
3/14/2014

1

Lecture 06

Map Reduce Java

Zoran Djordjević

@Zoran B. Djordjević 1

Reference

• This set of slides is based on Hadoop in Practice by Alex Holmes,
Manning 2012

• Hadoop-0.20-MapReduce example classes (MRv1).

@Zoran B. Djordjević 2

3/14/2014

2

High Level Hadoop Architecture

@Zoran B. Djordjević 3

HDFS Hadoop Distributed File System

• HDFS is the storage component of Hadoop. It’s a distributed file
system that’s modeled after the Google File System (GFS).

• HDFS is optimized for high throughput and works best when
reading and writing large files (gigabytes and larger). HDFS prefers
one file over many files.

• To support this throughput HDFS leverages unusually large (for a file
system) block sizes (64 MB, 128 MB) and data locality optimizations
to reduce network input/output (I/O). On a regular OS, the block
size is 8-32KB.

• Scalability and availability are also key traits of HDFS, achieved in
part due to data replication and fault tolerance.

• HDFS replicates files for a configured number of times, is tolerant of
both software and hardware failure, and automatically re-replicates
data blocks on nodes that have failed.

• The following figure shows a logical representation of HDFS

@Zoran B. Djordjević 4

3/14/2014

3

HDFs Architecture

@Zoran B. Djordjević 5

MapReduce
• MapReduce is a batch-based, distributed computing framework modeled

after Google’s paper on MapReduce (1).
• MapReduce allows you to parallelize work over a large amount of raw

data, such as combining web logs with relational data from an OLTP
database to model how users interact with your website. This type of
work, which could take days or longer using conventional serial
programming techniques, can be reduced down to minutes using
MapReduce on a large Hadoop cluster.

• MapReduce model simplifies parallel processing by abstracting away the
complexities involved in working with distributed systems, such as
computational parallelization, work distribution, and dealing with
unreliable hardware and software.

• MapReduce allows the programmer to focus on addressing business
issues, rather than getting tangled up in distributed system configuration
and stability issues.

• MapReduce decomposes work submitted by a client into small parallelized
map and reduce workers.

• The map and reduce constructs used in MapReduce are borrowed from
those found in the Lisp functional programming language, and use a
shared-nothing model to remove any parallel execution interdependencies

@Zoran B. Djordjević 6

3/14/2014

4

Architecture of MapReduce Application

• Client submits a
MapReduce job

• MapReduce decomposes
the job into map and
reduce tasks, and schedules
them for remote execution
on the slave nodes.

The role of the
programmer is to define
map and reduce functions,
where the map function
outputs key/value tuples,
which are processed by
reduce functions to
produce the final output.

@Zoran B. Djordjević 7

What determines the Number of Map Tasks
• The number of maps tasks is driven by the number of DFS blocks in the input files.
• The right level of parallelism for maps seems to be around 10-100 maps/node, although

this can go up to 300 or so for very cpu-light map tasks. Task setup takes awhile, so it is
best if the maps take at least a minute to execute.

• One can control the number of Map task by modifying JobConf's
conf.setNumMapTasks(int num). This could increase the number of map tasks,
but will not set the number below that which Hadoop determines via splitting the input
data.

• The mapred.map.tasks parameter is just a hint to the InputFormat for the number
of maps. The default InputFormat behavior is to split the total number of bytes into
the right number of fragments. However, in the default case the DFS block size of the
input files is treated as an upper bound for input splits. A lower bound on the split size
can be set via mapred.min.split.size.

• Thus, if you expect 10GB of input data and have 128MB DFS blocks, you'll end up with
82 maps, unless your mapred.map.tasks is even larger. Ultimately the InputFormat
determines the number of maps.

• Number of tasks can radically change the performance of Hadoop. Increasing the
number of tasks increases the framework overhead, but increases load balancing and
lowers the cost of failures.

• At one extreme is the 1 map/1 reduce case where nothing is distributed. The other
extreme is to have 1,000,000 maps/ 1,000,000 reduces where the framework runs out
of resources for the overhead.

@Zoran B. Djordjević 8

3/14/2014

5

Interface InputFormat<K,V>

• InputFormat describes the input-specification for a Map-Reduce job.

• The Map-Reduce framework relies on the InputFormat of the job to:

• Validate the input-specification of the job.

• Split-up the input file(s) into logical InputSplits, each of which is then
assigned to an individual Mapper.

• Provide the RecordReader implementation to be used to glean input
records from the logical InputSplit for processing by the Mapper.

• The default behavior of file-based InputFormats, typically sub-classes
of FileInputFormat, is to split the input into logical InputSplits based on
the total size, in bytes, of the input files. However, the FileSystem blocksize
of the input files is treated as an upper bound for input splits. A lower
bound on the split size can be set
via mapreduce.input.fileinputformat.split.minsize.

• Clearly, logical splits based on input-size is insufficient for many
applications since record boundaries are to respected. In such cases, the
application has to also implement a RecordReader on whom lies the
responsibilty to respect record-boundaries and present a record-oriented
view of the logical InputSplit to the individual task.

@Zoran B. Djordjević 9

Number of Reduce Tasks

• The right number of reduces seems to be 0.95 or 1.75 * (nodes *
mapred.tasktracker.tasks.maximum).

• At 0.95 all of the reduces can launch immediately and start transferring
map outputs as the maps finish.

• At 1.75 the faster nodes will finish their first round of reduces and launch a
second round of reduces doing a much better job of load balancing.

