOAD, Loads data from the file system. 106

3/30/2013

53

Relational Operators

Pig offers a number of operators which provide some of the standard
functionality found in relational database system.

= GROUP, Groups the data in one or multiple relations

= COGROUP, the same as GROUP but used with multiple relations
= CROSS, Computes the cross product of two or more relations.

= DISTINCT, Removes duplicate tuples in a relation.

= FILTER, Selects tuples from a relation based on some condition
(where).

= FOREACH ... GENERATE, Generates data by picking some columns of
data

= JOIN (inner), Performs inner, equijoin of two or more relations
based on common field values

= JOIN (outer), Performs an outer join of two or more relations based
on common field values.

= LIMIT, Limits the number of output tuples.
= LOAD, Loads data from the file system. 107

Relational Operators

= ORDER, Sorts a relation based on one or more fields.

= SAMPLE, Partitions a relation into two or more relations.
= SPLIT, Partitions a relation into two or more relations.

= STORE, Stores or saves results to the file system.

= STREAM, Sends data to an external script or program.

= UNION, Computes the union of two or more relations.

= DESCRIBE, diagnostic operator, returns the schema of an alias

= DUMP, diagnostic operator, dumps or displays results to screen.

= EXPLAIN, diagnostic operator, displays execution plans.

= |LLUSTRATE, displays a step-by-step execution of a sequence of statements.

108

3/30/2013

54

Comparison with SQL

= SQL is high level language that specifies a query execution plan.

= Example: For each sufficiently large category, retrieve the average
pagerank of high-pagerank urls in that category.

= Assume thereis atable URLS (url , category,
pagerank)

SELECT category, AVG (pagerank)
FROM urls

WHERE pagerank > 0.2

GROUP BY category

HAVING count (*) > 1000000;

109

Pig Latin

= The same problem

= Example: For each sufficiently large category, retrieve the average
pagerank of high-pagerank urls in that category.

= Assume existence of a relation: urls with necessary data: (url
, category, pagerank)

= Availability of schema is optional!

= Columns are referenced using s0, $1, s$2,

Good urls = FILTER urls BY pagerank > 0.2;

Groups = GROUP Good urls BY category;

Big groups = FILTER Groups by COUNT (Good urls) > 1000000;

Output = FOREACH Big groups GENERATE category,
AVG (Good urls, AVG(Good urls.pagerank);

110

3/30/2013

95

CROSS

= Use the CROSS operator to compute the cross product (Cartesian
product) of two or more relations.

= CROSS is an expensive operation and should be used sparingly.

= Suppose we have relations A and B.

A = LOAD 'datal' AS (al:int,a2:int,a3:int);
DUMP A;

(1,2,3)

(4,2,1)

B = LOAD 'data2' AS (bl:int,b2:int);

DUMP B;

(2,4)

(8,9)

= The cross product of relation A and B is:

X = CROSS A, B;

DUMP X;
(1,2,3,2,4
(1,2,3,8,9
(4,2,1,2,4
(

)
)
)
4,2,1,8,9)

DISTINCT

= Use the DISTINCT operator to remove duplicate tuples in a relation.
DISTINCT does not preserve the original order of the contents (to
eliminate duplicates, Pig must first sort the data).

= You cannot use DISTINCT on a subset of fields. To do this, use

FOREACH ... GENERATE to select the fields, and then use DISTINCT.
DUMP A;

= All duplicate tuples are removed.
X = DISTINCT A;

DUMP X;

(1,2,3)

(4,3,3)

(8,3,4)

112

3/30/2013

56

FILTER

= Use the FILTER operator to select particular rows of data.
LOAD 'data' AS (al:int,a2:int,a3:int);

= The condition states that if the third field equals 3, then include the
tuple with relation X.

