
2/23/2013

1

1

Introduction to MapReduce

Csci E185 Big Data Analytics

Zoran B. Djordjević

@Zoran B. Djordjevic

2

Serial vs. Parallel Programming Model

� Many or most of our programs are Serial.

� A Serial Program consists of a sequence of instructions, where
each instruction executes one after the other.

� Serial programs run from start to finish on a single processor.

� Parallel programming developed as a means of improving
performance and efficiency.

� In a Parallel Program, the processing is broken up into parts,
each of which could be executed concurrently on a different
processor. Parallel programs could be faster.

� Parallel Programs could also be used to solve problems involving large
datasets and non-local resources.

� Parallel Programs are usually ran on a set of computers connected on
a network (a pool of CPUs), with an ability to read and write large files
supported by a distributed file system.

@Zoran B. Djordjevic

2/23/2013

2

3

Common Situation

� A common situation involves processing of a large amount of consistent

data.

� If the data could be decomposed into equal-size partitions, we could

devise a parallel solution. Consider a huge array which can be broken up

into sub-arrays

If the same processing is

required for each array element,

with no dependencies in the

computations, and no

communication required

between tasks, we have an ideal

parallel computing opportunity,

the so called Embarrassingly

Parallel problem.

A common implementation of

this approach is a technique

called Master/Worker.

@Zoran B. Djordjevic

4

MapReduce Programming Model

� MapReduce programming model derives from the map and reduce
combinators in Lisp programming language.

� In Lisp, a map takes as input a function and a sequence of values. It
then applies the function to each value in the sequence. A reduce
combines all the elements of a sequence using a binary operation. For
example, it can use "+" to add up all the elements in the sequence.

� MapReduce was developed within Google as a mechanism for
processing large amounts of raw data, for example, crawled
documents or web request logs.

� This data is so large, it must be distributed across thousands of
machines in order to be processed in a reasonable time. This
distribution implies parallel computing since the same computations
are performed on each CPU, but with a different dataset.

� MapReduce is an abstraction that allows Google engineers to
perform simple computations while hiding the details of
parallelization, data distribution, load balancing and fault tolerance.

@Zoran B. Djordjevic

2/23/2013

3

5

MapReduce Library

� Map function, written by a user of the MapReduce library, takes

an input key/value pairs and produces a set of

intermediate key/value pairs.

� The MapReduce library groups together all intermediate values

associated with the same intermediate key and passes them to

the Reduce function.

� The Reduce function, also written by the user, accepts an

intermediate key and a set of values for that key. It

merges together these values to form a possibly smaller set of

values.

@Zoran B. Djordjevic

6

Why Does Google Need Parallel Processing

� Google’s search mechanisms rely on several matrices of sizes

that are really big: 1010 X 1010

� Google needs to spread its processing on tens and hundreds

of thousands of machines in order be able to rank the pages

of World Wide Web in “real time”.

� Today we will just indicate some features of Google

mechanisms.

@Zoran B. Djordjevic

2/23/2013

4

7

MapReduce Execution

� The Map invocations are distributed across multiple machines

by automatically partitioning the input data into a set of M

splits or shards.

� The input shards can be processed in parallel on different

machines.

� Reduce invocations are distributed by partitioning the

intermediate key space into R pieces using a partitioning

function (e.g., hash(key) mod R).

� The number of partitions (R) and the partitioning function are

specified by the user.

@Zoran B. Djordjevic

8

Vocabulary and Number of Words in all Documents

� Consider the problem of counting the number of occurrences of
each word in a large collection of documents

map(String documentName, String documentContent):

//key: document name, value: document content

for each word w in documentContent:

//key: word, value: number of occurances

EmitIntermediate(w, wordCount);

reduce(String w, Iterator values):

// key: a word, // values: a list of counts

int result = 0;

for each v in values:

result += v;

Emit(w, result));

� The map function emits each word plus an associated count of
occurrences in a document.

� The reduce function sums all the counts for every word.

