
5/2/2014

1

Lecture 13

D3 Visualization

Zoran B. Djordjević

@Zoran B. Djordjević 1

Why Visualize

• You have collected all the data and build all the Hadoop processes
analyzing those data.

• Your audience does not care about the configuration issues and
integration of impossible API-s. You audience needs graphs. Power Points
will do for most of presentations, but eventually they will ask for web
pages with interactive graphics.

• If you work with R use ggplot2, an excellent graphing package and you
will be able to generate excellent presentations.

• If you need to built interactive Web graphs you need something else.

• It appears that D3.js is emerging as the most popular Java Script API for
interactive graphics.

• Big Data community is adopting D3.js enthusiastically.

• This presentation is based on the book "Interactive Data Visualization" by
Scott Murray, O’Reilly, March 2013.

@Zoran B. Djordjević 2

5/2/2014

2

Missing slides

• Add slides on general need to visualize

• Add slide with image of DOM graph vs HTML/XML. Browser populates
DOM from every page you send. D3 interacts with DOM tree, adds
removes nodes and values.

• Add slides with access to database.

@Zoran B. Djordjević 3

Objectives

• Fundamentals

• Setup

• Adding elements

• Chaining methods

• Binding data

• Using your data

• Drawing divs

• The power of data()

• An SVG primer

• Drawing SVGs

• Types of data

• Making a bar chart

• Making a scatterplot

• Scales

• Axes

@Zoran B. Djordjević 4

http://alignedleft.com/tutorials/d3/fundamentals/
http://alignedleft.com/tutorials/d3/setup/
http://alignedleft.com/tutorials/d3/adding-elements/
http://alignedleft.com/tutorials/d3/chaining-methods/
http://alignedleft.com/tutorials/d3/binding-data/
http://alignedleft.com/tutorials/d3/using-your-data/
http://alignedleft.com/tutorials/d3/drawing-divs/
http://alignedleft.com/tutorials/d3/drawing-divs/
http://alignedleft.com/tutorials/d3/the-power-of-data/
http://alignedleft.com/tutorials/d3/an-svg-primer/
http://alignedleft.com/tutorials/d3/drawing-svgs/
http://alignedleft.com/tutorials/d3/data-types/
http://alignedleft.com/tutorials/d3/making-a-bar-chart/
http://alignedleft.com/tutorials/d3/making-a-scatterplot/
http://alignedleft.com/tutorials/d3/scales/
http://alignedleft.com/tutorials/d3/axes/

5/2/2014

3

Fundamentals

• There are Things to Learn or Know

– D3 is not alone.

– You need to be familiar with or learn a few standard Web
technologies: HTML, the DOM, and CSS

– You have to have a little programming experience.

– Have even heard of jQuery or written some JavaScript before

– You are not easily scared by unknown acronyms like CSV, SVG, JSON,
DNY, UGT, ….

@Zoran B. Djordjević 5

HTML

• Hypertext Markup Language is used to structure content for web
browsers. The simplest HTML page looks like this:

<html>

 <head>

 <title>Page Title</title>

 </head>

 <body>

 <h1>Page Title</h1>

 <p>This is an interesting paragraph.</p>

 </body>

</html>

@Zoran B. Djordjević 6

5/2/2014

4

DOM

• The Document Object Model refers to the hierarchical structure of HTML.

• Each bracketed tag is an element, and we refer to elements’ relative
relationships to each other in human terms: parent, child, sibling,
ancestor, and descendant.

• In the HTML above, body is the parent element to both of its
children, h1 and p (which are siblings to each other).

• All elements on the page are descendants of html.

• Web browsers parse the DOM in order to make sense of a page’s content.

• D3 can access and dynamically modify DOM properties, including
properties of all nodes.

• D3 can dynamically modify the DOM tree of your HTML page and add new
nodes at the runtime.

@Zoran B. Djordjević 7

CSS
• Cascading Style Sheets are used to style the visual presentation of HTML

pages. A simple CSS stylesheet looks like this:
body {

 background-color: white;

 color: black;

}

• CSS styles consist of selectors and rules. Selectors identify specific
elements to which styles will be applied:

h1 /* Selects level 1 headings */

p /* Selects paragraphs */

.caption /* Selects elements with class "caption" */

#subnav /* Selects element with ID "subnav" */

• Rules are properties that, cumulatively, form the styles:
color: pink;

background-color: yellow;

margin: 10px;

padding: 25px;

• We connect selectors and rules using curly brackets:
p {

 font-size: 12px;

 line-height: 14px;

 color: black;

}

 @Zoran B. Djordjević 8

5/2/2014

5

CSS

• D3 uses CSS-style selectors to identify elements on which to operate, so
it’s important to understand how to use them.

• CSS rules can be included directly within the head of a document, like so
<head>

 <style type="text/css">

 p {

 font-family: sans-serif;

 color: lime;

 }

 </style>

</head>

• or saved in an external file with a .css suffix, and then referenced in the
document’s head:

<head>

 <link rel="stylesheet" href="style.css">

</head>

@Zoran B. Djordjević 9

JavaScript

• JavaScript is a dynamic scripting language that can instruct the browser to
make changes to a page after it has already loaded.

• Scripts can be included directly in HTML, between two script tags
<body>

 <script type="text/javascript">

 alert("Hello, world!");

 </script>

</body>

• or stored in a separate file, and then referenced somewhere in HTML
(commonly in the head):

<head>

 <title>Page Title</title>

 <script type="text/javascript" src="myscript.js"></script>

</head>

@Zoran B. Djordjević 10

5/2/2014

6

Know your Browser’s Developer Tools

• Newer versions of MS IE, Mozila, Chrome, Safari all have similar developer
tools and JavaScript Console

@Zoran B. Djordjević 11

Chrome Developer Tool, JavaScript Console

• While "View Source" shows you the original HTML source of the page,
developer tool shows the current state of the DOM. This is useful.