• Currently the number of reduces is limited to roughly 1000 by the buffer
size for the output files (io.buffer.size * 2 * numReduces <<
heapSize). This will be fixed at some point, but until it is it provides a
pretty firm upper bound.

• The number of reduces also controls the number of output files in the
output directory, but usually that is not important because the next
map/reduce step will split them into even smaller splits for the maps.

• The number of reduce tasks can also be increased in the same way as the
map tasks, via JobConf's conf.setNumReduceTasks(int num).

@Zoran B. Djordjević 10

http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/RecordReader.html

3/14/2014

6

map Fuction

• The map function takes as input a key/value pair, which represents a logical
record from the input data source.

• In the case of a file, this could be a line, where line number is the key and
line itself the value, or if the input source is a database table, the key could
be the primary key of the row and the value the row itself.

map(key1, value1)  list(key2, value2)

• The map function produces zero or more output key/value pairs for that
one input pair.

• For example, if the map function is a filtering function, it may only produce
output if a certain condition is met. Map function could be a demultiplexing
operation, with a single input key/value yielding multiple key/value outputs.

• Usually, a map functions produces a smaller number of key-value pairs than
it consumes. There is nothing in the framework that prevents a map
function to produce a list with more elements than the one consumed.

@Zoran B. Djordjević 11

Shuffle and Sort Phase
• The shuffle and sort phases are responsible for two primary activities:

determining the reducer that should receive the map output key/value pair
(called partitioning); and ensuring that, for a given reducer, all its input keys
are sorted.

• Map outputs for the same key go to the same reducer, and are then sorted
and combined together to form a single input record for the reducer.

• A lot of the power of MapReduce is in what occurs in between the map output
and the reduce input, i.e. in the shuffle and sort phases

@Zoran B. Djordjević 12

• Each
reducer
has all of
its input
keys sorted

3/14/2014

7

Partition Function

• Each Map function output is allocated to a particular reducer by the
application's partition function for sharding purposes.
The partitionfunction is given the key and the number of reducers
and returns the index of the desired reducer.

• A typical default is to hash the key and use the hash
value modulo the number of reducers. It is important to pick a
partition function that gives an approximately uniform distribution
of data per shard for load-balancing purposes, otherwise the
MapReduce operation can be held up waiting for slow reducers
(reducers assigned more than their share of data) to finish.

• Between the map and reduce stages, the data is shuffled (parallel-
sorted / exchanged between nodes) in order to move the data from
the map node that produced it to the shard in which it will be
reduced. The shuffle can sometimes take longer than the
computation time depending on network bandwidth, CPU speeds,
data produced and time taken by map and reduce computations.

@Zoran B. Djordjević 13

MapReduce Control Architecture for MRv1

• MapReduce clients talk to
the JobTracker to launch
and manage jobs.

• The JobTracker coordinates activities across the
slave TaskTracker processes. It accepts MapReduce
job requests from clients and schedules map and
reduce tasks on TaskTrackers to perform the work.

Map and reduce child processes.
 The TaskTracker is a daemon process that spawns child processes to perform the actual

map or reduce work. Map tasks typically read their input from HDFS, and write their output
to the local disk. Reduce tasks read the map outputs over the network and
write their outputs back to HDFS. @Zoran B. Djordjević 14

http://en.wikipedia.org/wiki/Sharding
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Modulo_operation
http://en.wikipedia.org/wiki/Load_balancing_(computing)
http://en.wikipedia.org/wiki/Load_balancing_(computing)
http://en.wikipedia.org/wiki/Load_balancing_(computing)

3/14/2014

8

Working with files

• Before we can run Hadoop programs on data stored in HDFS, we’ll
need to put the data into HDFS first. Let’s assume we’ve already
formatted and started a HDFS file system. We are working with a
pseudo-distributed configuration as a playground.

• Let’s create a directory and put a file in it.

• HDFS has a default working directory of /user/$USER, where $USER
is login user name. The directory is not automatically created for us.

• We create the directory with the mkdir command. For the purpose of
illustration, we use username joe. On CDH4, when creating new user
directory, you need to sudo your commands as user hdfs

sudo -u hdfs hadoop fs -mkdir /user/joe

sudo –u hdfs fs –chown joe /user/joe

sudo -u hdfs hadoop fs -ls /user

drwxr-xr-x - joe supergroup 0 2013-03-15 /user/joe

@Zoran B. Djordjević 15

Working with files

• Hadoop’s mkdir command automatically creates parent directories if they
don’t already exist, similar to the Unix mkdir command with the -p
option. So the preceding command will create the /user directory too.

• Let’s check on the directories with the ls command.
hadoop fs -ls /

• You’ll see the /user directory at the root / directory.
drwxr-xr-x - joe supergroup 0 2009-01-14 10:23 /user

• If you want to see all the subdirectories, in a way similar to Unix’s ls with
the -r option, you can use Hadoop’s ls -R command .

hadoop fs –ls –R /

• You’ll see all the files and directories recursively.
drwxrwxrwt - hdfs supergroup 0 2013-03-09 10:01 /tmp

drwxr-xr-x - hdfs supergroup 0 2013-03-15 07:56 /user

drwxr-xr-x - joe supergroup 0 2013-03-15 07:56 /user/joe

drwxr-xr-x - cloudera supergroup 0 2013-03-14 13:53

/user/cloudera

@Zoran B. Djordjević 16

3/14/2014

9

Copying a file to new HDFS directory

• We are ready to add files to HDFS.