@Zoran B. Djordjevic

2/23/2013

5

9

Flow of Execution

@Zoran B. Djordjevic

10

Master and Worker

Role of the MASTER is to:

1. Initialize the array and splits it up according to the number of

available WORKERS

2. Send each WORKER its sub-array

3. Receive the results from each WORKER

4. Perform some final calculation if needed.

Role of the WORKER is to:

� Receive the sub-array from the MASTER

� Perform processing on the sub array

� Return results to the MASTER

@Zoran B. Djordjevic

2/23/2013

6

11

MapReduce Steps

1. The MapReduce library in the user program first shards the input
files into M pieces of typically 16 megabytes to 64 megabytes
(MB) per piece. It then starts up many copies of the program on a
cluster of machines.

2. One of the copies of the program is special: the Master. The rest
are workers that are assigned work by the Master. There are M
map tasks and R reduce tasks to assign. The master picks idle
workers and assigns each one a map task or a reduce task.

3. A worker who is assigned a map task reads the contents of the
corresponding input shard. It parses key/value pairs out of the
input data and passes each pair to the user-defined Map function.
The intermediate key/value pairs produced by the Map function
are buffered in memory.

4. Periodically, the buffered pairs are written to local disk,
partitioned into R regions by the partitioning function. The
locations of these buffered pairs on the local disk are passed back
to the master, who is responsible for forwarding these locations to
the reduce workers.

@Zoran B. Djordjevic

12

MapReduce Steps
5. When a reduce worker is notified by the master about these

locations, it uses remote procedure calls to read the buffered
data from the local disks of the map workers. When a reduce
worker has read all intermediate data, it sorts it by the
intermediate keys so that all occurrences of the same key are
grouped together. If the amount of intermediate data is too large
to fit in memory, an external sort is used.

6. The reduce worker iterates over the sorted intermediate data and
for each unique intermediate key encountered, it passes the key
and the corresponding set of intermediate values to the user's
Reduce function. The output of the Reduce function is appended
to a final output file for this reduce partition.

7. When all map tasks and reduce tasks have been completed, the
master wakes up the user program. At this point, the MapReduce
call in the user program returns back to the user code.

After successful completion, the output of the MapReduce execution
is available in the R output files

@Zoran B. Djordjevic

2/23/2013

7

13

Usage of MapReduce at Google

� Distributed Grep: The map function emits a line if it matches a

given pattern. The reduce function is an identity function that just

copies the supplied intermediate data to the output.

� Count of URL Access Frequency: The map function processes logs

of web page requests and outputs <URL, 1>. The reduce function

adds together all values for the same URL and emits a <URL, total

count> pair.

� Reverse Web-Link Graph: The map function outputs <target,

source> pairs for each link to a target URL found in a page named

"source". The reduce function concatenates the list of all source

URLs associated with a given target URL and emits the pair: <target,

list(source)>.

� Most of the rest of Google functionality.

@Zoran B. Djordjevic

14

Open Source MapReduce

� We will not build MapReduce frameworks

� We will learn to use an open source MapReduce Framework

called Hadoop which is offered by Amazon and available at

Apache.org.

@Zoran B. Djordjevic

2/23/2013

8

15

Hadoop and

Amazon Elastic MapReduce

@Zoran B. Djordjevic

What is MapReduce

� MapReduce is simple parallel programming model

(framework) designed for scalability and fault-tolerance.

� MapReduce is Pioneered by Google

� Google processes 20 petabytes of data per day

� Popularized and further developed by the open-source

project Hadoop.

� Used at Yahoo!, Facebook, Amazon, …

@Zoran B. Djordjevic 16

2/23/2013

9

What is MapReduce used for?

� At Google:

� Index construction for Google Search

� Article clustering for Google News

� Statistical machine translation

� At Yahoo!:

� “Web map” powering Yahoo! Search

� Spam detection for Yahoo! Mail

� At Facebook:

� Data mining

� Ad optimization

� Spam detection

� At New York Times

� Moving typeset into PDF

@Zoran B. Djordjevic 17

What is MapReduce used for?

� In research:

� Astronomical image analysis

� Bioinformatics

� Analyzing Wikipedia conflicts

� Natural Language Processing

� Particle physics

� Ocean currents simulation

� Weather analysis, etc.

� Electioneering

� Customer behavior analysis

� . . .

