
4/13/2014

1

1

Lecture 10

NoSQL , Cassandra & Co.

Zoran B. Djordjević

csci e63 Big Data Analytics

@Zoran B. Djordjevic

History of the World, Part 1

 Relational Databases – mainstay of business

 For the longest time (and still true today), the big relational
database vendors such as Oracle, IBM, Sybase, and
Microsoft were the mainstay of how data was stored.

 During the Internet boom, startups looking for low-cost
RDBMS alternatives turned to MySQL and PostgreSQL.

 Web-based applications caused spikes

 Could have hundreds of thousands of visitors in a short-
time span. Especially true for public-facing e-Commerce sites

 Developers begin to front RDBMS with memcache or integrate
other caching mechanisms within the application (ie. Ehcache)

 As datasets grew, the simple memcache/MySQL model (for
lower-cost startups) started to become problematic.

@Zoran B. Djordjevic 2

Scaling Up

 Best way to provide ACID and a rich query model is to have the
dataset on a single machine.

 Issues with scaling up when the dataset is just too big

 RDBMS were not designed to be distributed

 Began to look at multi-node database solutions

 Known as ‘scaling out’ or ‘horizontal scaling’

 Different approaches include:

 Master-slave

 Sharding

@Zoran B. Djordjevic 3

Scaling RDBMS – Master/Slave

 Master-Slave

 All writes are written to the master. All reads performed against
the replicated slave databases

 Critical reads may be incorrect as writes may not have been
propagated down

 Large data sets can pose problems as master needs to duplicate
data to slaves

@Zoran B. Djordjevic 4

Scaling RDBMS - Sharding

 Partitioning or sharding
 Different sharding approaches:
 Vertical Partitioning: Have tables related to a specific feature sit on

their own server. May have to rebalance or reshard if tables
outgrow server.

 Range-Based Partitioning: When single table cannot sit on a server,
split table onto multiple servers. Split table based on some critical
value range.

 Key or Hash-Based partitioning: Use a key value in a hash and use
the resulting value as entry into multiple servers.

 Directory-Based Partitioning: Have a lookup service that has
knowledge of the partitioning scheme . This allows for the adding of
servers or changing the partition scheme without changing the
application.
 Scales well for both reads and writes
 Not transparent, application needs to be partition-aware
 Can no longer have relationships/joins across partitions
 Loss of referential integrity across shards

@Zoran B. Djordjevic 5

Other ways to scale RDBMS

 Multi-Master replication.

 The multi-master replication system is responsible for
propagating data modifications made by each member to the
rest of the group, and resolving any conflicts that might arise
between concurrent changes made by different members.

 INSERT only, not UPDATES/DELETES.

 For INSERT-only, data is versioned upon update.

 Data is never DELETED, only inactivated.

 No JOINs, thereby reducing query time

 This involves de-normalizing data

 Consistency is the responsibility of the application.

 In-memory databases

 In-memory databases have not caught on mainstream and regular
RDBMS are more disk-intensive that memory-intensive

@Zoran B. Djordjevic 6

4/13/2014

2

What is NoSQL?

 Stands for Not Only SQL

 Class of non-relational data storage systems

 Usually do not require a fixed table schema nor do they use
the concept of joins

 All NoSQL offerings relax one or more of the ACID properties.

 For data storage, an RDBMS cannot be the only solution.

 Just as there are different programming languages, need to
have other data storage tools in the toolbox

 Relational databases offer a very good general purpose
solution to many different data storage needs.

 In other words, it is the safe choice and will work in many
situations.

@Zoran B. Djordjevic 7

How did we get here?

 Explosion of social media sites (Facebook, Twitter) with
large data needs. These datasets have high read/write
rates.

 Rise of cloud-based solutions such as Amazon S3 (simple
storage solution) made NoSQL universally accessible

 Like a move to dynamically-typed languages
(Ruby/Groovy), a shift to dynamically-typed data with
frequent schema changes

 All of the NoSQL options with the exception of Amazon
S3 (Amazon Dynamo) are open-source solutions.