• We should first become user joe
[cloudera@localhost ~]$ su -- joe

Password: xxxxxxxxxx

[joe@localhost cloudera]$

• In the shared folder of my VM I have a file called all-bible.
$ hadoop fs -put /mnt/hgfs/sharedfolder/all-bible /user/joe

$ hadoop fs -ls

Found 1 items

-rw-r--r-- 1 joe supergroup 5258688 2013-03-15 08:31 all-bible

• The number 1 in the above listing tells us how many times is a
particular file replicated. Since we have a single machine, 1 is
appropriate.

• The replication factor is 3 by default, but could be set to any
number.

@Zoran B. Djordjević 17

Fetching and examining files from HDFS

• The Hadoop command get does the exact reverse of put. It copies files
from HDFS to the local file system.

• To retrieve file all-bible from HDFS and copy it into the current local
working directory, we run the command

hadoop fs -get all-bible .

• A way to examine the data is to display data. For small files, Hadoop cat
command is convenient.

hadoop fs -cat all-bible

• We can use any Hadoop file command with Unix pipes to forward its
output for further processing by another Unix commands. For example, if
the file is huge (as typical Hadoop files are) and you’re interested in a
quick check of its content, you can pipe the output of Hadoop’s cat into a
Unix head.

hadoop fs -cat all-bible | head

• Hadoop natively supports tail command for looking at the last kilobyte
of a file.

hadoop fs -tail all-bible

@Zoran B. Djordjević 18

3/14/2014

10

Deleting files and directories

• Hadoop command for removing files is rm.

hadoop fs –rm example.txt

• To delete files and directories recursively us

hadoop fs -rm -R directory/*

• To delete empty directories use

hadoop fs -rmdir directory

@Zoran B. Djordjević 19

Let us run an example, WordCount 

• Hadoop CDH4.6 tar balls contain source code, including examples
http://www.cloudera.com/content/support/en/documentation/CDH-tarballs/CDH-

tarballs-latest.html . Let us download Apache Hadoop tarball:
hadoop-src-2.0.0-cdh4.6.0.tar.gz

• One could get that file from http://hadoop.apache.org , as well

• On Window’s side you could use 7-zip to open that file and turn it first into
a tar archive, and then into a directory hadoop-2.0.0-cdh4.6.0

• You can copy the file to VM’s sharedfolder and un-tar it on Linux side.

• In that case, on VM command prompt, type
$ cd /mnt/hgfs/sharedfolder

$ tar -zxvf hadoop-src-2.0.0-cdh4.6.0.tar.gz

• -z uncompresses the archive with gzip command.

• You will get directory src. Under that directory and the directory under
hadoop-mapreduce-project you can find examples for MapReduce
jobs. We could navigate to

src\hadoop-mapreduce-project\hadoop-mapreduce-examples\src\main

• and fetch World famous WordCount.java program.

@Zoran B. Djordjević 20

http://www.cloudera.com/content/support/en/documentation/CDH-tarballs/CDH-tarballs-latest.html
http://www.cloudera.com/content/support/en/documentation/CDH-tarballs/CDH-tarballs-latest.html
http://www.cloudera.com/content/support/en/documentation/CDH-tarballs/CDH-tarballs-latest.html
http://www.cloudera.com/content/support/en/documentation/CDH-tarballs/CDH-tarballs-latest.html
http://www.cloudera.com/content/support/en/documentation/CDH-tarballs/CDH-tarballs-latest.html
http://www.cloudera.com/content/support/en/documentation/CDH-tarballs/CDH-tarballs-latest.html
http://www.cloudera.com/content/support/en/documentation/CDH-tarballs/CDH-tarballs-latest.html
http://www.cloudera.com/content/support/en/documentation/CDH-tarballs/CDH-tarballs-latest.html
http://hadoop.apache.org/

3/14/2014

11

WordCount.java
package org.apache.hadoop.examples;

import java.io.IOException; import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount {

 public static class TokenizerMapper

 extends Mapper<Object, Text, Text, IntWritable>{

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

 public void map(Object key, Text value, Context context

) throws IOException, InterruptedException {

 StringTokenizer itr = new StringTokenizer(value.toString());

 while (itr.hasMoreTokens()) {

 word.set(itr.nextToken());

 context.write(word, one); } }

 }

 @Zoran B. Djordjević 21

WordCount.java

 public static class IntSumReducer

 extends Reducer<Text,IntWritable,Text,IntWritable> {

 private IntWritable result = new IntWritable();

 public void reduce(Text key,

 Iterable<IntWritable> values,

 Context context

)

 throws IOException, InterruptedException

 {

 int sum = 0;

 for (IntWritable val : values) {

 sum += val.get();

 }

 result.set(sum);

 context.write(key, result);

 }

 }

@Zoran B. Djordjević 22

3/14/2014

12

WordCount.java

 public static void main(String[] args) throws Exception {

 Configuration conf = new Configuration();

 String[] otherArgs = new

 GenericOptionsParser(conf, args).getRemainingArgs();

 if (otherArgs.length != 2) {

 System.err.println("Usage: wordcount <in> <out>");

 System.exit(2);

 }

 Job job = new Job(conf, "word count");

 job.setJarByClass(WordCount.class);

 job.setMapperClass(TokenizerMapper.class);

 job.setCombinerClass(IntSumReducer.class);

 job.setReducerClass(IntSumReducer.class);

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(IntWritable.class);

 FileInputFormat.addInputPath(job, new Path(otherArgs[0]));

 FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

 System.exit(job.waitForCompletion(true) ? 0 : 1);