@Zoran B. Djordjevic 18

2/23/2013

10

MapReduce Design Goals

1. Scalability to large data volumes:

� 1000’s of machines, 10,000’s of disks

2. Cost-efficiency:

� Commodity machines (cheap, but unreliable)

� Commodity network

� Automatic fault-tolerance (fewer administrators)

� Easy to use (fewer programmers)

3. Bring Processing to Data

� Every job (map or reduce) is performed on the processor adjacent

to the disk containing data.

� Data transfers are minimized.

@Zoran B. Djordjevic 19

Typical Hadoop Cluster

Aggregation

switch

Rack

switch

� 40 nodes/rack, 1000-4000 nodes in cluster

� 1 Gbps bandwidth within rack, 8 Gbps out of rack

� Node specs (Yahoo terasort):

8 x 2GHz cores, 8 GB RAM, 4 disks (= 4 TB?)

@Zoran B. Djordjevic 20

2/23/2013

11

Typical Hadoop Cluster

@Zoran B. Djordjevic 21

• If you do not own one of these warehouses, though luck. ☺

Challenges

1. Cheap nodes fail, especially if you have many

� Mean time between failures for 1 node = 3 years

� Mean time between failures for 1000 nodes = 1 day

� Solution: Build fault-tolerance into system

2. Commodity network = low bandwidth

� Solution: Push computation to the data

3. Programming distributed systems is hard

� Solution: Data-parallel programming model: users write “map” &

“reduce” functions, system distributes work and handles faults

@Zoran B. Djordjevic 22

2/23/2013

12

Hadoop Components

� Distributed file system (HDFS)

� Single namespace for entire cluster

� Replicates data 3x for fault-tolerance

� Allows writes, deletes and appends. Does not allow updates of

data blocks.

� MapReduce framework

� Executes user jobs specified as “map” and “reduce” functions

� Manages work distribution & fault-tolerance

@Zoran B. Djordjevic 23

Hadoop Distributed File System

� Files split into 64MB-128MB blocks

� Blocks replicated across several

datanodes (usually 3)

� Single namenode stores metadata

(file names, block locations, etc)

� Optimized for large files, sequential

reads

� Files are append-only

Namenode

Datanodes

11

22

33

44

11

22

44

22

11

33

11

44

33

33

22

44

File1

@Zoran B. Djordjevic 24

2/23/2013

13

MapReduce Programming Model

� Data type: key-value records

� Map function:

(Kin, Vin) � list(Kinter, Vinter)

� Intermediate keys do not have to be related to the initial

keys in any way.

� Reduce function is fed collection of intermediate values

for each intermediate key.

(Kinter, list(Vinter)) � list(Kout, Vout)

� Reduce function transforms that collection into a final

result, a list of key-value pairs.

@Zoran B. Djordjevic 25

Example: Word Count

You are given a document with many lines.

Define functions mapper and reducer:

def mapper(line):

foreach word in line.split():

output(word, 1)

• word is the key, 1 is the value

def reducer(key, list(values)):

output(key, sum(values))

@Zoran B. Djordjevic 26

2/23/2013

14

Word Count Execution

the quick

brown fox

the fox ate

the mouse

how now

brown cow

Map

Map

Map

Reduce

Reduce

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

the, 1

brown, 1

fox, 1

quick, 1

the, 1

fox, 1

the, 1

how, 1

now, 1

brown, 1

ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

@Zoran B. Djordjevic 27

MapReduce Execution Details

� Single master controls job execution on multiple slaves

� Mappers preferentially placed on same node or same rack as

their input block

� Minimizes network usage

� Mappers save outputs to local disk before they are served to

reducers by Shuffle and Sort phase

� Allows recovery if a reducer crashes

� Allows having more reducers than nodes

@Zoran B. Djordjevic 28

2/23/2013

15

An Optimization: The Combiner

def combiner(key, values):

output(key, sum(values))

� Shuffle and Sort phase typically introduces combiner, a local

aggregation function, for repeated keys produced by same

map

� Combiner works with associative functions like sum, count,

max

� Decreases size of intermediate data

� Example: map-side aggregation for Word Count:

@Zoran B. Djordjevic 29

Word Count with Combiner

Input Map & Combine Shuffle & Sort Reduce Output

the quick

brown fox

the fox ate

the mouse

how now

brown cow

Map

Map

Map

Reduce

Reduce

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

the, 1

brown, 1

fox, 1

quick, 1

the, 2

fox, 1

how, 1

now, 1

brown, 1

ate, 1

mouse, 1

cow, 1

@Zoran B. Djordjevic 30

2/23/2013

16

Fault Tolerance in MapReduce

1. If a task crashes:

� Retry on another node

� OK for a map because it has no dependencies, just do it

again, duplicate data are saved somewhere else

� OK for reduce because map outputs are on disk, or several

disks, new reduce could start over.