@Zoran B. Djordjevic 8

DynamoDB and BigTable

 Three major papers were the seeds of the NoSQL movement

 BigTable (Google)

 BigTable: http://labs.google.com/papers/bigtable.html

 DynamoDB (Amazon)

 http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html
and

 http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

 Gossip protocol (discovery and error detection)

 Distributed key-value data store

 Eventual consistency
– Amazon and consistency

– * http://www.allthingsdistributed.com/2010/02

– * http://www.allthingsdistributed.com/2008/12

 CAP Theorem (discuss in a sec ..)

@Zoran B. Djordjevic 9

The Perfect Storm

 Large datasets, acceptance of alternatives, and dynamically-
typed data has come together in a perfect storm.

 Industry have reached a point where a read-only cache and
write-based RDBMS isn’t delivering the throughput necessary
to support many internet scale application.

 Not a backlash/rebellion against RDBMS

 The NoSQL databases are a pragmatic response to growing
scale of databases and the falling prices of commodity
hardware.

 Most likely, 10 years from now, the majority of data is still
stored in RDBMS.

 SQL is a rich query language that cannot be rivaled by the
current list of NoSQL offerings

@Zoran B. Djordjevic 10

The CAP Theorem

Consistency

Partition

tolerance

Availability

@Zoran B. Djordjevic 11

CAP Theorem
 Proposed by Eric Brewer (talk on Principles of Distributed Computing July

2000).
 Three properties of a system: Consistency, Availability and Partitionability.
 You can have at most two of these three properties for any shared-data

system
 Partitionability: Can divide nodes into small groups that can see other

groups, but they can't see everyone.
 Consistency: write a value and then you read the value you get the

same value back. In a partitioned system there are windows where
that's not true.

 Availability: may not always be able to write or read. The system will
say you can't write because it wants to keep the system consistent.

 To scale you have to partition, so you are left with choosing either high
consistency or high availability for a system. Find the right overlap of
availability and consistency. Choose an approach based on the service

 For the checkout process you always want to honor requests to add items
to a shopping cart because it's revenue producing. In this case you choose
high availability. Errors are hidden from the customer and sorted out later.

 When a customer submits an order you favor consistency because several
services--credit card processing, shipping and handling, reporting— are
simultaneously accessing the data.

@Zoran B. Djordjevic 12

4/13/2014

3

The CAP Theorem

 Once a writer has written, all
readers will see that write.

 Two kinds of consistency:

 strong consistency –
ACID(Atomicity Consistency
Isolation Durability)

 weak consistency –
BASE(Basically Available Soft-
state Eventual consistency)

Consistency

Partition

tolerance

Availability

@Zoran B. Djordjevic 13 14

ACID Transactions

 A DBMS is expected to support “ACID transactions,” processes
that are:

 Atomic : Either the whole process is done or none is.

 Consistent : Database constraints are preserved.

 Isolated : It appears to the user as if only one process
 executes at a time.

 Durable : Effects of a process do not get lost if the system
 crashes.

@Zoran B. Djordjevic

15

Atomicity

 A real-world event either happens or does not happen

 Student either registers or does not register

 Similarly, the system must ensure that either the

corresponding transaction runs to completion or, if not, it

has no effect at all

 Not true of ordinary programs. A crash could leave

files partially updated on recovery

@Zoran B. Djordjevic 16

Commit and Abort

 If the transaction successfully completes it is

said to commit

 The system is responsible for ensuring that all

changes to the database have been saved

 If the transaction does not successfully

complete, it is said to abort

 The system is responsible for undoing, or rolling

back, all changes the transaction has made

@Zoran B. Djordjevic

17

 Database Consistency

 Enterprise (Business) Rules limit the occurrence of certain

real-world events

 Student cannot register for a course if the current

number of registrants equals the maximum allowed

 Correspondingly, allowable database states are restricted

 cur_reg <= max_reg

 These limitations are called (static) integrity constraints:

assertions that must be satisfied by all database states

(state invariants).