 }

}

@Zoran B. Djordjević 23

Compile and Run

• In the home directory of user cloudera I created a directory wc_classes
and copied WorCount.java there

$cp /mnt/hfgs/sharedfolder/../examples/WordCount.java ~/wc_classes

• Compiling this class turned into a small issue. Literature tells you to add
hadoop-core.jar and hadoop-client.jar to the classpath and do
something like:

$javac –classpath “/usr/lib/hadoop-core.jar:/usr/lib/hadoop-

client.jar” –d . WordCount.java

• In order to find those jar files I did the following
$su # became a root user

$cd / # went to the root of the directory tree

$ find . –name hadoop-core.jar –print

• and found
./usr/lib/hadoop-0.20-mapreduce/hadoop-core.jar

• By the way, I ask find to start looking right here (.) for a file with name
hadoop-core.jar and once it finds it, to print file location.

• I was less lucky with hadoop-client.jar. I did not find it.

@Zoran B. Djordjević 24

3/14/2014

13

Hadoop classpath command

• We are almost sure that Hadoop installation has all the jar-s we
need and that Hadoop should know about them.

• Hadoop command classpath serves that purpose. It reveals the
essential jars. If you type

$hadoop classpathhado

• You get them all.
/etc/hadoop/conf:/usr/lib/hadoop/lib/*:/usr/lib/hadoop/.//

*:/usr/lib/hadoop-hdfs/./:/usr/lib/hadoop-

hdfs/lib/*:/usr/lib/hadoop-hdfs/.//*:/usr/lib/hadoop-

yarn/.//*:/usr/lib/hadoop-0.20-

mapreduce/./:/usr/lib/hadoop-0.20-

mapreduce/lib/*:/usr/lib/hadoop-0.20-mapreduce/.//*

• You might not need them all, but that is another much smaller
problem.

• An important feature of Linux (Unix) is that you can invoke a
command within another command by placing the former between
reverse ticks, like `hadoop classpath`

@Zoran B. Djordjević 25

Compiling WordCount.java

• In the directory wc_classes, as user cloudera, we type:
$ javac -classpath `hadoop classpath` -d . WordCount.java

• -d . tells javac to start building package directories starting here (.).

$ ls

org WordCount.java

$ cd org/apache/hadoop/examples

$ pwd

/home/cloudera/wc_classes/org/apache/hadoop/examples

$ ls

WordCount.class WordCount$IntSumReducer.class

WordCount$TokenizerMapper.class

• It appears that command hadoop classpath fed the list of hadoop
jars to the -classpath option of javac command and the compilation
ran smoothly.

• We ended up with three class files because class file WordCount.java
had two inner classes besides the main WordCount class.

@Zoran B. Djordjević 26

3/14/2014

14

Jaring WordCount MapReduce program

• Before trying to run our compiled class, we need to jar it. We type
$ jar -cvf wordcount2.jar org/*

added manifest

adding: org/apache/(in = 0) (out= 0)(stored 0%)

adding: org/apache/hadoop/(in = 0) (out= 0)(stored 0%)

adding: org/apache/hadoop/examples/(in = 0) (out= 0)(stored 0%)

adding:

org/apache/hadoop/examples/WordCount$TokenizerMapper.class(in =

1790) (out= 765)(deflated 57%)

adding: org/apache/hadoop/examples/WordCount.class(in = 1911)

(out= 996)(deflated 47%)

adding:

org/apache/hadoop/examples/WordCount$IntSumReducer.class(in =

1789) (out= 747)(deflated 58%)

$ ls

org wordcount2.jar WordCount.java

@Zoran B. Djordjević 27

Preparing HDFS input and output directories

• MapReduce jobs read their inputs from and deliver their outputs to
HDFS files in HDFS directories input and output.

• Swtch to user joe and, if you have not done that already, create
HDFS directory input and copy a file, all-bible, to that HDFS
directory

$ hadoop fs -mkdir input

$ hadoop fs –copyFromLocal /mnt/…/all-bible input

$ hadoop fs –ls input

rw-r--r-- 1 cloudera supergroup 5258688 2013-03-11

14:12 input/all-bible

• You should also make sure that the output directory is not there,
since Hadoop will give you an error otherwise.

$ hadoop fs –rm –R output

@Zoran B. Djordjević 28

3/14/2014

15

Running WordCount MapReduce program
• On the command prompt, on the single line, we type hadoop jar:

$ hadoop jar wordcount2.jar org.apache.hadoop.examples.WordCount input
output

13/03/15 10:33:41 WARN mapred.JobClient: Use GenericOptionsParser for parsing the
arguments. Applications should implement Tool for the same.

13/03/15 10:33:42 INFO input.FileInputFormat: Total input paths to process : 1

13/03/15 10:33:44 INFO mapred.JobClient: Running job: job_201303141804_0001

13/03/15 10:33:45 INFO mapred.JobClient: map 0% reduce 0%

14/03/07 07:36:59 INFO mapred.JobClient: map 44% reduce 0%

14/03/07 07:37:02 INFO mapred.JobClient: map 100% reduce 0%

. . .

14/03/07 20:21:21 INFO mapred.JobClient: Job Counters

14/03/07 20:21:21 INFO mapred.JobClient: Launched map tasks=1

14/03/07 20:21:21 INFO mapred.JobClient: Launched reduce tasks=1

14/03/07 20:21:21 INFO mapred.JobClient: Data-local map tasks=1

.. . . .