• D3 code will modify DOM elements dynamically and we could see changes.
@Zoran B. Djordjević 12

5/2/2014

7

• You can type code in JavaScript Console. For example, at the command
prompt ">", type the following:

> var mystring = "Hello"

> alert(mystring)

• The console will initiate an alert display:

Chrome’s JavaScript Console

@Zoran B. Djordjević 13

SVG

• Scalable Vector Graphics (SVG) provides a range of visual opportunities
that are not possible with regular HTML elements.

• SVG is a text-based image format. You can specify what an SVG image
should look like by writing simple markup code, similar to HTML tags.

• SVG code can be included directly within any HTML document. Web
browsers have supported the SVG format for years (except for Internet
Explorer), but it never quite caught on, until now.

• Here’s a little circle

. . . .
<body>

 <svg width="150" height="150">

 <circle cx="50" cy="50" r="52"

 fill="blue" stroke="gray" stroke-width="6"/>

 </svg>

</body>

. . . .

• D3 is at its best when rendering visuals as Scalable Vector Graphics.

• You’re not required to use SVG with D3, though.

@Zoran B. Djordjević 14

http://caniuse.com/#feat=svg
http://caniuse.com/#feat=svg

5/2/2014

8

Setup
• Start by creating a new folder for your project. Within that folder, create a sub-

folder called d3. Then, from folder http://d3js.org download the latest
version of d3.js into that sub-folder, and decompress the ZIP file.

• The current version of D3 is 3.4.6.

• D3 is also provided in a "minified" version, d3.v3.min.js, from which whitespace
has been removed for smaller file size and faster load time.

• The functionality is the same. Typically, you use the regular version while
developing (for friendlier debugging), and switch to the minified version once you
launch the project publicly (for optimized load times).

@Zoran B. Djordjević 15

Referencing D3 and Viewing your pages
• Create a simple HTML page within your project folder named index.html. Your folder structure should

now look something like this:
project/

 00_empty_page_template.html

 d3/

 d3.js

 d3.v3.min.js (optional)

• Populate file 00_empty_page_template.html with the following code

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>D3 Test</title>

 <script type="text/javascript" src="d3/d3.js"/>

 </head>

 <body>

 <script type="text/javascript">

 // Your beautiful D3 code will go here

 </script>

 </body>

</html>

• Optionally, replace <script … src ="d3/d3.js"/> with call to d3.v3.min.js library using
<script src="http://d3js.org/d3.v3.min.js"></script>

@Zoran B. Djordjević 16

http://d3js.org/

5/2/2014

9

Viewing your code, Web Server

• You do not have to have a Web server and could open your files using
Directory Explorer and the browser. Some browsers would not open local
files as a security precaution. Any Web Server will serve.

• For example, you can download and install Python 3.4.X. Place
%PYTHON_HOME%, e.g. c:\Python34, in your %PATH% and then start a
local server in your project directory

$cd ..\project

$ python –m http.server 8888 &

• This will activate a web server on port 8888.

• In your browser, you could type
http://localhost:8888/00_empty_page_template.html

• and the requested page will render.

@Zoran B. Djordjević 17

Adding DOM Elements

• One of the first steps in use/execution of D3 is to create a new DOM
element.

• Typically, this will be an SVG object for rendering a data visualization, but
we’ll start simple, and just create a <p> paragraph element.

• We start with the 00_empty_page_template.html and replace the
comment between the script tags with:

 d3.select("body").append("p").text("My paragraph!");

• Save and refresh! There is text in the formerly empty browser window, and the
following are elements visible in the web inspector:

@Zoran B. Djordjević 18

5/2/2014

10

New DOM Element is added
• As seen in Elements view, there is a new <p> element that was generated

on-the-fly! We will use a similar technique to dynamically generate tens or
hundreds of elements, each one corresponding to a piece of a data set.

• This is what happened. In a sequence, we:
– Invoked D3's select method, which selects a single element from the

DOM using CSS selector syntax. (We selected the body.)
– Created a new p element and appended it to the end of our selection,

meaning just before the closing </body> tag in this case.
– Set the text content of that new, empty paragraph to "New paragraph!"

@Zoran B. Djordjević 19

In Network
> Preview

window, if
we select
HTML file,
we will see
its original
content

Method Chaining

• D3 employs a technique called chain syntax, which you may from OO
languages and jQuery. By "chaining" methods together with periods, you
can perform several actions in a single line of code.

• Functions and Methods are synonyms for the same concept: a chunk of
code that accepts an argument as input, performs some action, and
returns some data as output.

• Our first line of D3 code read as:

d3.select("body").append("p").text("New paragraph!");

• JavaScript, like HTML, doesn’t care about whitespace and line breaks, so
you can put each method on its own line for legibility:

d3.select("body")

 .append("p")

 .text("New paragraph!");

• Everyone has their own coding style. Use indents, line breaks, and
whitespace (tabs or spaces); whatever works for you.

@Zoran B. Djordjević 20

5/2/2014

11

One Call at a Time

• d3 — References the D3 object, so we can access its methods.

• .select("body") — Give select() a CSS selector as input, and it will
return a reference to the first element in the DOM that matches. (Use
selectAll() when you need more than one element.) We want
the body, so a reference to body is handed off to the next method in the
chain.