@Zoran B. Djordjevic 18

Database Consistency

(state invariants)

 Other static consistency requirements are related to the

fact that the database might store the same information in

different ways

 cur_reg = |list_of_registered_students|

 Such limitations are also expressed as integrity

constraints

 Database is consistent if all static integrity constraints are

satisfied

@Zoran B. Djordjevic

4/13/2014

4

19

Transaction Consistency

 A consistent database state does not necessarily model

the actual state of the enterprise

 A deposit transaction that increments the balance by the

wrong amount maintains the integrity constraint balance  0,

but does not maintain the relation between the enterprise

and database states

 A consistent transaction maintains database consistency
and the correspondence between the database state and
the enterprise state (implements its specification)

 Specification of deposit transaction includes

 balance = balance + amt_deposit ,

(balance is the next value of balance)

@Zoran B. Djordjevic 20

Dynamic Integrity Constraints
(transition invariants)

 Some constraints restrict allowable state transitions

 A transaction might transform the database from

one consistent state to another, but the transition

might not be permissible

 Example: A letter grade in a course (A, B, C, D, F)

cannot be changed to an incomplete (I)

 Dynamic constraints cannot be checked by

examining the database state

@Zoran B. Djordjevic

21

Transaction Consistency

 Consistent transaction: if DB is in consistent state initially,

when the transaction completes:

 All static integrity constraints are satisfied (but

constraints might be violated in intermediate states)

 Can be checked by examining snapshot of database

 New state satisfies specifications of transaction

 Cannot be checked from database snapshot

 No dynamic constraints have been violated

 Cannot be checked from database snapshot

@Zoran B. Djordjevic 22

Isolation

 Serial Execution: transactions execute in sequence

 Each one starts after the previous one completes.

 Execution of one transaction is not affected by the

operations of another since they do not overlap in time

 The execution of each transaction is isolated from all

others.

 If the initial database state and all transactions are

consistent, then the final database state will be

consistent and will accurately reflect the real-world

state, but

 Serial execution is inadequate from a performance

perspective

@Zoran B. Djordjevic

23

Isolation

 Concurrent execution offers performance benefits:

 A computer system has multiple resources capable of

executing independently (e.g., cpu’s, I/O devices), but

 A transaction typically uses only one resource at a time

 Hence, only concurrently executing transactions can make

effective use of the system

 Concurrently executing transactions yield interleaved

schedules

@Zoran B. Djordjevic 24

Durability

 The system must ensure that once a transaction

commits, its effect on the database state is not lost in

spite of subsequent failures

 Not true of ordinary programs. A media failure after a

program successfully terminates could cause the file

system to be restored to a state that preceded the

program’s execution

@Zoran B. Djordjevic

4/13/2014

5

25

Implementing Durability

 Database stored redundantly on mass storage devices to

protect against media failure

 Architecture of mass storage devices affects type of media

failures that can be tolerated

 Related to Availability: extent to which a (possibly

distributed) system can provide service despite failure

 Non-stop DBMS (mirrored disks)

 Recovery based DBMS (log)

@Zoran B. Djordjevic

Consistency Model

 A consistency model determines rules for visibility and apparent
order of updates.

 For example:

 Row X is replicated on nodes M and N

 Client A writes row X to node N

 Some period of time t elapses.

 Client B reads row X from node M

 Does client B see the write from client A?

 Consistency is a continuum with tradeoffs

 For NoSQL, the answer would be: maybe

 CAP Theorem states: Strict Consistency can't be achieved at the
same time as availability and partition-tolerance.

@Zoran B. Djordjevic 26

Eventual Consistency

 When no updates occur for a long period of time,
eventually all updates will propagate through the
system and all the nodes will be consistent

 For a given accepted update and a given node,
eventually either the update reaches the node or the
node is removed from service

 The types of large systems based on CAP aren't ACID they are BASE :

Basically Available, Soft state, Eventual consistency.
 Basically Available - system seems to work all the time

 Soft State - it doesn't have to be consistent all the time

 Eventually Consistent - becomes consistent at some later time

@Zoran B. Djordjevic 27

The CAP Theorem

 System is available during
software and hardware upgrades
and node failures.

 Traditionally, thought of as the
server/process available five 9’s
(99.999 %).

 However, for large node system,
at almost any point in time
there’s a good chance that a
node is either down or there is a
network disruption among the
nodes.
 Want a system that is resilient in

the face of network disruption

Consistency

Partition

tolerance

Availability

@Zoran B. Djordjevic 28

The CAP Theorem

 A system can continue to
operate in the presence of a
network partitions.

Consistency

Partition

tolerance

Availability

@Zoran B. Djordjevic 29

The CAP Theorem

 Theorem: You can have at
most two of these
properties for any shared-
data system

 Consistency

Partition

tolerance

Availability

@Zoran B. Djordjevic 30

4/13/2014

6

What is NoSQL?