� If the same task fails repeatedly, fail the job or ignore that input

block. Quite often tasks are statistical in nature, no one would

notice a slight error, anyway.

2. If a node crashes:

� Re-launch its current tasks on other nodes

� Re-run any maps the node previously ran

� Necessary because their output files were lost along with

the crashed node

@Zoran B. Djordjevic 31

Fault Tolerance in MapReduce

3. If a task is going slowly (straggler):

� Launch second copy of task on another node (“speculative

execution”)

� Take the output of whichever copy finishes first, and kill the

other

� Surprisingly important in large clusters

� Stragglers occur frequently due to failing hardware, software

bugs, misconfiguration, etc

� Single straggler may noticeably slow down a job

� For these fault tolerance features to work, your map

and reduce tasks must be side-effect-free

@Zoran B. Djordjevic 32

2/23/2013

17

Takeaways

� By providing a data-parallel programming model, MapReduce

can control job execution in useful ways:

� Automatic division of job into tasks

� Automatic placement of computation near data

� Automatic load balancing

� Recovery from failures & stragglers

� User focuses on application, not on complexities of distributed

computing

@Zoran B. Djordjevic 33

pig

sheep

yak

zebra

aardvark

ant

bee

cow

elephant

1. Sort

� Input: (key, value) records

� Output: same records, sorted by key

� Map: identity function

� Reduce: identify function

� Trick: Pick partitioning

function h such that

k1<k2 => h(k1)<h(k2)

Map

Map

Map

Reduce

Reduce

ant, bee

zebra

aardvark,

elephant

cow

pig

sheep, yak

[A-M]

[N-Z]

@Zoran B. Djordjevic 34

2/23/2013

18

2. Inverted Index

� Input: (filename, text) records

� Output: list of files containing each word

� Map:

foreach word in text.split():

output(word, filename)

� Combine: uniquify filenames for each word

� Reduce:

def reduce(word, filenames):

output(word, sort(filenames))

@Zoran B. Djordjevic 35

Inverted Index Example

to be or not

to be afraid, (12th.txt)

be, (12th.txt, hamlet.txt)

greatness, (12th.txt)

not, (12th.txt, hamlet.txt)

of, (12th.txt)

or, (hamlet.txt)

to, (hamlet.txt)

hamlet.txt

be not afraid

of greatness

12th.txt

to, hamlet.txt

be, hamlet.txt

or, hamlet.txt

not, hamlet.txt

be, 12th.txt

not, 12th.txt

afraid, 12th.txt

of, 12th.txt

greatness, 12th.txt

@Zoran B. Djordjevic 36

2/23/2013

19

Getting Started with Hadoop

� Download from hadoop.apache.org

� To install locally, unzip and set JAVA_HOME

� Details: hadoop.apache.org/core/docs/current/quickstart.html

� Several ways to write jobs:

� Java API

� Hadoop Streaming (for Python, Perl, etc)

� Pipes API (C++)

� If you want to do very sophisticated work and create special

map/reduce procedures you have few options. Learn one of

Hadoop’s Api-s

@Zoran B. Djordjevic 37

38

Elastic MapReduce

� Amazon Elastic MapReduce is a web service that

utilizes a hosted Hadoop framework running on the

web-scale infrastructure of Amazon Elastic Compute

Cloud (Amazon EC2) and Amazon Simple Storage

Service (Amazon S3).

� Using Amazon Elastic MapReduce, you can instantly

provision as much or as little capacity as you like to

perform data-intensive tasks for applications such as

web indexing, data mining, log file analysis, machine

learning, financial analysis, scientific simulation, and

bioinformatics research.

@Zoran B. Djordjevic

2/23/2013

20

Benefits of Elastic MapReduce

� Amazon Elastic MapReduce lets you focus on crunching or

analyzing your data without having to worry about time-

consuming set-up, management or tuning of Hadoop clusters

or the harvdware capacity upon which they sit.