• .append("p") — append() creates whatever new DOM element you
specify and appends it to the end (but just inside) of whatever selection it
is acting on. In our case, we want to create a new <p> within the body.
We specified "p" as the input argument, but this method also sees the
reference to body that was passed down the chain from
the select() method. Finally, append(), in turn, hands down a
reference to the new element it just created.

• .text("New paragraph!") — text() takes a string and inserts it
between the opening and closing tags of the current selection. Since the
previous method passed down a reference to new p, this code just inserts
the new text between <p> and </p>. (If there were an existing content,
it would be overwritten.)

• ; — Semicolon indicates the end of this line of code.

@Zoran B. Djordjević 21

Method Hand Off

• Many, but not all, D3 methods return a selection (or, really, reference to a
selection), which enables this handy technique of method chaining.

• Typically, a method returns a reference to the element that it just acted
upon, but not always.

• When chaining methods, order matters. The output type of one method
has to match the input type expected by the next method in the chain.

• If adjacent inputs and outputs are mismatched, the hand-off will not work
and errors will be generated.

• To find out what each function expects and returns, D3 API reference is
your friend. Please go to:

https://github.com/mbostock/d3/wiki/API-Reference

• It contains detailed information on each method, including whether or not
it returns a selection.

@Zoran B. Djordjević 22

https://github.com/mbostock/d3/wiki/Selections#wiki-d3_select
https://github.com/mbostock/d3/wiki/Selections#wiki-d3_selectAll
https://github.com/mbostock/d3/wiki/Selections#wiki-d3_selectAll
https://github.com/mbostock/d3/wiki/Selections#wiki-append
https://github.com/mbostock/d3/wiki/Selections#wiki-text
https://github.com/mbostock/d3/wiki/API-Reference
https://github.com/mbostock/d3/wiki/API-Reference
https://github.com/mbostock/d3/wiki/API-Reference
https://github.com/mbostock/d3/wiki/API-Reference

5/2/2014

12

Going Chainless

• Our sample code could be rewritten without chain syntax as:

var body = d3.select("body");

var p = body.append("p");

p.text("New paragraph!");

• There will be times you need to break the chain, such as when you are
calling so many functions that it doesn't make sense to string them all
together. Or because you want to organize your code in a way that makes
more sense to you.

@Zoran B. Djordjević 23

Binding Data

• With D3, we bind our data input values to elements in the DOM.

• Binding is like "attaching" or associating data to specific elements, so that
later you can reference those values to apply mapping rules.

• Without the binding step, we have a bunch of data-less, un-mapable
DOM elements.

• In a bind process we use D3’s selection.data() method to bind data to
DOM elements.

• There are two things we need in place first, before we can bind data:

– The data

– A selection of DOM elements

@Zoran B. Djordjević 24

https://github.com/mbostock/d3/wiki/Selections#wiki-data
https://github.com/mbostock/d3/wiki/Selections#wiki-data

5/2/2014

13

Data
• D3 is smart about handling different kinds of data, so it will accept practically

any array of numbers, strings, or objects (themselves containing other arrays
or key/value pairs).

• D3 can handle JSON (and GeoJSON) gracefully, and even has a built-in method
to help you load in CSV files.

• We will start with a sample data set:
var dataset = [5, 10, 15, 20, 25];

• First, you need to decide what to select. That is, what elements will your data
be associated with?

• We will keep it simple and make a new paragraph for each value in the data
set. Something like this should be helpful
d3.select("body").selectAll("p")

• The paragraphs we want to select don’t exist yet. How can we select elements
that don’t yet exist?

• The answer lies with enter(), a truly magical method.
• Our final code for this example, reads

d3.select("body").selectAll("p")

 .data(dataset)

 .enter()

 .append("p")

 .text("New paragraph!");

 @Zoran B. Djordjević 25

04_data_values.html

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>D3: Referencing values after the data join</title>

 <script type="text/javascript" src="d3.v3.js"></script>

 </head>

 <body>

 <script type="text/javascript">

 var dataset = [5, 10, 15, 20, 25];

 d3.select("body").selectAll("p")

 .data(dataset)

 .enter()

 .append("p")

 .text("New paragraph");

 //.text(function(d) { return d; });

 </script>

 </body>

</html>

• Browser shows:
New Paragraph

New Paragraph

New Paragraph

New Paragraph

New Paragraph

@Zoran B. Djordjević 26

5/2/2014

14

Results

• Here is what is happening.

d3.select("body") — Finds the body in the DOM and hands a reference off to
the next step in the chain.

.selectAll("p") — Selects all paragraphs in the DOM. Since none exist yet, this
returns an empty selection. This empty selection is representing the paragraphs
that will soon exist.

.data(dataset) — Counts and parses our data values. There are five values in our
data set, so everything past this point is executed five times, once for each value.

.enter() — To create new, data-bound elements, you must use enter(). This
method looks at the DOM, and then at the data being handed to it. If there are more
data values than corresponding DOM elements, then enter() creates a new
placeholder element . It then hands off a reference to this new placeholder to the next
step in the chain.

.append("p") — Takes the placeholder selection created by enter() and inserts
a p element into the DOM. Subsequently, it hands off a reference to the element it
just created to the next step in the chain.

.text("New paragraph!") — Takes the reference to the newly created p and
inserts a text value.

 @Zoran B. Djordjević 27

Where is the Data?