• NoSQL is not a relational database. The reality is that a
relational database model may not be the best solution
for all situations.

• The easiest way to think of NoSQL, is that of a database
which does not adhere to the traditional relational
database management system (RDMS) structure.

• Sometimes you will also see it referred to as 'not only
SQL'.

@Zoran B. Djordjevic 31

What kinds of NoSQL

 NoSQL solutions fall into two major areas:
 Key/Value or ‘the big hash table’.

 Amazon S3 (Dynamo)
 Voldemort
 Scalaris
 Memcached (in-memory key/value store)
 Redis

 Schema-less which comes in multiple flavors, column-based,
document-based or graph-based.
 Cassandra (column-based)
 CouchDB (document-based, document: views are stored as rows which

are kept sorted by key.)
 MongoDB(document-based)
 Neo4J (graph-based, is a network database that uses edges and nodes to

represent and store data)
 HBase (column-based)

@Zoran B. Djordjevic 32

Key/Value

Pros:
 very fast

 very scalable

 simple model

 able to distribute horizontally

Cons:
- many data structures (objects) can't be easily modeled as key

value pairs

@Zoran B. Djordjevic 33

Schema-Less

Pros:
- Schema-less data model is richer than key/value pairs

- eventual consistency

- many are distributed

- still provide excellent performance and scalability

Cons:

- typically no ACID transactions or joins

@Zoran B. Djordjevic 34

Common Advantages

 Cheap, easy to implement (open source)

 Data are replicated to multiple nodes (therefore identical and fault-tolerant)
and can be partitioned

 Down nodes easily replaced

 No single point of failure

 As the data is written, the latest version is on at least one
node. The data is then versioned/replicated to other
nodes within the system.

 Eventually, the same version is on all nodes.

 Easy to distribute

 Don't require a schema

 Can scale up and down

 Relax the data consistency requirement (CAP)

@Zoran B. Djordjevic 35

What am I giving up?

 joins

 group by

 order by

 ACID transactions

 SQL as a sometimes frustrating but still powerful query
language

 easy integration with other applications that support SQL

@Zoran B. Djordjevic 36

4/13/2014

7

Row Oriented Databases

 A relational database management system maintains data that represents
two-dimensional tables, with columns and rows. For example, a database
might have table Employee:

 This two-dimensional format exists only on paper. Storage hardware
requires the data to be serialized into a sequence of “cells” and placed
onto the hard drives.

 The most expensive operations involving hard drives are seeks. In order to
improve overall performance, related data should be stored in a fashion to
minimize the number of seeks. Hard drives are organized into a series of
blocks of a fixed size, typically enough to store several rows of the table.
This minimizes the number of data retrievals.

@Zoran B. Djordjevic 37

EmpId Lastname Firstname Salary

10 Smith Joe 40000

12 Jones Mary 50000

11 Johnson Cathy 44000

22 Jones Bob 55000

Row Organized Data

 The common solution to the storage problem is to serialize each row of
data, and assign to it a row id. Rows of the previous table could be
packaged like this:

001:10,Smith,Joe,40000;002:12,Jones,Mary,50000;003:11,Johnson,Cat

hy,44000;004:22,Jones,Bob,55000;

 Indicators 001, 002, 003 and 004 represent row ids. In practice, those
identifiers are usually longer, 64-bit or 128-bit strings.

 In OLTP systems, we need the entire raw(s) of data in order to populate
entire object(s). It makes every sense to store all components of a row of
data together. By storing the record's data in a single block on the disk,
along with related records, the system can quickly retrieve records with a
minimum of disk operations.

 Row-based systems are not efficient at performing operations that apply
to the entire data set, as opposed to a specific record. For instance, in
order to find all the records in the example table that have salaries
between 40,000 and 50,000, the DBMS would have to seek through the
entire data set looking for matching records.

@Zoran B. Djordjevic 38

Indexes Help

 To improve the performance of these sorts of operations, most DBMS's
support the use of database indexes, which store all the values from a set
of columns along with pointers back into the original rowid.