� Amazon Elastic MapReduce automatically sub-divides the

data in a job flow into smaller chunks so that data can be

processed (the “map” function) in parallel, and eventually

recombining the processed data into the final solution (the

“reduce” function).

� Amazon S3 serves as the source for the data being analyzed,

and as the output destination for the end results.

39@Zoran B. Djordjevic

Elastic MapReduce Functionality

� Develop your data processing application.

� Amazon Elastic MapReduce enables job flows to be developed

in SQL-like languages, such as Hive and Pig.

� If desired, more sophisticated applications can be run in: Java,

Ruby, Perl, Python, PHP, R, or C++.

� Upload your data and your processing application into

Amazon S3.

� Log in to the AWS Management Console to start an Amazon

Elastic MapReduce “job flow.” Alternatively you can start a job

flow by specifying the same information mentioned above via

our Command Line Tools or APIs.

� Monitor the progress of your job flow(s) directly from

the AWS Management Console, Command Line Tools or APIs.

40@Zoran B. Djordjevic

2/23/2013

21

Service Highlights

� Amazon Elastic MapReduce enables you to use as many or as

few compute instances running Hadoop as you want. You can

commission one, hundreds, or even thousands of instances.

� You don’t need to worry about setting up, running, or tuning

the performance of Hadoop clusters.

� Amazon Elastic MapReduce is built on Amazon’s highly

reliable infrastructure, and has tuned Hadoop’s performance

specifically for Amazon’s infrastructure environment.

� Amazon Elastic MapReduce is designed to integrate easily

with other AWS services such as Amazon S3 and EC2.

� Secure and inexpensive.

41@Zoran B. Djordjevic

Pricing

42@Zoran B. Djordjevic

� EMR prices are atop of instance prices.

� Amazon EC2, Amazon S3 and Amazon SimpleDB charges are billed separately.

2/23/2013

22

AWS Services, Select Elastic Map Reduce

@Zoran B. Djordjevic 43

Create a new Job Flow

� Login into AWS Management Console

� Select Elastic MapReduce service

� Click on Create New Job Flow

44@Zoran B. Djordjevic

2/23/2013

23

Select Sample Application

45@Zoran B. Djordjevic

Select your S3 bucket for output

46@Zoran B. Djordjevic

The example, the script, we are running is called do-report2.pig and is

written in a special scripting language written specially for Hadoop. We

will look at that language in fine detail during one of subsequent classes..

2/23/2013

24

Select Type and Number of Instances

@Zoran B. Djordjevic 47

Select your Key and Logging Options

48@Zoran B. Djordjevic

2/23/2013

25

Setup Bootstrap Actions

� Bootstrap actions allow you to pass a reference to a script stored in

Amazon S3. This script can contain configuration settings and arguments

related to Hadoop or Elastic MapReduce. Bootstrap actions are run before

Hadoop starts and before the node begins processing data. Actions are

like: Install software on the node, Modify the default Hadoop site

configuration, Change the way Java parameters use Hadoop daemons

� You can specify up to 16 bootstrap actions per job flow by providing

multiple --bootstrap-action parameters from the CLI or API.
@Zoran B. Djordjevic 49

Job need a few minutes to start

50@Zoran B. Djordjevic

2/23/2013

26

Job is Running, Shutting Down

51@Zoran B. Djordjevic

Job Completed, Results

@Zoran B. Djordjevic 52

top_50_search_terms from file part-r-00000 in

directory top_50_search_terms_from_bing_google

2/23/2013

27

We can control Job Flow thru EMR Command Line

� Download and install Ruby 1.8.7
� http://rubyforge.org/frs/?group_id=167&release_id=28426

� Select rubyinstaller-1.8.7-p398-rc2.exe, perhaps.

� On Linux, do: $ sudo apt-get install ruby

� Download elastic-mapreduce-client.zip from

� http://aws.amazon.com/developertools/2264

� Unzip into c:\elastic-mapreduce-client

� Add C:\elastic-mapreduce-ruby;C:\Ruby\bin; to your PATH.

� In the above directory create file credentials.json and add:
{

"access_id": "<insert your aws Access Key Id here>",

"private_key": "<insert your aws Secret Access Key here>",

"keypair": "<insert path of your amazon ec2 Key Pair file>",

"log_uri": "s3://name of a bucket in s3 to place logs from job"

}

53@Zoran B. Djordjevic

credentials.json

� Be careful with the content of this file. It must be right.