@Zoran B. Djordjević 28

5/2/2014

15

JavaScript Console

• Click on Console, type in the following JavaScript/D3 code, and hit enter:

console.log(d3.selectAll("p")) Operation produces an Array[5]

• If we click on Array[5] we see 5 elements. If we expand one of them, we
do see data. Data are contained in _data_:15 element.

@Zoran B. Djordjević 29

Data

• Our third data value, the number 15, is showing up under the first
paragraph’s__data__ attribute.

• Click into the other paragraph elements, and you’ll see they also
contain __data__ values: 10, 15, 20, and 25, just as we specified.

• When D3 binds data to an element, that data doesn’t exist in the DOM,
but it does exist in memory as a __data__ attribute of that element.

• JavaScript console is where you can go to confirm whether or not your
data was bound as expected.

@Zoran B. Djordjević 30

5/2/2014

16

Using Data

• To use our dataset we change the code. We replace the line
.text("New paragraph!")

• with
.text(function(d) { return d; }); << anonymous function

• Browser output is changed to display the dataset:
5

10

15

20

25

• Data is used to populate the contents of each paragraph, all thanks to the
magic of the data() method. When chaining methods together, after
you call data(), you always create an anonymous function that accepts
reference d as input. The data() ensures that d is set to the
corresponding value in the original data set, given the current element at
hand.

• The value of "the current element" changes over time as D3 loops through
each element. For example, when looping through the third time, our
code creates the third p tag, and d will correspond to the third value in
data set (dataset[2]). So the third paragraph gets text content of "15".

@Zoran B. Djordjević 31

User Defined Functions

• The basic structure of a user defined function is:
function(input_value) {

 //Calculate something here

 return output_value;

}

• The function we used above was very simple
function(d) {

 return d;

}

• and it is wrapped within D3’s text() function, so whatever our function
returns is handed off to text().

.text(function(d) {

 return d;

});

• We can customize these functions however we want. For example, we could
add some extra text, which produces more elaborate browser display, like:

.text(function(d) {

 return "I can count up to " + d;

});

@Zoran B. Djordjević 32

5/2/2014

17

Data Needs to be "held"
• Why do we have to write function(d).. rather than just pass variable d on its own.

• For example, this will not work:
.text("I can count up to " + d);

• Without wrapping d in an anonymous function, d has no value. Apparently, d needs
to be held (or handed out) by a function:
.text(function(d) { //

return "I can count up to " + d;

});

• The reason for this syntax is that .text(), attr(), and many other D3 methods
take a function as an argument. For example, text() can take either a simple static
string of text as an argument:
.text("someString")

• …or the result of a function:

.text(someFunction())

• …or an anonymous function itself can be the argument, such as when you write:
.text(function(d) {

 return d;

})

• Above, we are defining an anonymous function. If D3 sees a function there, it will
call that function, while handing off the current datum d as the function’s argument.
Without the function in place, D3 can’t know to whom it should hand off the argument d.

@Zoran B. Djordjević 33

D3 attr() and style() methods

• attr() and style(), are D3 methods which allow us to set HTML
attributes and CSS properties on selections, respectively.

• For example, if add one more line to our recent code

.style("color", "red");

• All the text will turn red.

• We could be more specific and use a custom function to make the text red
only if the current datum exceeds a certain threshold. So we could revise that
last line to use a function:

.style("color", function(d) {

 if (d > 15) { //Threshold of 15

 return "red";

 } else {

 return "black";

 }

});

• The first three lines are black, but once d exceeds 15, the text turns red.

• In what follows next we will use attr() and style() to manipulate div-s,
generating a bar chart — our first visualization!

@Zoran B. Djordjević 34

5/2/2014

18

Method attr()

• Method attr() is attached to a selection (result of action of
select("body"), for example.

• Method is invoked with argument name and optionally argument value:
selection.attr(name[, value])

• If value is specified, sets the attribute with the specified name to the
specified value on all selected elements. If value is a constant, then all
elements are given the same attribute value; otherwise, if value is a
function, then the function is evaluated for each selected element (in
order), being passed the current datum d and the current index i, with
the this context as the current DOM element. The function's return value
is then used to set each element's attribute. A null value will remove the
specified attribute.

• If value is not specified, attr(name) returns the value of the specified
attribute for the first non-null element in the selection. This is generally
useful only if you know that the selection contains exactly one element.

• The specified name may have a namespace prefix, such as xlink:href, to
specify an "href" attribute in the XLink namespace. By default, D3
supports svg, xhtml, xlink, xml, and xmlns namespaces.

@Zoran B. Djordjević 35

HTML Tag <div>

• The <div> tag defines a division or a section in an HTML document.
• The <div> tag is used to group block-elements to format them with CSS.
• The <div> element is very often used together with CSS, to layout a web

page. By default, browsers always place a line break before and after the
<div> element. However, this can be changed with CSS.

• <div> could use inline style
<div style="color:#0000FF">
 <h3>This is a heading</h3>
 <p>This is a paragraph.</p>
</div>

• Or, <div> could use classes defined in the style sheet
<style>

.center

{ margin:auto; width:70%; background-color:#b0e0e6; }

</style>

. . . .

<div class="center">

 <p>Cats play with mice.</p>

</div>

@Zoran B. Djordjević 36

5/2/2014

19

Drawing with Data
• Bar charts are essentially just rectangles, and an HTML <div> is the easiest

way to draw a rectangle. This div could work well as a data bar:
<div style="display: inline-block;

 width: 20px;

 height: 75px;

 background-color: teal;"></div>

• The width and height of the above <div> element are set with a CSS style.
• Each bar in our chart will share the same display properties (except for height),

so we could define those shared styles in a CSS class called bar:
div.bar {

 display: inline-block;

 width: 20px;

 height: 75px; /* We'll override this later */

 background-color: teal;

}

• Each div needs to be assigned the bar class, so that new CSS rules apply.
• If we were writing the HTML code by hand, we would write:
<div class="bar"></div>

• In D3, to add a class to an element, we use the selection.attr()method.
• It’s important to understand the difference between attr() and its close

cousin, style().