X FILTER A BY f3 == 3;

DUMP X;

(1,2,3)

(4,3,3)

(8,4,3)

113

FOREACH ... GENERATE

Symriax
flas - S0%EACH [azn bk pzalod aon bE) S soemal

Tarms

= = [SOESATH L GESERATE coesath o ozlshos e agh sz 1715 sptloe
Alad= bl A slwdts S0 LAL HESIHAA T HEZIHAd 1

memed_gem_tls SOEEATH L GESERATE coeswth fonmerbog sz he somna

alua= 1 00l Al SHaHe. aladl
E R EE el 1E5 EE TR T 1T E Rl F 1,) | I |
GEMERATS cxzpeznes [oprzsslan))
Thz e slzk s etdlzees nozetlTg sz Zosng srazezls]
“hz ZENEANTE koot moclbo i lzslzlzizmzns e 170 hiz nzslzd boocs
SHAHG. L34 li==Homel e now g
SHAHZ.GN Slzwsl cpsA e Ae I { U PR " I Il Y R T~ B |
Thz F0RZATH L GESERATE azecslas 5P lEnzl slowezl=os mzud eres b I=N-Re eecls
[4H weyw@ ol
SIeeTa Soechzmousnghs &8 Keyaess 500 3Imemas!
Ml=¢ SLATTS zporas ©.oes, oncoss o schzmi 17 zaronchizoes
[17e SLATTES cporaes £ ot ussd, o1 znz sz hiz schzme npore-l-esze.

114

3/30/2013

o7

FOREACH ... GENERATE, Inner vs. Outer Bag

= FOREACH ...GENERATE works with relations (outer bags) as well as
inner bags:

= |f Ais a relation (outer bag), a FOREACH statement could look like
this.
X = FOREACH A GENERATE f1;
= |f Aisaninner bag, a FOREACH statement could look like this
X = FOREACH B {
S = FILTER A BY 'xyz';
GENERATE COUNT (S.S$0);

115

Example with Nested Block

= Suppose we have relations A and B. Relation B contains an inner bag.
A = LOAD 'data' AS (url:chararray,outlink:chararray);

DUMP A;
(www.ccc.com,www.hjk.com
(www.ddd.com, www.Xyz.0org
(Www.aaa.com, Www.Ccvn.org
(WWww . Wwww.com, www . kpt.net
(WWW . WWW . COm, WWW . XYZ.0rg
(www.ddd.com, www.Xyz.0org
B = GROUP A BY url;

DUMP B;
(www.aaa.com, { (Www.aaa.Ccom, WWw.CVn.org
WWW.CCC.Ccom, Www.ccc.com,www.hjk.com

(
(www.ddd.com, www.ddd.com, www.xyz.org) , (www.ddd.com, www.xyz.org) })
(

WWW . WWW . COom, WWW.WWW.COm, Www.kpt.net), (WWw.wWww.CoOm, WWw.XyzZ.0rg) })

116

3/30/2013

58

FOREACH ... GENERATE in the Inner block

We perform two of the operations allowed in a nested block, FILTER
and DISTINCT.

The last statement in the nested block must be GENERATE.
X = foreach B {

DUMP

(www

FA= FILTER A BY outlink == 'www.xyz.org';
PA = FA.outlink;

DA = DISTINCT PA;

GENERATE GROUP, COUNT (DA) ;

X;

.ddd.com, 1L)

(Www.www.com, 1L)

117

Syntax

GROUP or COGROUP

las = GHOLH dlaz [ALL | 2% eepress el], slaz Alo | 2% ewppessan. . [JUESG ez ™ FAESL L <

Torms
alu=

Al

[T HE

PRSI

The nsime i AH A w0
szl Han 01T g sman alieims cvee vamngg e, Baecsnein, s 60 g
QDT TCAIS ATPCSE I I M O ENL.
U= GEHOWH Anll
SopmId e lhis ca.sotagroun thic ~clahos oe be o, W or sxassn s,
R T A |
N H PR T H R TE T B THTRTHY TR Bl (1 H e T O I e (THE T HH T HEe]
srrgls hzld, o ow s | 2z 2o waloe o s hesk hzldssdhzes=as 2i.plo o ens hold
CA3.F s nam.bElz <zve, onzlaze ths <ovs nEaTTIRTemen
EE P R BT
gl
Iazemen crpaeslaisnne " ajoe by s Teis g e Bwe e Deloce anes
hz eefach il =amnis |lace pedoes a4 wohe the =3 lxatg:
Samle athe olenls the tumber o souze lasks. Mzp amralzls= s eclered Eydte g o,
FUS LLCETEN CETREE B T R T HE