{

"access_id": "AKGGGGHJT7WWWWFDTHJQ",

"private_key": "gUlaTrEwIrQBsyqh3w6253422cK+FlUeRtBWE",

"keypair": “ec2_hu",

"key-pair-file": "C:\AWS\hu\ec2_hu.pem",

"log_uri": "s3n://zoran1116log01/",

"region": "us-east-1"

}

� .

54@Zoran B. Djordjevic

2/23/2013

28

Examples of Command Line Usage

Listing Active Job Flows

ruby elastic-mapreduce --list

ruby elastic-mapreduce --list --active

ruby elastic-mapreduce --list --all

create a job flow that requires manual termination

ruby elastic-mapreduce --create --alive

To create a job flow that will run a mapper written in python, all one line

ruby elastic-mapreduce --create --stream –input \

s3://elasticmapreduce/samples/wordcount/input \

--mapper \

s3://elasticmapreduce/samples/wordcount/wordSplitter.py \

--output s3://zoranbucket01

Bucket needs to be there but the output folder may not exist before the

command is run. If folder is present you get an error.

To terminate all active job flows

ruby elastic-mapreduce --list --active --terminate

terminate a running job flow

ruby elastic-mapreduce --terminate --jobflow j-2WSXRVDHH08T1
55@Zoran B. Djordjevic

Hadoop Streaming

� Rather than writing scripts for Hadoop in a special language or

writing jobs in Java, which is Hadoop’s native langauge, you can

write your Map and Reduce routines in almost any language

and use a utility called Hadoop Streaming to run them.

� We will demonstrate Hadoop Streaming using a provided

example.

@Zoran B. Djordjevic 56

� We will need an S3 output

bucket or a folder for

outputs and perhaps a

bucket or a folder for logs

� I created buckets zoran003

and zoranlog

2/23/2013

29

Add S3 Permissions to all Authenticated Users

@Zoran B. Djordjevic 57

� Right click on

your bucket

and grant

permissions to

Authenticated

users,

Everyone and

Log Delivery.

� You are a bit

more generous

than

necessary.

Create New Job Flow, Streaming Job, Word Count

@Zoran B. Djordjevic 58

• Next we go to the Elastic Map Reduce service and create a job flow

• Name your job and select Word Count, a Streaming Application

2/23/2013

30

Redirect the output to our Bucket

@Zoran B. Djordjevic 59

• We change the Output Location to our bucket. Just replace the

bucket name, leave folders unchanged. Hit Continue

Configure Instances

� These are tiny jobs always chose smallest numbers of

everything. Continue.

@Zoran B. Djordjevic 60

2/23/2013

31

Provide your key pair and log folder

@Zoran B. Djordjevic 61

• Change log path. Select EC2 Key Pair. Notice Keep Alive is YES. Leave it.

• Continue and then Proceed with no Bootstrap Actions

Review your settings and Create Job Flow

@Zoran B. Djordjevic 62

2/23/2013

32

Watch the job flow

� Your jobs will take a few minutes to start, run, wait or fail

@Zoran B. Djordjevic 63

Once Job Flow is Waiting you are Done

� Once the job flow moves to Waiting state you can go to your

S3 buckets and examine the results

� You can download any of the files, like part-00000 and read

the word count. Result is presented on the

@Zoran B. Djordjevic 64

2/23/2013

33

Word Count Output

@Zoran B. Djordjevic 65

Select EC2 Service and Review State of Your Instance

� Select EC2 Service first and then on the EC2 Dashboard, select

Instances

@Zoran B. Djordjevic 66

2/23/2013

34

Instances Supporting the Job Flow
� There is always a master instance and as many slave instances

as you specified. 2 in our case.