@Zoran B. Djordjević 37

01_drawing_divs.html

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>D3: Drawing divs with data</title>

 <script type="text/javascript" src="../d3/d3.js"></script>

 <style type="text/css">

 div.bar {

 display: inline-block;

 width: 20px;

 height: 75px;

 background-color: teal;

 }

 </style>

 </head>

 <body>

 <script type="text/javascript">

 var dataset = [5, 10, 15, 20, 25];

 d3.select("body").selectAll("div")

 .data(dataset)

 .enter()

 .append("div")

 .attr("class", "bar");

 </script>

 </body>

</html>

@Zoran B. Djordjević 38

5/2/2014

20

Browser View

• Though we see a single rectangle, with the help of developer tools we could
see that we do have 5 of them, one after another, all of the same height.

@Zoran B. Djordjević 39

Setting Attributes

• D3 method attr() is used to set an HTML attribute and its value on an
element.

• An HTML attribute is any property/value pair that you could include
between an element’s <>brackets. For example, these HTML elements

<p class="caption">

<select id="country">

• contain a total of five attributes (and corresponding values), all of which
could be set with attr():

class | "caption"

id | "country"

src | "logo.png"

width | "100px"

alt | "Logo"

• To give our div-s a class of bar, we used:
.attr("class", "bar")

@Zoran B. Djordjević 40

5/2/2014

21

class-es

• Note that an element’s class is an HTML attribute.

• The class attribute, is used to reference a CSS style rule.

• This may cause some confusion because there is a difference between
setting a class (from which styles are inferred) and applying
a style directly to an element. We can do both with D3.

• Although you should use whatever approach makes the most sense to
you, it is recommended to use classes for properties that are shared by
multiple elements, and apply style rules directly only on isolated tags.

• There is also another D3 method, classed(), which can be used to
quickly apply or remove classes from elements. Call to attr()
.attr("class", "bar")

• could be rewritten as:
.classed("bar", true)

• and it would have applied class bar to all div-s

@Zoran B. Djordjević 41

Setting Styles

• The style() method is used to apply a CSS property and value directly to
an HTML element. This is the equivalent of including CSS rules within a style
attribute right in your HTML, as in: <div style="height:
75px;"></div>

• In a bar chart, the height of each bar must be a function of the
corresponding data value. We can add this to the end of our D3 code:

.style("height", function(d) {

 var barHeight = d * 5; //Scale up by 5 to make plot prettier

 return barHeight + "px";

});

@Zoran B. Djordjević 42

https://github.com/mbostock/d3/wiki/Selections#wiki-style

5/2/2014

22

02_drawing_divs_height.html

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8"> <title>D3: Setting div heights from data</title>

 <script type="text/javascript" src="d3/d3.js"></script>

 <style type="text/css">

 div.bar {

 display: inline-block; width: 20px;

 height: 75px; /* Gets over-riden below */

 background-color: teal;

 }

 </style>

 </head>

 <body>

 <script type="text/javascript">

 var dataset = [5, 10, 15, 20, 25];

 d3.select("body").selectAll("div")

 .data(dataset)

 .enter()

 .append("div")

 .attr("class", "bar")

 .style("height", function(d) {

 return 5*d + "px"; });

 </script>

 </body>

</html> @Zoran B. Djordjević 43

Setting Styles

• To add some space to the right of each bar, to space things out, we add
property margin-right: 2px; to the div.bar class

<style type="text/css">

 div.bar {

 display: inline-block;

 width: 20px;

 height: 75px; /* Gets over-riden by file below */

 margin-right: 2px;

 background-color: teal;

 }

</style>

@Zoran B. Djordjević 44

5/2/2014

23

03_drawing_divs_spaced.html

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>D3: Drawing divs, spaced out</title>

 <script type="text/javascript" src="d3/d3.v3.js"></script>

 <style type="text/css">

 div.bar {

 display: inline-block; width: 20px;

 height: 75px; /* Gets overriden by D3-assigned height */

 margin-right: 2px; background-color: teal;

 }

 </style>

 </head>

 <body>

 <script type="text/javascript">

 var dataset = [5, 10, 15, 20, 25];

 d3.select("body").selectAll("div").data(dataset)

 .enter().append("div").attr("class", "bar")

 .style("height", function(d) {

 var barHeight = d * 5;

 return barHeight + "px";

 });

 </script>

 </body>

</html>

@Zoran B. Djordjević 45

Spaced Bar Graph

@Zoran B. Djordjević 46

5/2/2014

24

Random Data
• Sometimes, for testing purposes, we need to generate random data values,

var dataset = []; //Initialize empty array

for (var i = 0; i < 25; i++) { //Loop 25 times

 var newNumber = Math.random() * 30; //New random number (0-30)

 dataset.push(newNumber); //Add new number to array

}

• This code:

– Creates an empty array called dataset.

– Initiates a for loop, which is executed 25 times.

– Each time, it generates a new random number with a value between zero and 30.

– That new number is appended to the dataset array. (push() is an array method that
appends a new value to the end of an array.)

• If we open up the JavaScript console and enterconsole.log(dataset). You should see the
full array of 25 randomized data values.