 An index on the salary column would look something like this:
001:40000;002:50000;003:44000;004:55000;

 As they store only single pieces of data, rather than entire rows, indexes
are generally much smaller than the main table stores. By scanning
smaller sets of data the number of disk operations is reduced. If the index
is heavily used, it can provide dramatic time savings for common
operations. However, maintaining indexes adds overhead to the system,
especially when new data is written to the database. In this case not only
is the record stored in the main table, but any attached indexes have to be
updated as well.

 Database indexes on one or more columns are typically sorted by value,
which makes operations like range queries fast.

@Zoran B. Djordjevic 39

Modern RDBMS

 There is a number of row-oriented databases that are designed to fit entirely
in RAM, the so called an in-memory database (Times ten).

 RAM is rapidly getting cheaper and big vendors like Oracle, (Microsoft,) IBM
are offering specialized hardware with enormous RAM-s (several TB-s)

 These systems do not depend on disk operations, and have equal-time
access to the entire dataset. This reduces the need for indexes, as it is
required the same amount of operations to full scan the original data as a
complete index for typical aggregation purposes. Such systems may be
therefore simpler and smaller, but can only manage databases that will fit in
memory.

 Hard Drives are also being replaced by Solid State Drives (SSD-s) and several
vendors (Aerospike, Amazon DynamoDB) are rewriting RDBMS systems to
take advantage of new technology. Consistent reads and writes complete in
under 1 millisecond on such systems.

 Traditional databases also try to scale with volume of data by using cluster
technology. For whatever reason there are limitations to such scaling.

@Zoran B. Djordjevic 40

Column-oriented Systems

 Important column-oriented databases (Vertica, 2005; Statistics Canada
RAPID System, 1969) are present for a while. Ra

 A column-oriented database serializes all of the values of a column
together, then the values of the next column, and so on. For our example
table, the data would be stored in this fashion:

10:001,12:002,11:003,22:004;

Smith:001,Jones:002,Johnson:003,Jones:004;

Joe:001,Mary:002,Cathy:003,Bob:004;

40000:001,50000:002,44000:003,55000:004;

 Any one of the columns more closely matches the structure of an index in
a row-based system. This creates an impression that column-oriented
store "is really just" a row-store with an index on every column.

 It is the mapping of the data that differs dramatically. In a row-oriented
indexed system, the primary key is the rowid that is mapped to indexed
data.

@Zoran B. Djordjevic 41

Data organization in Column-oriented systems

 In the column-oriented system primary key is the data, mapping back to
rowids. The difference can be seen in the case when we have two rows
(users) with the same last name. Column “last_name” would be stored as:

…;Smith:001,Jones:002,004,Johnson:003;…

 Record “Jones” could be saved only once in the column store along with
pointers to all of the rows that match it. For many common searches, like
"find all the people with the last name Jones", the answer is retrieved in a
single operation. Similarly, counting the number of matching records, can
be greatly improved through this organization.

 In a column-oriented system operations that retrieve complete data for
objects would be slower, requiring numerous disk operations to collect
data from multiple columns to build up the record.

 In the many cases, only a limited subset of data is retrieved. If we are
collecting the first and last names from many rows in order to build a list
of contacts, columnar organization is vastly beneficial.

 This is even more true for writing data into the database, especially if the
data tends to be "sparse" with many optional columns.

@Zoran B. Djordjevic 42

4/13/2014

8

Benefits

 Column-oriented organizations are more efficient when an aggregate
needs to be computed over many rows but only for a notably small subset
of all columns of data

 Column-oriented organizations are more efficient when new values of a
column are supplied for all rows at once, because that column data can be
written efficiently and replace old column data without touching any other
columns for the rows.

 Row-oriented organizations are more efficient when many columns of a
single row are required at the same time, and when row-size is relatively
small, as the entire row can be retrieved with a single disk seek.

 Row-oriented organizations are more efficient when writing a new row if
all of the row data is supplied at the same time, as the entire row can be
written with a single disk seek.

 In practice, row-oriented storage layouts are well-suited for OLTP-like
workloads which are more heavily loaded with interactive transactions.
Column-oriented storage layouts are well-suited for OLAP-like workloads.

@Zoran B. Djordjevic 43

Compression

 Column data is of uniform type. Many popular modern compression
schemes, such as LZW or run-length encoding, make use of the similarity
of adjacent data to compress. While the same techniques may be used on
row-oriented data, a typical implementation will be less effective.