13/03/15 10:34:08 INFO mapred.JobClient: Reduce input records=60756

13/03/15 10:34:08 INFO mapred.JobClient: Reduce output records=60756

13/03/15 10:34:08 INFO mapred.JobClient: Spilled Records=203990

13/03/15 10:34:08 INFO mapred.JobClient: CPU time spent (ms)=8970

13/03/15 10:34:08 INFO mapred.JobClient: Physical memory (bytes)
snapshot=205197312

13/03/15 10:34:08 INFO mapred.JobClient: Virtual memory (bytes)
snapshot=772063232

13/03/15 10:34:08 INFO mapred.JobClient: Total committed heap usage
(bytes)=132190208

 @Zoran B. Djordjević 29

Examine the Results
$ hadoop fs -ls output

Found 3 items

-rw-r--r-- 1 cloudera supergroup 0 2013-03-15 10:34
output/_SUCCESS

drwxr-xr-x - cloudera supergroup 0 2013-03-15 10:33 output/_logs

-rw-r--r-- 1 cloudera supergroup 717079 2013-03-15 10:34
output/part-r-00000

$ hadoop fs -cat output/part-r-00000 | tail -20

youth. 15

youth: 7

youth; 8

youth? 2

youthful 1

youths 1

youths, 1

zeal 13

zeal, 3

zealous 8

zealously 2

{ 12

@Zoran B. Djordjević 30

3/14/2014

16

Organization of WordCount.java, map()
• Java class WordCount contains two inner classes.

• MAP routine is in the inner class TokenizerMapper extending Mapper class.

• Types listed with Mapper class <Object, Text, Text, IntWritable> are the
key/value types for your inputs and outputs.

public static class TokenizerMapper

 extends Mapper<Object, Text, Text, IntWritable>{

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

• Object Context allows you to read from the environment and to write to it.

• Method map() accepts input key and value. It ignores the key, line number or offset,
breaks the value (line of text) into tokens (words) and then writes out a pair (word, one)
for each token. Variable one has the value of 1.

 public void map(Object key, Text value, Context context

) throws IOException, InterruptedException {

 StringTokenizer itr = new StringTokenizer(value.toString());

 while (itr.hasMoreTokens()) {

 word.set(itr.nextToken()); # Casts token as Text

 context.write(word, one);

 }

 }

 }

@Zoran B. Djordjević 31

Organization of WordCount, reduce()
• REDUCE routine is implemented by the inner class IntSumReducer that

extends class Reducer.

• Types next to Reduce are the input/output types
• reduce() is called once per unique output key of Mapper (word) and is

fed a list of values of word counts, i.e. values of the Mapper.
• reduce() iterates over all supplied counts (list values) and sums them.
• Finally, reduce() writes the result to the Context.
public static class IntSumReducer

 extends Reducer<Text,IntWritable,Text,IntWritable> {

 private IntWritable result = new IntWritable();

 public void reduce(Text key,

 Iterable<IntWritable> values,

 Context context)

 throws IOException, InterruptedException {

 int sum = 0;

 for (IntWritable val : values) { # Iterate over all values (1-s)
 sum += val.get(); }

 result.set(sum);

 context.write(key, result); }

 }

@Zoran B. Djordjević 32

3/14/2014

17

Organization of WordCount,driver code,main()

• The last step is to write the driver code that will set all the necessary properties to
configure and run MapReduce job.

• We need to let the framework know what classes should be used for the map and
reduce functions, and also where our input and output is located.

• By default MapReduce assumes you’re working with text; if you were working with
more complex text structures, or altogether different data storage technologies, you
would need to tell MapReduce how it should read and write from these data sources
and sinks.

 public static void main(String[] args) throws Exception {

 Configuration conf = new Configuration();

 String[] otherArgs = new

 GenericOptionsParser(conf, args).getRemainingArgs();

 if (otherArgs.length != 2) {

 System.err.println("Usage: wordcount <in> <out>");

 System.exit(2);

 }

 }

}

• Class Configuration is the container for job configs. Its content is available to both
mapper and reducer.

• GenericOptionsParser

@Zoran B. Djordjević 33

WordCount.java, driver code, main()
Job job = new Job(conf, "word count");

• The setJarByClass method of class Job determines the JAR that contains the class
that is passed-in, which is copied by Hadoop into the cluster and subsequently set in
the Task’s classpath so that your MapReduce classes are available to the Task.

 job.setJarByClass(WordCount.class);

• Methid setMapperClass identifies the Map class

 job.setMapperClass(TokenizerMapper.class);

• We did not write Combiner or Reducer, but could use a standard ones

 job.setCombinerClass(IntSumReducer.class);

 job.setReducerClass(IntSumReducer.class);

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(IntWritable.class);

• FileInputFormat and FileOutputformat are standard Hadoop classes
describing input and output text files.

 FileInputFormat.addInputPath(job, new Path(otherArgs[0]));

 FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

 System.exit(job.waitForCompletion(true) ? 0 : 1);

 }

}

@Zoran B. Djordjević 34

3/14/2014

18

org.apache.hadoop.util.GenericOptionsParser

• GenericOptionsParser is a utility to parse command line arguments
generic to the Hadoop framework.

• GenericOptionsParser recognizes several standarad command line
arguments, enabling applications to easily specify a namenode, a jobtracker,
additional configuration resources etc.

• The supported generic options are:
-conf <configuration file> specify a configuration file
-D <property=value> use value for given property
-fs <local|namenode:port> specify a namenode
-jt <local|jobtracker:port> specify a job tracker -files <comma separated list of files>
specify comma separated files to be copied to the map reduce cluster
-libjars <comma separated list of jars> specify comma separated jar files to
include in the classpath.