> console.log(dataset);

@Zoran B. Djordjević 47

SVG Primer

• D3 is most useful when used to generate and manipulate graphs with SVGs.

• Drawing with <div>-s and other native HTML elements is possible, but a bit
clunky and subject to the usual inconsistencies across different browsers.

• Using SVG is more reliable, visually consistent, and faster.

• Scalable Vector Graphics is a text-based image format. Each SVG image is
defined using markup code similar to HTML.

• SVG code can be included directly within any HTML document. Every web
browser supports SVG except Internet Explorer versions 8 and older.

• SVG is XML-based. Elements that don’t have a closing tag must self-close. For
example:

• <element></element> <!-- Uses closing tag -->

• <element/> <!-- Self-closing tag -->

• Before you can draw anything, you must create an SVG element.

• An SVG element is a canvas on which your visuals are rendered. At a minimum,
it’s good to specify width and height values. If you don’t specify these, the SVG
will take up as much room as it can within its enclosing element.

<svg width="500" height="50">

</svg>

• SVG generated by that static code is an empty rectangle.

@Zoran B. Djordjević 48

http://caniuse.com/#feat=svg

5/2/2014

25

SVG generated by D3, 08_drawing_svgs.html
• We can inject previous <svg> element into an HTML page using D3:
<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>D3: Creating an empty SVG</title>

 <script type="text/javascript"
 src="d3/d3.js"></script>

 <style type="text/css">

 /* No style rules here yet */

 </style>

 </head>

 <body>

 <script type="text/javascript">

 //Create SVG element

 var svg = d3.select("body")

 .append("svg")

 .attr("width", 500)

 .attr("height", 50);

 </script>

 </body>

</html>

@Zoran B. Djordjević 49

First SVG

• Since our SVG element has no colors, we need the Developer’s tool to see
it.

• The tool shows that we injected an <svg> element into the DOM

• If you scroll over it in the Developer’s tool, the SVG will pop-up.

@Zoran B. Djordjević 50

5/2/2014

26

Simple Shapes
• There are a number of visual elements that you can include between

those svg tags, including rect, circle, ellipse, line, text, and path.
• SVG uses the usual pixel-based coordinates system in which 0,0 is the top-left

corner of the drawing space. Increasing x values move to the right, while
increasing y values move down.

• rect draws a rectangle. Use x and y to specify the coordinates of the upper-
left corner, and width and height to specify the dimensions. This rectangle fills
the entire space of our SVG:

<rect x="0" y="0" width="500" height="50"/>

• circle draws a circle. Use cx and cy to specify the coordinates of the center,
and r to specify the radius. This circle is centered in the middle of our 500-
pixel-wide SVG because its cx ("center-x") value is 250.

<circle cx="250" cy="25" r="25"/>

• ellipse is similar, but expects separate values for spread along each axis.
Instead of r, use rx and ry.

<ellipse cx="250" cy="25" rx="100" ry="25"/>

• line draws a line. Use x1 and y1 to specify the coordinates of one end of the
line, and x2 and y2 to specify the coordinates of the other end.

• A stroke color must be specified for the line to be visible.
<line x1="0" y1="0" x2="500" y2="50" stroke="black"/>

@Zoran B. Djordjević 51

Simple Shapes

• text renders text. Use x to specify the position of the left edge, and y to
specify the vertical position of the type’s baseline.

• <text x="250" y="25">Hello there</text>

• text will inherit the CSS-specified font styles of its parent element unless
specified otherwise. We could override that formatting as follows:

<text x="250" y="25" font-family="sans-serif" font-size="25"

fill="gray">Hello there</text>

• When any visual element runs up against the edge of the SVG, it will be
clipped.

• We have to be careful when using text so our descenders don’t get cut off
You can see this happen when we set the baseline (y) to 50, the same as
the height of our SVG:

• <text x="250" y="50" font-family="sans-serif" font-size="25"

fill="gray">Easy-peasy</text>

@Zoran B. Djordjević 52

5/2/2014

27

Drawing with SVG

• You have noticed that all properties of SVG elements are specified as
attributes. That is, they are included as property/value pairs within each
element tag, like this:

<element property="value"/>

• That looks exactly like HTML!
<p class="eureka">

• We know how to use D3’s append() and attr() methods to create
new HTML elements and set their attributes.

• Since SVG elements exist in the DOM, just as HTML elements do, we can
use append() and attr() in exactly the same way to generate SVG
images!

@Zoran B. Djordjević 53

Creating the SVG

• First, we need to create the SVG element in which to place all our shapes.
 d3.select("body").append("svg");

• That will find the body and append a new svg element just before the
closing </body> tag.

• It is recommend to store returned reference of append() call:
 var svg = d3.select("body").append("svg");

• Most D3 methods return a reference to the DOM element on which they
act?