 To improve compression, sorting rows can also help. For example, using
bitmap indexes, sorting can improve compression by an order of
magnitude. To maximize the compression benefits of the lexicographical
order with respect to run-length encoding, it is best to use low-cardinality
columns as the first sort keys. For example, given a table with columns sex,
age, name, it would be best to sort first on the value sex (cardinality of
two), then age (cardinality of <150), then name.

 Columnar compression achieves a reduction in disk space at the expense
of efficiency of retrieval. Retrieving all data from a single row is more
efficient when that data is located in a single location, such as in a row-
oriented architecture. Further, the greater adjacent compression
achieved, the more difficult random-access may become, as data might
need to be uncompressed to be read.

@Zoran B. Djordjevic 44

New Breed of Databases

 With large popularity of Big Data analysis, several databases became quite
fashionable. Among the most popular are: Cassandra, HBase, MongoDB,
CouchDB, etc.

 Those databases are sometimes referred to as key-value pair database,
sometimes as columnar-databases and most often as NoSQL database.

 NoSQL databases claim to deliver faster performance than legacy RDBMS
systems in various use cases, most notably those involving big data. While
this is oftentimes the case, it should be understood that not all NoSQL
databases are created alike where performance is concerned.

 System architects and IT managers are wise to compare NoSQL databases
in their own environments using data and user interactions that are
representative of their expected production workloads before deciding
which NoSQL database to use for a new application.

 DataStax performed a benchmark of three top NoSQL databases – Apache
Cassandra, Apache HBase, and MongoDB – using a variety of different
workloads on AWS clusters.

@Zoran B. Djordjevic 45

Benchmark Configuration, DataStax Evaluations

 The tests ran in the cloud on Amazon Web Services (AWS) EC2 instances,
using spot instances to ensure cost efficiency while getting the same level
of performance.

 The tests ran exclusively on m1.xlarge size instances (15 GB RAM and 4
CPU cores) using local instance storage for performance. The m1.xlarge
instance type allows for up to 4 local instance devices; the instances were
allocated all 4 block devices, which were then combined on boot into a
single 1.7TB RAID-1 volume.

 The instances use customized Ubuntu 12.04 LTS AMI’s with Oracle Java 1.6
installed as a base.

 On start up, each instance calls back to a parent instance for its
configuration. A customized script was written to drive the benchmark
process, including managing the start up, configuration, and termination
of EC2 instances, calculation of workload parameters, and driving the
clients to run the tests.

@Zoran B. Djordjevic 46

Tested Workloads

The following workloads were included in the benchmark:

1. Read-mostly workload, based on YCSB’s provided workload B: 95% read
to 5% update ratio

2. Read/write combination, based on YCSB’s workload A: 50% read to 50%
update ratio

3. Write-mostly workload: 99% update to 1% read

4. Read/scan combination: 47% read, 47% scan, 6% update

5. Read/write combination with scans: 25% read, 25% scan, 25% update,
25% insert

6. Read latest workload, based on YCSB workload D: 95% read to 5% insert

7. Read-modify-write, based on YCSB workload F: 50% read to 50% read-
modify-write

@Zoran B. Djordjevic 47

Read-Mostly Workload

@Zoran B. Djordjevic 48

• Different workloads are important for different use cases and one should

really examine the intended usage of a NoSQL database before deciding

which product to use.

http://en.wikipedia.org/wiki/Lempel-Ziv-Welch

4/13/2014

9

Read/Write Mix Workload

@Zoran B. Djordjevic 49

Complete white paper on this series of tests can be found at:
http://www.datastax.com/resources/whitepapers/benchmarking-top-nosql-databases

Write-mostly Workload

@Zoran B. Djordjevic 50

• Here we presented only 3 of 8 tested workload scenarios. It appears

that in all of them Cassandra demonstrated the highest throughput.

Choose the Best

 Based on results for all tested workloads, it appears that Cassandra is an
overwhelming winner.

 Cassandra has some “deficiencies”. For example, it does not implement a
very strong consistency model and does not consider ACID properties to
be sacrosanct.

 ACID (Atomicity, Consistency, Isolation, Durability) is a set of properties
that guarantee that database transactions are processed reliably. Old
fashioned RDBMS-s like Oracle, DB2, PostgreSQL, MySQL, and others
guaranty that those properties will hold in any of your transactions.