il P b el o e ol Y LTl B ol | T Rl ol e ol B e el) e e Tl | e R ey

118

3/30/2013

59

Example: GROUP

A = load 'student' AS (name:chararray,age:int,gpa:float);

DESCRIBE A;

A: {name: chararray,age: int,gpa: float}

DUMP A;

(John, 18, 4.0F)

(Mary,19,3.8F)

(Bill,20,3.9F)

(Joe, 18, 3.8F)

= Group relation A on field "age". Relation B has two fields. The first field is named
"group" and is type int, the same as field "age" in relation A. The second field is
name "A" after relation A and is type bag.

B = GROUP A BY age;

DESCRIBE B;

B: {group: int, A: {name: chararray,age: int,gpa: float}}

ILLUSTRATE B;

| B | group: int | A: bag({name: chararray,age: int,gpa: float}) |
| | 18 | {(John, 18, 4.0), (Joe, 18, 3.8)}
| | 20 | {(Bill, 20, 3.9)}

119

Example, GROUP continued

DUMP B;

(18, { (John,18,4.0F), (Joe, 18,3.8F) })

(19, { (Mary,19,3.8F) })

(20, {(Bi11,20,3.9F)})

= As shown in following FOREACH statements, we can refer to the fields in relation B
by names "group" and "A" or by positional notation.

C = FOREACH B GENERATE group, COUNT (A);

DUMP C;

(18,2L)

(19,1L)

(20,1L)

C = FOREACH B GENERATE $0, $1.name;

DUMP C;

(18, { (John), (Joe) })

(19, { (Mary) })

(20, { (Bil1l1l)})

120

3/30/2013

60

COGROUP Example

A = LOAD 'datal' AS (owner:chararray,pet:chararray);

DUMP A;

(Alice, turtle) (Alice,goldfish) (Alice,cat) (Bob,doq)

B = LOAD 'data2' AS (friendl:chararray, friend2:chararray);

DUMP B;

(Cindy,Alice) (Mark,Alice) (Paul,Bob)

= Tuples are co-grouped using field “owner” from relation A and field “friend2” from
relation B as the key fields. R

= Relation X, has three fields, "group”, "A“ and “B”.

X = COGROUP A BY owner, B BY friend2;

DESCRIBE X;

X: {group: chararray,A: {owner: chararray,pet: chararray},b:
{firendl: chararray,friend2: chararray}}

DUMP X;

(Alice, { (Alice, turtle), (Alice,goldfish), (Alice,cat) }, { (Cindy,Alice)
, (Mark,Alice) })

(Bob, { (Bob,dog) }, { (Paul,Bob) })

COGROUP Example, continued

= Next, tuples are co-grouped and the INNER keyword is used to ensure that only bags
with at least one tuple are returned.

X = COGROUP A BY owner INNER, B BY friend2 INNER;
DUMP X;

(Alice, { (Alice, turtle), (Alice,goldfish), (Alice,cat) },{ (Cindy,Alice),
(Mark,Alice) })

(Bob, { (Bob,doq) }, { (Paul,Bob) })

= |n this following, tuples are co-grouped and the INNER keyword is used
asymmetrically on only one of the relations.