• Think of svg not as a "variable" but as a "reference pointing to the SVG
object that we just created." This reference will save a lot of coding. For
example, instead of having to search for that SVG each time — as in
d3.select("svg") — we just reference svg.
svg.attr("width", 500) .attr("height", 50);

• Alternatively, above two lines could be written as one line of code:
var svg = d3.select("body") .append("svg") .attr("width", 500)

.attr("height", 50);

@Zoran B. Djordjević 54

5/2/2014

28

10_drawing_circles.html

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>D3: Drawing SVG circles with data</title>

 <script type="text/javascript" src="../d3/d3.js"></script>

 <style type="text/css"> /* No style rules here yet */ </style>

 </head>

 <body>

 <script type="text/javascript">

 var w = 500; //Width and height

 var h = 50;

 var dataset = [5, 10, 15, 20, 25]; //Data

 var svg = d3.select("body") //Create SVG element

 .append("svg").attr("width", 500).attr("height", 50);

 var circles = svg.selectAll("circle") # circle is an SVG tag

 .data(dataset).enter().append("circle");

 circles.attr("cx", function(d, i) {

 return (i * 50) + 25;

 })

 .attr("cy", h/2).attr("r", function(d) {

 return d;

 });

 </script>

 </body>

</html>

@Zoran B. Djordjević 55

10_drawing_circles.html

@Zoran B. Djordjević 56

5/2/2014

29

Styling SVG Elements

• SVG’s default style is a black fill with no stroke. If you want anything else,
you’ll have to apply styles to your elements. Common SVG properties are:

• fill — A color value. Just as with CSS, colors can be specified as

– named colors — orange

– hex values — #3388aa or #38a

– RGB values — rgb(10, 150, 20)

– RGB with alpha transparency — rgba(10, 150, 20, 0.5)

• stroke — A color value.

• stroke-width — A numeric measurement (typically in pixels).

• opacity — A numeric value between 0.0 (completely transparent) and
1.0 (completely opaque).

• With text, you can also use those properties, which work just like in CSS:

• font-family

• font-size

@Zoran B. Djordjević 57

Applying Style to SVG

• There are two ways to apply styles to an SVG element: either directly
(inline) as an attribute of the element, or with a CSS style rule.

• These style properties are applied directly to a circle as attributes:
<circle cx="25" cy="25" r="22" fill="yellow" stroke="orange"

stroke-width="5"/>

• Alternatively, we could strip the style attributes, assign to the circle a class
pumpkin (just as if it were a normal HTML element)

 <circle cx="25" cy="25" r="22" class="pumpkin"/>

• and then put the fill, stroke, and stroke-width rules into a CSS style that targets the
new class pumpkin:

.pumpkin { fill: yellow; stroke: orange; stroke-width: 5; }

• The CSS approach has a few obvious benefits:

– You can specify a style once and have it applied to multiple elements.

– CSS code is generally easier to read than inline attributes.

@Zoran B. Djordjević 58

5/2/2014

30

Layering

• There are no "layers" in SVG, and no real concept of depth. SVG does not
support CSS’s z-index property, so shapes can only be arranged within the
two-dimensional x/y plane.

• If we draw multiple shapes, they overlap:
<rect x="0" y="0" width="30" height="30" fill="purple"/>

<rect x="20" y="5" width="30" height="30" fill="blue"/>

<rect x="40" y="10" width="30" height="30" fill="green"/>

<rect x="60" y="15" width="30" height="30" fill="yellow"/>

<rect x="80" y="20" width="30" height="30" fill="red"/>

• The order in which elements are coded determines their depth order. The
purple square appears first in the code, so it is rendered first. Then, the
blue square is rendered "on top" of the purple one, then the green square
on top of that, and so on.

@Zoran B. Djordjević 59

Bar Chart in SVG

• First things first, we need to decide on the size of the new SVG:
//Width and height

var w = 500; var h = 100;

• Then, we tell D3 to create an empty SVG element and add it to the DOM:

• //Create SVG element
var svg = d3.select("body") .append("svg")

 .attr("width", w) .attr("height", h);

• This inserts a new <svg> element just before the closing </body> tag,
and assigns the SVG a width and height of 500 by 100 pixels.

• This statement also puts the result into our new variable called svg, so we
can easily reference the new SVG .

• Next, instead of creating divs, we generate rects and add them to svg.
svg.selectAll("rect") .data(dataset) .enter() .

 append("rect") .attr("x", 0) .attr("y", 0)

 .attr("width", 20) .attr("height", 100);

• And so on ….

@Zoran B. Djordjević 60

5/2/2014

31

SVG Bar Chart

@Zoran B. Djordjević 61

19_making_a_bar_chart_blues.html
<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>D3: Adding dynamic color, based on data</title>

 <script type="text/javascript" src="d3/d3.v3.js"></script>

 <style type="text/css"> </style>

 </head>

 <body>

 <script type="text/javascript">

 //Width and height

 var w = 500; var h = 100;

 var barPadding = 1;

 var dataset = [5, 10, 13, 19, 21, 25, 22, 18, 15, 13,

 11, 12, 15, 20, 18, 17, 16, 18, 23, 25];

 var svg = d3.select("body").append("svg").attr("width", w)

 .attr("height", h);

 svg.selectAll("rect")

 .data(dataset).enter().append("rect")

 .attr("x", function(d, i){return i *(w/dataset.length);})

 .attr("y", function(d) { return h - (d * 4); })

 .attr("width", w / dataset.length - barPadding)

 .attr("height", function(d) { return d * 4;})

 .attr("fill",function(d){return "rgb(0, 0, "+(d * 10)+ ")";});

 </script>

 </body>

</html>

@Zoran B. Djordjević 62

5/2/2014

32

Scatterplot

• The scatterplot is a common type of visualization that represents two sets of
corresponding values on two different axes: horizontal & vertical: x and y.

• You have a lot of flexibility around how you structure your data set.

• For the scatterplot, we could use an array of arrays.

• The primary array will contain one element for each data "point." Each of
those "point" elements will be another array, with just two values: one for
the x value, and one for y.

var dataset = [

 [5, 20], [480, 90], [250, 50], [100, 33], [330, 95],

 [410, 12], [475, 44], [25, 67], [85, 21], [220, 88]

];

• [] means array, so nested hard brackets [[]] indicate an array within another
array.