@Zoran B. Djordjevic 67

Let us SSH to the Master Instance
� In the instance view, right click on the master instance and select

Connect. From the wizard that pops up copy the public DNS name

of your instance. In my case the DNS name was:

ec2-23-23-57-236.compute-1.amazonaws.com

� Open Cygwin window in the folder
zdjordjr@zdjordjr-PC /cygdrive/c/AWS/hu

� where you keep your key pair (ec2_hu.pem in my case) and type:
$ ssh -i ec2_hu.pem hadoop@ec2-23-23-57-236.compute-1.amazonaws.com

� You will get a Linux prompt in the home directory of hadoop user:
hadoop@domU-12-31-39-00-69-A7:~$ pwd

/home/hadoop

� On the Linux prompt you can run standard Linux (Unix)

commands. Since you are not a root, you might have to run your

commands as a sudo user. Just prefix your commands with sudo.

@Zoran B. Djordjevic 68

2/23/2013

35

Hadoop Environment

� hadoop is also an executable which actually controls your cluster.

You can for example, run the following Linux commands
hadoop@domU-12-31-39-00-69-A7:~$ pwd

/home/hadoop

hadoop@domU-12-31-39-00-69-A7:~$ which hadoop

/home/hadoop/bin/hadoop

hadoop@domU-12-31-39-00-69-A7:~$ which java

/usr/bin/java

hadoop@domU-12-31-39-00-69-A7:~$ ls

PATCHES.txt hadoop-core-1.0.3.jar hadoop-tools.jar

bin hadoop-core.jar lib

conf hadoop-examples-1.0.3.jar lib64

contrib hadoop-examples.jar libexec

etc hadoop-minicluster-1.0.3.jar native

hadoop-ant-1.0.3.jar hadoop-test-1.0.3.jar sbin

. . . .

@Zoran B. Djordjevic 69

Distributed File System, dfs command

� Hadoop has access not only to the local, Linux, file system. It also

has its own distributed file system (HDFS Hadoop Distributed File

System)

� We access that file system through hadoop file system shell, dfs.

Type

$ hadoop dfs

� and you will get a long list of options. We will present those

options on the next slide. Some of those resemble Unix (Linux)

commands. Some are different.

� We use those commands to create directories in the HDFS, copy

files between HDFS and the local file system, Internet and AWS S3

buckets.

� When you use dfs, you always prefix it with hadoop.

@Zoran B. Djordjevic 70

2/23/2013

36

File system shell dfs
hadoop@domU-12-31-39-00-69-A7:~$ hadoop dfs

Usage: java FsShell

[-ls <path>]

[-lsr <path>]

[-du <path>]

[-dus <path>]

[-count[-q] <path>]

[-mv <src> <dst>]

[-cp <src> <dst>]

[-rm [-skipTrash] <path>]

[-rmr [-skipTrash] <path>]

[-expunge]

[-put <localsrc> ... <dst>]

[-copyFromLocal <localsrc> ... <dst>]

[-moveFromLocal <localsrc> ... <dst>]

[-get [-ignoreCrc] [-crc] <src> <localdst>]

[-getmerge <src> <localdst> [addnl]]

[-cat <src>]

[-text <src>]

[-copyToLocal [-ignoreCrc] [-crc] <src> <localdst>]

[-moveToLocal [-crc] <src> <localdst>]

@Zoran B. Djordjevic 71

File system shell dfs

[-moveToLocal [-crc] <src> <localdst>]

[-mkdir <path>]

[-setrep [-R] [-w] <rep> <path/file>]

[-touchz <path>]

[-test -[ezd] <path>]

[-stat [format] <path>]

[-tail [-f] <file>]

[-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]

[-chown [-R] [OWNER][:[GROUP]] PATH...]

[-chgrp [-R] GROUP PATH...]

[-help [cmd]]

Generic options supported are

-conf <configuration file> specify an application configuration file

-D <property=value> use value for given property

-fs <local|namenode:port> specify a namenode

-jt <local|jobtracker:port> specify a job tracker

-files <comma separated list of files> specify comma separated files to

be copied to the map reduce cluster

-libjars <comma separated list of jars> specify comma separated jar

files to include in the classpath.

@Zoran B. Djordjevic 72

2/23/2013

37

File system shell dfs

-libjars <comma separated list of jars> specify comma separated jar files

to include in the classpath.

-archives <comma separated list of archives> specify comma separated

archives to be unarchived on the compute machines.

The general command line syntax is

bin/hadoop command [genericOptions] [commandOptions]

� For example, we can use dfs to fetch the Python script used in

our job flow:
$ hadoop dfs –copyToLocal\

s3://elasticmapreduce/samples/wordcount/wordSplitter.py .