 HBase, for example, pays due respect to Consistency property and you
might decide to select HBase over Cassandra if data consistency is critical
for your application, in spite of Hbase’s less-than-stellar performance.

 In the following we will look at some properties of Cassandra, Hbase and
MongoDB.

@Zoran B. Djordjevic 51

Cassandra

 In the following we will examine the installation process for Apache
Cassandra Database and review some of its properties.

 Cassandra was developed at Facebook.

 Now, Cassandra is an Apache project.

@Zoran B. Djordjevic 52

Debian Linux

 Cassandra works with Debian Linux. Ubunutu is a derivative of Debian
Linux. It appears that Mac OS is also. One prefers to work with original.

 The best illustration of the trash we are dealing with here is the fact that
neither on the site cassandra.apache.org, nor on the site
datastax.com, run by people who are commercializing this technology,
one could find any mention of the version of various Linux OS-s or
Cassandra’s packages which are compatible one to another. This is bad
even by the very low standards of Hadoop community. Cassandra creators

 think that if you have to ask, you do not deserve to be told.

 There is a site called http://www.debian.org/, where one could
download CD ISO Images. The latest stable Debian Linux is 7.4. I do not
know whather that version is a good choice.

 On the page http://www.debian.org/distrib/netinst I found
links that appear to make it possible to download proper ISO image. I
chose amd64 architecture, hoping it would give me 64-bit Debian Linux.

 Creation of VM is relatively uneventful. Answer Yes whenever asked.
Install desktop environment when asked.

53 @Zoran B. Djordjevic

Adjust User rights, Display

 During the installation process you will be asked to set the password for user
root. Record the password. You will be also asked to create another user. You
can create cassandra with password cassandra.

 Before you start working with your new VM, change display settings.

 Select
Applications > System Tools > Preferences> System Settings > Displays

 On the resulting screen select resolution to your liking, e.g. 1280X1024(5:4)

 Make the other user (cassandra) a sudo user. Just like on CentOS, add user
cassandra to /etc/sudoers file

@Zoran B. Djordjevic 54

http://www.datastax.com/resources/whitepapers/benchmarking-top-nosql-databases
http://www.datastax.com/resources/whitepapers/benchmarking-top-nosql-databases
http://www.datastax.com/resources/whitepapers/benchmarking-top-nosql-databases
http://www.datastax.com/resources/whitepapers/benchmarking-top-nosql-databases
http://www.datastax.com/resources/whitepapers/benchmarking-top-nosql-databases
http://www.datastax.com/resources/whitepapers/benchmarking-top-nosql-databases
http://www.datastax.com/resources/whitepapers/benchmarking-top-nosql-databases
http://www.debian.org/
http://www.debian.org/distrib/netinst

4/13/2014

10

Download and Install Java 7
 Under Applications > Internet select IceWeasel Web Browser

 Before you can start anything go to oracle.com and download
jdk-7u51-linux-x64.tar.gz

 Untar jdk-.. archive into the directory /usr/local

 In .bash_profile file in /home/cassandra directory, set JAVA_HOME
environmental variable to
JAVA_HOME=/usr/local/jdk1.7.0_51

export JAVA_HOME

PATH=$PATH:$JAVA_HOME/bin

export PATH

 As user root, remove existing /usr/bin/java and create new symbolic link
to $JAVA_HOME/bin/java

$ ln –s /usr/local/jdk1.7.0_51/bin/java /usr/bin/java

$ java –version

Java version “1.7.0_51”

@Zoran B. Djordjevic 55

Download and Start cassandra server
 Under Applications > Internet select IceWeasel Web Browser

 On the site cassandra.apache.org select download options for release
2.0.6 and download apache-cassandra-2.0.6-bin.tar.gz

 Copy apache-cassandra-2.0.6-bin.tar.gz file to /usr/local

$ sudo apache-cassandra-2.0.6-bin.tar.gz file /usr/local

 On the command prompt in directory /usr/local type:

$ sudo tar zxvf apache-cassandra-2.0.6-bin.tar.gz

$ sudo rm *.tar.gz

 To start cassandra server in the directory /user/local/apache-
cassandra-2.0.6/bin type:

$ sudo cassandra –f

 Using the -f switch tells Cassandra to stay in the foreground instead of running as a
background process, so that all of the server logs will print to standard out and you
can see them in your terminal window, which is useful for testing. To stop cassandra
type Ctrl C in the console.