X = COGROUP A BY owner, B BY friend2 INNER;

DUMP X;
(Bob, { (Bob,doq) }, { (Paul,Bob) })

(Alice, { (Alice, turtle), (Alice,goldfish), (Alice,cat) },{ (Cindy,Alice),
(Mark,Alice) })

122

3/30/2013

61

Lyntax

JOIN (inner)

Ay = JUIN g LY Jexwesann] Meemssann ewessr, L dies U [exnaresan

toaprnssan] exatesaer BT TLAINS epbemsd” | Uskogen® | Uminngs T ITARG T RT 1)
Terms
dil e e ol el
L Keswd
W EEN R H LA ST HA
Frample X - ASIRCA R feldd B RY eld® DR Rt
LRI Fiowrd

“wplvahee®
mthrand”
EiH
RTINS B

Lax e anmamnrsndezhes el e Randeahed el
Lisn e anmtamn sarwnd |ars e Saewed darag
Liax e axmtamimse [ars esee Rems ol
IPemedse T pasbzsm ot a as By sansiig e Iee soekesafredenszaas e
The delgalene Jon s 7 jure eease ekl Nocs e lwag
rzrzhel orly 24 s Tan PGS o Pl T2aes Mas panalzbzmilz deenmees vy
e el le, sons g ler sac LD S s
I ynieer™ aazclis aarzlel yna sl 3z iee zame manpaslzEm e ooy ore wes sk

123
JOIN, A and B joined by their first field
A = LOAD 'datal' AS (al:int,a2:int,a3:int);
DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
B = LOAD 'data2' AS (bl:int,b2:int);
DUMP B;
(2,4)
(8,9)
(1,3)
(2,7)
(2,9)
(4,6)
X = JOIN A BY al, B BY bl;
DUMP X;
(1,2,3,1,3)
(4,2,1,4,6)
(4,3,3,4,6)
(8,3,4,8,9)
124

3/30/2013

62

JOIN (outer)

BiTax
alza = ISR wSalzs B IeR-zhas-cchoer D FFTIRISAT|FIND) JSLTFR]

L s U i dees s LS NS reased | Makenees®] SAEALLL L,

Torms

alzs Tazrate af 2 vlHan Analntaalzs IxR-alac see Ay v-alas

Alzs-ealmn TAREATE AP A r sl r e o T aRaerdrg e ar Anadsthe etslac-onhmn
il gl el ool

v Heswod

LL Le o culer i

L] HE L culer o,

I ULL I alclen pun.

QU ILs (R TR B I R S R

LRET T i B Hesyord

il L L AN TR SR R 1) o, Rl TR B P
Cr s st el sippadsd e epleesd ars

"skrend” Lax e ax~am aanwed sicwed |ars

Fafal TRl v Ipsssantie asnslelan ol ch o cree st vbnsalieies s r

e ue el valar aros T jore oo e, Facle e Loty
Fzrzlvlecky 24 ecs s remas o rolns S2aen ManpamizbEm b= docamree oy
W el e, ames ke Don o IL 3 s

1 pnaenr= aaxndly acrzlel ena &1 gn he sase san pasizizm e andg ere weles bk

125

Examples, Outer JOIN

= This example shows a left outer join.

= LOAD 'a.txt' AS (n:chararray, a:int);

LOAD 'b.txt' AS (n:chararray, m:chararray);
= JOIN A by $0 LEFT OUTER, B BY $0;

This example shows a full outer join.

Q w o
Il

= LOAD 'a.txt' AS (n:chararray, a:int);

LOAD 'b.txt' AS (n:chararray, m:chararray);

= JOIN A BY $0 FULL, B BY $0;

This example shows a replicated left outer join.

LOAD ‘large’;

LOAD ‘tiny’;

= JOIN A BY $0 LEFT, B BY $0 USING "replicated";

Q w o
Il

(PUSCUI
o

This example shows a skewed full outer join.
= LOAD ‘studenttab’ as (name, age, gpa):;

Q w o>

= JOIN A BY name FULL, B BY name USING "skewed";

= LOAD 'votertab' as (name, age, registration, contribution);

126

3/30/2013

63

= Syntax
alias = ORDER alias BY { * [ASC|DESC] | field alias [ASC|DESC] [,
fieldﬁalias [ASC|DESC] ..] } [PARALLEL n];

= |n Pig, relations are unordered (see Relations, Bags, Tuples, and
Fields):

= |f you order relation A to produce relation x
X = ORDER A BY * DESC;
= relations A and X still contain the same thing.