• Examples:
$ bin/hadoop dfs -fs darwin:8020 -ls /data list /data directory
in dfs with namenode darwin:8020

$ bin/hadoop dfs -D fs.default.name=darwin:8020 -ls /data list
/data directory in dfs with namenode darwin:8020

$ bin/hadoop dfs -conf hadoop-site.xml -ls /data list /data
directory in dfs with conf specified in hadoop-site.xml

@Zoran B. Djordjević 35

org.apache.hadoop.mapreduce.Job

Public class Job extends
org.apache.hadoop.mapreduce.task.JobContext

• Class Job is submitter's view of the Job.

• It allows the user to configure the job, submit it, control its
execution, and query the state.

• The set methods only work until the job is submitted, afterwards
they will throw an IllegalStateException.

• Normally the user creates the application, describes various facets
of the job via Job and then submits the job and monitor its
progress.

@Zoran B. Djordjević 36

https://hadoop.apache.org/docs/r2.2.0/api/org/apache/hadoop/mapreduce/Job.html

3/14/2014

19

You could write MapReduce programs in local Eclipse

• Go to http://www.eclipse.org/downloads/

• Select your operating system and download.

• For example, I downloaded eclipse-jeee-juno-SR2-win64.zip

• You just unzip the file on your C: drive and you are ready to use it.

• If you are using CDH4.6 and have JDK1.7_51 installed on your
VM, please install the same JDK on you local machine.

• With Java you can have several installations. You just need to
change JAVA_HOME to point to the one you want to use currently.

• Similarly, your current Java needs to be present in you PATH variable
as %JAVA_HOME%\bin;.

• In C:\eclipse, you will see eclipse.exe. You can make a
shortcut or not. Just click on the executable and Eclipse will open.

• Of course, you can run Eclipse on your CentOS instance as well.

• You do what ever you find convenient.

@Zoran B. Djordjević 37

Your First Gimps of Eclipse
• If you are new to Java, and have tons of time, you should read the

Overview, What’s New section and review all Tutorials and Samples.

• They are really good.

• If in hurry, hit X next to Welcome.

@Zoran B. Djordjević 38

http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/

3/14/2014

20

Compiling code in Eclipse

• You need to create project.

• Go to File > New >
Java Project

• Give project a name, i.e.
MapReduce.

• Click Next and Finish

• New project will show up
in Package Explorer.

• If asked to accept Java
Perspective, do accept.

• Perspective is an
arrangement of tools on
your Eclipse adjusted to
the nature of your current
project.

@Zoran B. Djordjević 39

Create new Java package

• Right click on src under your project name and select New >
Package.

• Since we want to compile class WordCount in package
org.apache.hadoop.examples, use that as the package name.

• Next open your sharedfolder directory, this time from you PC
side, highlight class WordCount.java in your hadoop-
mapreduce/../examples folder and simply drag it to the newly
created package.

• Eclipse will tell you right way that you have many errors (48). The
issue is that we have not supplied Eclipse with the classpath, the
way we supplied it to javac on the Linux command prompt.

• Hadoop’s classpath command will not work on you PC/Mac.

• You have to set what Eclipse calls the Build Path. You also have to
have necessary jars on your PC.

@Zoran B. Djordjević 40

3/14/2014

21

Build Path
• Right click on you project (MapReduce) > Build Path > Configure

Build Path> Libraries.
• In the widget that opens, select Add External JARs.
• If you have not already expanded Hadoop tar ball

hadoop-2.0.0-cdh4.6.0.tar.gz

• in the directory /mnt/hgfs/sharedfolder,type on the Linux side
 $tar -zxvf hadoop-2.0.0-cdh4.6.0.tar.gz

• or the same command from your Cygwin prompt or use WinZIP or 7-Zip from the
Windows side. The last two appear to work as well. In the expanded directory, in
the folder

 hadoop-2.0.0-cdh4.6.0\share\hadoop\mapreduce1

• there are several jars. I added hadoop-core-2.0.0-mr1-cdh4.6.0.jar to the Build
Path. My error count went down to 2. Build was complaining about missing
org.apache.hadoop.conf.Configuration class. I added

hadoop-2.0.0-cdh4.6.0\share\hadoop\common\hadoop-common-2.0.0-cdh4.6.0.jar

• Build was complaining about missing : org.apache.commons.cli.Options. That
is an Apache Commons class, not a Hadoop class. Go to

http://commons.apache.org/proper/commons-cli/download_cli.cgi

• And download: commons-cli-1.2-bin.ta.gz.
• Expand and add commons-cli-1.2.jar to you Build Path. U r done. Almost.

@Zoran B. Djordjević 41

Export your Project

• We need to package compiled class WordCount as a jar.

• Right click on your project. Select Export > Java > JAR file

• Select src folder, your package and then leave selected only
WordCount.java object.

• Specify where you want your jar saved and how you want it named.
I named mine wordcount3.jar to distinguish it from the one I
named wordcount2.jar, earlier. Click Finish.

• There are a few other things you can select but you do not have to
worry about them now.

• You have generated new wordcount3.jar file.

• You can copy that file to your sharedfolder and transfer it to the
Linux box and run it with the help of hadoop jar command the
same way as you ran wordcount2.jar which we generated on the
Linux side.