� The last dot (.) on the line is significant. This is “this” directory.

� Notice that options following dfs shell always start with a dash.

� Examine local directory and see the local copy of wordSplitter.py
hadoop@domU-12-31-39-00-69-A7:~$ ls -la wordSplitter.py

-rw-r--r-- 1 hadoop hadoop 294 Feb 23 19:50 wordSplitter.py

@Zoran B. Djordjevic 73

wordSplitter.py

� We can vi the Python script or transfer it to our local

Windows or Mac terminal and discover that it reads like:
#!/usr/bin/python

import sys

import re

def main(argv):

pattern = re.compile("[a-zA-Z][a-zA-Z0-9]*")

for line in sys.stdin:

for word in pattern.findall(line):

print "LongValueSum:" + word.lower() + "\t" + "1"

if __name__ == "__main__":

main(sys.argv)

74@Zoran B. Djordjevic

2/23/2013

38

Input Data

� We could similarly use good services of hadoop’s distributed

file system shell dfs and first examine the input folder and

then fetch the input data we used in the job flow.
hadoop@domU-12-31-39-00-69-A7:~$ hadoop dfs -ls

s3://elasticmapreduce/samples/wordcount/input

Found 12 items

-rwxrwxrwx 1 2392524 2009-04-02 02:55 /samples/wordcount/input/0001

-rwxrwxrwx 1 2396618 2009-04-02 02:55 /samples/wordcount/input/0002

-rwxrwxrwx 1 1593915 2009-04-02 02:55 /samples/wordcount/input/0003

-rwxrwxrwx 1 1720885 2009-04-02 02:55 /samples/wordcount/input/0004

-rwxrwxrwx 1 2216895 2009-04-02 02:55 /samples/wordcount/input/0005

-rwxrwxrwx 1 1906322 2009-04-02 02:55 /samples/wordcount/input/0006

-rwxrwxrwx 1 1930660 2009-04-02 02:55 /samples/wordcount/input/0007

-rwxrwxrwx 1 1913444 2009-04-02 02:55 /samples/wordcount/input/0008

-rwxrwxrwx 1 2707527 2009-04-02 02:55 /samples/wordcount/input/0009

-rwxrwxrwx 1 327050 2009-04-02 02:55 /samples/wordcount/input/0010

-rwxrwxrwx 1 8 2009-04-02 02:55 /samples/wordcount/input/0011

-rwxrwxrwx 1 8 2009-04-02 02:55 /samples/wordcount/input/0012

@Zoran B. Djordjevic 75

Copy input file 0001 to Local File System

hadoop@domU-12-31-39-00-69-A7:~$ hadoop dfs -copyToLocal

s3://elasticmapreduce/samples/wordcount/input/0001 .

13/02/23 20:06:21 INFO s3native.NativeS3FileSystem: Opening

's3://elasticmapreduce/samples/wordcount/input/0001' for

reading

hadoop@domU-12-31-39-00-69-A7:~$ ls -la 0001

-rw-r--r-- 1 hadoop hadoop 2392524 Feb 23 20:06 0001

hadoop@domU-12-31-39-00-69-A7:~$

� Unix (Linux) utilities tail and head will tell us what are the lines

at the end and beginning of file 001.

@Zoran B. Djordjevic 76

2/23/2013

39

tail 0001, head 0001

hadoop@domU-12-31-39-00-69-A7:~$ tail 0001

males age 16-49: 7,322,965

females age 16-49: 6,859,064 (2008 est.)

Manpower fit for military service:

males age 16-49: 4,886,103

females age 16-49: 5,525,764 (2009 est.)

Manpower reaching militarily significant

age annually:

male: 365,567

female: 352,643 (2009 est.)

Military expenditures:

1.6% of GDP (2006)

hadoop@domU-12-31-39-00-69-A7:~$ head 0001

CIA -- The World Factbook -- Country Listing

World Factbook Home

The World Factbook

Country Listing . . .

@Zoran B. Djordjevic 77

Terminate all Instances
� Since we had enough for the day, we should terminate all

instances, so that we stop incurring additional charges.

� Select all instances, and under Actions select Terminate,

and Yes Terminate.

@Zoran B. Djordjevic 78