= |f you retrieve the contents of relation X (pump x;) they are
guaranteed to be in the order you specified (descending).

= However, if you further process relation X :
Y = FILTER X BY $0 > 1;

= there is no guarantee that the contents will be processed in the
order you originally specified (descending).

127

Example ORDER

= Suppose we have relation A.
A = LOAD 'data' AS (al:int,a2:int,a3:int);
DUMP A;

= In this example relation A is sorted by the third field, f3 in descending order. Note
that the order of the three tuples ending in 3 can vary.

X = ORDER A BY a3 DESC;

DUMP X;

128

3/30/2013

64

SAMPLE

= Use the SAMPLE operator to select a random data sample with the
stated sample size. SAMPLE is a probabalistic operator;

= There is no guarantee that the exact same number of tuples will be
returned for a particular sample size each time the operator is used.

= |n this example relation X will contain 1% of the data in relation A.

A = LOAD 'data' AS (fl:int,f2:int,f3:int);
X = SAMPLE A 0.01;

129

SPLIT

Syntax: SPLIT alias INTO alias IF expression, alias IF expression [,
alias IF expression ..];

= Use the SPLIT operator to partition the contents of a relation into two or more
relations based on some expression.

= Depending on the conditions stated in the expression: A tuple may be assigned to
more than one or none relation

A = LOAD 'data' AS (fl:int,f2:int,f3:int);

DUMP A;

(1,2,3)

(4,5,6)

(7,8,9)

SPLIT A INTO X IF f1<7, Y IF £2==5, z IF (£3<6 OR £3>6);

DUMP X;

(1,2,3)

(4,5,6)

DUMP Y;

(4,5,6)

DUMP 7;

(1,2,3)

(7,8,9)

130

3/30/2013

65

STREAM

= Use the STREAM operator to send data through an external script
or program. Multiple stream operators can appear in the same Pig
script. The stream operators can be adjacent to each other or have
other operations in between.

= When used with a command, a stream statement could look like
this:
A = LOAD 'data';
B = STREAM A THROUGH ‘stream.pl -n 5°7;
= When used with a cmd_alias, a stream statement could look like
this, where cmd is the defined alias.
A = LOAD 'data';
DEFINE cmd “stream.pl -n 5°;
B = STREAM A THROUGH cmd;

131
UNION
= Syntax: alias = UNION alias, alias [, alias ..];
= Use the UNION operator to merge the contents of two or more
relations. The UNION operator:
= Does not preserve the order of tuples.
= Does not ensure (as databases do) that all tuples adhere to the
same schema or that they have the same number of fields.
A = LOAD 'data' AS (al:int,a2:int,a3:int);
DUMP A;
(1,2,3)
(4,2,1)
B = LOAD 'data' AS (bl:int,b2:int);
DUMP A;
(2,4)
(8,9)
X = UNION A, B;
DUMP X;
(1,2,3)
(4,2,1)
(2,4)
(8,9) 132

3/30/2013

66

Sum All Columns

= |magine data
(1950, 0.0,
(1950, 22.0,
(1950,-11.0,
(1949,111.0,
A = LOAD ‘data’ as (year:int, temp:double, qual:int);
= We want something that, in SQL, would be done as
SELECT sum(qual) from A;
grunt> allData = GROUP A by 1;
grunt> describe allData;
allData: {group: int,A: {year: int,temp: double,qual: int}}
grunt> sumAll = foreach allData generate group, SUM(A.qual);
grunt> describe sumAll;
sumAll: {group: int,long}
grunt> suma = FOREACH sumAll GENERATE $1;
grunt> dump suma;

(4L)

133
Summing with GROUP ALL
= One should be able to do previous sum with command like:
" sumAll = foreach A generate GROUP ALL SUM(qual) ;
134

3/30/2013

67