@Zoran B. Djordjević 42

http://commons.apache.org/proper/commons-cli/download_cli.cgi
http://commons.apache.org/proper/commons-cli/download_cli.cgi
http://commons.apache.org/proper/commons-cli/download_cli.cgi
http://commons.apache.org/proper/commons-cli/download_cli.cgi

3/14/2014

22

Export jar Widget

@Zoran B. Djordjević 43

Hadoop Data Types

• The MapReduce framework uses keys and values. Though we often talk
about certain keys and values as integers, strings, and so on, they are not
exactly standard Java classes, such as Integer, String, and so forth.

• This is because the MapReduce framework has a certain defined way of
serializing the key/value pairs in order to move them across the cluster’s
network, and only classes that support this kind of serialization can
function as keys or values in the framework.

• More specifically, classes that implement the Writable interface can be
values, and classes that implement the WritableComparable<T>
interface can be either keys or values.

• Note that the WritableComparable<T> interface is a combination of
the Writable and java.lang.Comparable<T> interfaces .

• We need the comparability requirement for keys because they will be
sorted at the reduce stage, whereas values are simply passed through.

• Hadoop comes with a number of predefined classes that implement
WritableComparable, including wrapper classes for all the basic data
types.

@Zoran B. Djordjević 44

3/14/2014

23

Frequently used Types

• Keys and values can take on types beyond the basic ones which
Hadoop natively supports.

• You can create your own custom type as long as it implements the
Writable (or WritableComparable<T>) interface.

@Zoran B. Djordjević 45

MapReduce Data Flow

• The general MapReduce
data flow. Note that after
distributing input data to
different nodes, the only
time nodes communicate
with each other is at the
“shuffle” step .

• This restriction on
communication greatly
helps scalability.

@Zoran B. Djordjević 46

3/14/2014

24

Mapper

• Mapper maps input key/value pairs to a set of intermediate
key/value pairs.

• Maps are the individual tasks which transform input records into a
intermediate records. The transformed intermediate records need
not be of the same type as the input records. A given input pair may
map to zero or many output pairs.

• To serve as the mapper, a class extends the Mapper class. Mapper
class includes two methods that effectively act as the constructor
and destructor for the class:

void setup(org.apache.hadoop.mapreduce.Mapper.Context

context)

• is called once at the beginning of the task. In this method you can
extract the parameters set either by the configuration XML files or
in the main class of your application. Call this function before any
data processing begins.

@Zoran B. Djordjević 47

Mapper

• void cleanup(org.apache.hadoop.mapreduce.Mapper.Context

context) is called once at the end of the task as the last action
before the map task terminates, this function should wrap up any
loose ends—database connections, open files, and so on.

• void map(KEYIN key, VALUEIN value,

org.apache.hadoop.mapreduce.Mapper.Context context) is
called once for each key/value pair in the input split. is responsible
for the data processing step. It utilizes Java generics of the form
Mapper<K1,V1,K2,V2> where the key classes and value classes
implement the WritableComparable and Writable interfaces,
respectively. Its single method is to process an individual
(key/value) pair:

• void run(org.apache.hadoop.mapreduce.Mapper.Context

context) Expert users can override this method for more
complete control over the execution of the Mapper.

@Zoran B. Djordjević 48

3/14/2014

25

Supplied Mappers

• Hadoop provides a few useful mapper implementations.

• You can use them as mappers in you application if they provide the
functionality you need.

@Zoran B. Djordjević 49

Reducers

• Reduces a set of intermediate values which share a key to a smaller set of
values.

• Reducer implementations can access the Configuration for the job via
the JobContext.getConfiguration() method.

• Reducer has 3 primary phases:

Shuffle

• The Reducer copies the sorted output from each Mapper using HTTP
across the network.

Sort

• The framework merge sorts Reducer inputs by keys (since different
Mappers may have output the same key).

• The shuffle and sort phases occur simultaneously i.e. while outputs are
being fetched they are merged.

Reduce

• In this phase the reduce(Object, Iterable, Context) method is
called for each <key, (collection of values)> in the sorted inputs.

@Zoran B. Djordjević 50

3/14/2014

26

Reducer method summary

• protected void

cleanup(org.apache.hadoop.mapreduce.Reducer.Context

context) Called once at the end of the task.
• protected void reduce(KEYIN key, Iterable<VALUEIN>

values, org.apache.hadoop.mapreduce.Reducer.Context

context) This method is called once for each key.

• void run(org.apache.hadoop.mapreduce.Reducer.Context
context) Advanced application writers can use the run() method
to control how the reduce task works.

• protected void

setup(org.apache.hadoop.mapreduce.Reducer.Context

context) Called once at the start of the task.

@Zoran B. Djordjević 51

Combiners

• In many situations with MapReduce applications, we may wish to
perform a “local reduce ” before we distribute the mapper results.
In the WordCounter example, if the job processes a document
containing the word “the” 574 times, it’s much more efficient to
store and shuffle the pair (“the”, 574) once instead of the pair
(“the”, 1) 574 times.

• Hadoop provides several ready made combiners. It also provides
several ready made mappers and reducers.

• On the following slide we see an implementation of the same
WordCount example using only provided tools.