• We separate array elements with commas, so an array containing three
other arrays would look like: [[],[],[]]

@Zoran B. Djordjević 63

Scatterplot

• We carry over most of the code from our bar chart experiments, including
the piece that creates the SVG element:

//Create SVG element

var svg = d3.select("body")

 .append("svg")

 .attr("width", w)

 .attr("height", h);

• Instead of creating rects, however, we’ll make a circle for each data
point:

svg.selectAll("circle")

 .data(dataset)

 .enter()

 .append("circle")

• Also, instead of specifying the rects’ attributes: x, y, width,
and height, circles need cx, cy, and r:

 .attr("cx", function(d) {

 return d[0];

 })

 .attr("cy", function(d) {

 return d[1];

 })

 .attr("r", 5);

@Zoran B. Djordjević 64

5/2/2014

33

Size

• Maybe you want the circles to be different sizes, so their radii correspond
to their y values. Instead of setting all r values to 5, try:
.attr("r", function(d) {

 return Math.sqrt(h - d[1]);

});

@Zoran B. Djordjević 65

Labels

• We could label the data points with text elements.
svg.selectAll("text")

 .data(dataset)

 .enter()

 .append("text")

• So far, this looks for all text elements in the SVG (there aren’t any yet), and
then appends a new text element for each data point. Use
the text() method to specify each element’s contents:

 .text(function(d) {

 return d[0] + "," + d[1];

 })

@Zoran B. Djordjević 66

5/2/2014

34

Axes

• Note that the axis functions are SVG-specific, as they generate SVG
elements. We use d3.svg.axis() to create a generic axis function:

 var xAxis = d3.svg.axis();

• At a minimum, each axis also needs to be told on what scale to operate.

 xAxis.scale(xScale);

• We can also specify where the labels should appear relative to the axis
itself. The default is bottom, meaning the labels will appear below the axis
line. (Although this is the default, it can’t hurt to specify it explicitly.)
xAxis.orient("bottom");

• Of course, we can be more concise and string all this together into one
line:
var xAxis = d3.svg.axis().scale(xScale).orient("bottom");

@Zoran B. Djordjević 67

Axes, 24_scatter_plot_labels.html

@Zoran B. Djordjević 68

5/2/2014

35

24_scatter_plot_labels.html
<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

 <title>D3: A simple scatterplot with value labels</title>

 <script type="text/javascript" src="../d3/d3.js"></script>

 <style type="text/css">/* No style rules */ </style>

</head>

 <body>

 <script type="text/javascript">

 //Width and height

 var w = 500; var h = 100;

 var dataset = [

 [5, 20], [480, 90], [250, 50], [100, 33], [330, 95],

 [410, 12], [475, 44], [25, 67], [85, 21], [220, 88]];

 //Create SVG element

 var svg = d3.select("body")

 .append("svg").attr("width", w).attr("height",h);

@Zoran B. Djordjević 69

24_scatter_plot_labels.html

 svg.selectAll("circle")

 .data(dataset).enter().append("circle")

 .attr("cx", function(d) { return d[0]; })

 .attr("cy", function(d) { return d[1]; })

 .attr("r", function(d) {

 return Math.sqrt(h - d[1]); });

 svg.selectAll("text")

 .data(dataset)

 .enter()

 .append("text")

 .text(function(d) {

 return d[0] + "," + d[1]; })

 .attr("x", function(d) {return d[0]; })

 .attr("y", function(d) {return d[1]; })

 .attr("font-family", "sans-serif")

 .attr("font-size", "11px")

 .attr("fill", "red");

 </script>

 </body>

</html>

@Zoran B. Djordjević 70

5/2/2014

36

Interactivity, 03_hover.html

• D3 allows us to bind event listeners to all objects and

• Define response to those events. Some events can be dealt with CSS
alone, like hover:

@Zoran B. Djordjević 71

<style

type="text/css">

 rect:hover {

 fill: orange

 }

</style>

D3 and SVG give you great flexibility
//Create bars

svg.selectAll("rect")

 .data(dataset)

 .enter()

 .append("rect")

 .on("mouseover", function() {

 d3.select(this)

 .attr("fill", "orange");

});

@Zoran B. Djordjević 72

5/2/2014

37

Force-directed layouts, 04_force.html

• Force layouts are typically used with network data they represent graph.

• Graphs have nodes and edges.

• We can position nodes as if they are dynamic particles repelling each
outer while connected by springs that bind them in a cluster.

@Zoran B. Djordjević 73

Geo Mapping, 07_points_sized.html

• D3 appears to come specially well equipped to deal with geographic data,
maps and projections.

• D3 understands GeoJSON, a JSON based standard for geo-data on web
application.

@Zoran B. Djordjević 74

5/2/2014

38

07_points_sized.html

@Zoran B. Djordjević 75

References

• Interactive Data Visualization for the Web, by Scott Murray, O’Reilly 2013

• D3 Tips and Tricks, by Malcolm Maclean, Leanpub 2013-2014

• SVG Essentials, by J. David Eisenberg, O’Reilly, 2002

• Leaflet Tips and Tricks, by Malcolm Maclean, Leanpub 2013-2014

• The functional art, an introduction to information graphics and
visualization, by Alberto Cairo, New Readers, 2013

• The Visual Display of Quantitative Information, by Edward R. Tufte,
Graphics Press, 2001

@Zoran B. Djordjević 76

http://www.jdoqocy.com/click-6754088-11260198?url=http://shop.oreilly.com/product/0636920026938.do&cjsku=0636920026938