@Zoran B. Djordjević 52

3/14/2014

27

Use of Predefine Mapper and Reducer

• For our simple example, we actually have to write only the driver for this
MapReduce program because we could use Hadoop’s predefined
TokenCountMapper class and LongSumReducer class.

public class WordCount2 {

public static void main(String[] args) {

 JobClient client = new JobClient();

 JobConf conf = new JobConf(WordCount2.class);

 FileInputFormat.addInputPath(conf, new Path(args[0]));

 FileOutputFormat.setOutputPath(conf, new Path(args[1]));

 conf.setOutputKeyClass(Text.class);

 conf.setOutputValueClass(LongWritable.class);

 conf.setMapperClass(TokenCountMapper.class);

 conf.setCombinerClass(LongSumReducer.class);

 conf.setReducerClass(LongSumReducer.class);

 client.setConf(conf);

 try {

 JobClient.runJob(conf);

 } catch (Exception e) { e.printStackTrace(); }

}

@Zoran B. Djordjević 53

Reading and Writing

• Input data usually resides in large files, typically tens or hundreds of
gigabytes or even more.

• One of the fundamental principles of MapReduce’s processing
power is splitting of the input data into chunks. You process these
chunks in parallel using multiple machines.

• In Hadoop terminology these chunks are called input splits .

• The size of each split should be small enough for a more granular
parallelization . (If all the input data is in one split, then there is no
parallelization.)

• On the other hand, each split shouldn’t be so small that the
overhead of starting and stopping the processing of a split becomes
a large fraction of execution time.

• The principle of dividing input data (which often can be one single
massive file) into splits for parallel processing explains some of the
design decisions behind Hadoop’s generic FileSystem as well as
HDFS in particular.

@Zoran B. Djordjević 54

3/14/2014

28

FSDataInputStream

• Hadoop’s File System provides the class FSDataInputStream for
file reading rather than using Java’s java.io.DataInputStream.

• FSDataInputStream extends DataInputStream with random read
access, a feature that MapReduce requires because a machine may
be assigned to process a split that sits right in the middle of an
input file. Without random access, it would be extremely inefficient
to have to read the file from the beginning until you reach the
location of the split.

• HDFS is designed for storing data that MapReduce will split and
process in parallel. HDFS stores files in blocks spread over multiple
machines. Roughly speaking, each file block is a split.

• As different machines will likely have different blocks, parallelization
is automatic if each split/ block is processed by the machine that it’s
residing at. Furthermore, as HDFS replicates blocks in multiple
nodes for reliability, MapReduce can choose any of the nodes that
have a copy of a split/block.

@Zoran B. Djordjević 55

InputFormat

• The way an input file is split up and read by Hadoop is defined by
one of the implementations of the InputFormat interface .
TextInputFormat is the default Input-Format implementation, and
it’s the data format we’ve been implicitly using up to now.

• It’s often useful for input data that has no definite key value, when
you want to get the content one line at a time. The key returned by
TextInputFormat is the byte offset of each line, and we have yet to
see any program that uses that key for its data processing.

@Zoran B. Djordjević 56

3/14/2014

29

Popular InputFormat classes

InputFormat Description

TextInputFormat Each line in the text files is a record. Key is the byte offset of the line, and
value is the content of the line.
key: LongWritable value: Text

KeyValueTextInputFormat Each line in the text files is a record. Key is the byte offset of the line, and
value is the content of the line.
key: LongWritable value: Text
Each line in the text files is a record. The first separator character divides each
line. Everything before the separator is the key, and everything after is the
value. The separator is set by the key.value.separator.in.input. line property,
and the default is the tab (\t) character.
key: Text value: Text

SequenceFileInputFormat

<K,V>
An InputFormat for reading in sequence files. Key and value are user defined.
Sequence file is a Hadoopspecific compressed binary file format. It’s optimized
for passing data between the output of one MapReduce job to the input of
some other MapReduce job.
key: K (user defined) value: V (user defined)

NLineInputFormat Same as TextInputFormat, but each split is guaranteed to have exactly N lines.
The mapred.line.input.format. linespermap property, which defaults to one,
sets N.
key: LongWritable value: Text

@Zoran B. Djordjević 57

OutputFormat

• MapReduce outputs data into files using the OutputFormat class ,
which is analogous to the InputFormat class. The output has no
splits, as each reducer writes its output only to its own file.

• The output files reside in a common directory and are typically
named part-nnnnn, where nnnnn is the partition ID of the
reducer.

• RecordWriter objects format the output and RecordReader-s
parse the format of the input.

• Hadoop provides several standard implementations of
OutputFormat. Almost all the ones we deal with inherit from the
File OutputFormat abstract class;

• InputFormat classes inherit from FileInputFormat.

• You specify the OutputFormat by calling setOutputFormat()
of the JobConf object that holds the configuration of your
MapReduce job.

@Zoran B. Djordjević 58

3/14/2014

30

Main OutputFormat classes

OutputFormat Description

TextOutputFormat<K,V> Writes each record as a line of text. Keys
and values are written as strings and
separated by a tab (\t) character, which
can be changed in the mapred.
textoutputformat.separator property.

SequenceFileOutputFormat<K,V

>

Writes the key/value pairs in Hadoop’s
proprietary sequence file format. Works
in conjunction with
SequenceFileInputFormat.

NullOutputFormat<K,V>

Outputs nothing.

@Zoran B. Djordjević 59

References

1) MapReduce: Simplified Data Processing on Large Clusters, by Jeffrey Dean and
Sanjay Ghemawat, 2004
http://static.googleusercontent.com/media/research.google.com/en/us/archive/mapr
educe-osdi04.pdf

2) Hadoop in Practice, by Alex Holmes, Manning, 2012

@Zoran B. Djordjević 60

http://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdi04.pdf
http://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdi04.pdf
http://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdi04.pdf
http://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdi04.pdf
http://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdi04.pdf
http://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdi04.pdf