 Under normal circumstances, running server will write the following output
to the console:

@Zoran B. Djordjevic 56

Console output of Normally Running Server
$ sudo ./cassandra -f

INFO 23:50:54,079 Logging initialized

INFO 23:50:54,156 Loading settings from file:/usr/local/apache-cassandra-

2.0.6/conf/cassandra.yaml

INFO 23:50:54,901 Data files directories: [/var/lib/cassandra/data]

INFO 23:50:54,902 Commit log directory: /var/lib/cassandra/commitlog

INFO 23:50:54,902 DiskAccessMode 'auto' determined to be mmap, indexAccessMode

INFO 23:50:54,903 disk_failure_policy is stop INFO 23:50:54,903

commit_failure_policy is stop

INFO 23:50:54,914 Global memtable threshold is enabled at 251MB INFO

23:50:55,161 Not using multi-threaded compaction

INFO 23:50:55,612 JVM vendor/version: Java HotSpot(TM) 64-Bit Server INFO

23:50:55,612 Heap size: 1052770304/1052770304

INFO 23:50:55,613 Code Cache Non-heap memory:

INFO 23:50:55,612 Heap size: 1052770304/1052770304

INFO 23:50:55,613 Code Cache Non-heap memory: init = 2555904(2496K) used =

650560(635K) committed = 2555904(2496K) max = 50331648(49152K) INFO

23:50:55,613 Par Eden Space Heap memory: init = 167772160(163840K) used =

57089352(55751K) committed = 167772160(163840K) max = 167772160(163840K)

INFO 23:50:55,614 Par Survivor Space Heap memory: init = 20971520(20480K) used

= 0(0K) committed = 20971520(20480K) max = 20971520(20480K)

INFO 23:50:55,614 CMS Old Gen Heap memory: init = 864026624(843776K) used =

0(0K) committed = 864026624(843776K) max = 864026624(843776K) .

.

@Zoran B. Djordjevic 57

Directories used by cassandra

 Cassandra uses the following directories:

 For configuration settings $CASSANDRA_INSTALL/conf/cassandra.yaml

 data_file_directories (/var/lib/cassandra/data),

 commitlog_directory (/var/lib/cassandra/commitlog), and

 saved_caches_directory (/var/lib/cassandra/saved_caches).

 Make sure these directories exist and can be written to.

 By default, Cassandra will write its logs in /var/log/cassandra/.

 Make sure this directory exists and is writeable, or change this line in
conf/log4j-server.properies:

log4j.appender.R.File=/var/log/cassandra/system.log

 Note that in Cassandra 2.1+, the logger in use is logback, so change this
logging directory in your conf/logback.xml file such as:

<file>/var/log/cassandra/system.log</file>

 JVM-level settings such as heap size can be set in

 conf/cassandra-env.sh.

@Zoran B. Djordjevic 58

Command Line Interface,

 $CASSANDRA_INSTALL/bin/cqlsh is acommand line interface. You can
define the schema and interact with data using cqlsh.

 Run the following command to connect to your local Cassandra instance:
$./cqlsh

Connected to Test Cluster at localhost:9160. [cqlsh 4.1.1 | Cassandra 2.0.6

| CQL spec 3.1.1 | Thrift protocol 19.39.0]

Use HELP for help. Commands are terminated with a semicolon (;)

cqlsh>

 First, create a keyspace -- a namespace of tables.

CREATE KEYSPACE mykeyspace WITH REPLICATION = { 'class' :

'SimpleStrategy', 'replication_factor' : 1 };

USE mykeyspace; # Move to new keyspace , create a table, insert data
CREATE TABLE users (

 user_id int PRIMARY KEY,

 fname text,

 lname text);

INSERT INTO users (user_id, fname, lname) VALUES (1745, 'john', 'smith');

INSERT INTO users (user_id, fname, lname) VALUES (1744, 'john', 'doe');

INSERT INTO users (user_id, fname, lname) VALUES (1746, 'john', 'smith');

@Zoran B. Djordjevic 59

CQL, Retrieve Data, Create Index
 We can retrieve data using customary tools and commands
cqlsh> SELECT * FROM users;

user_id | fname | lname

--------+-------+-------

 1745 | john | smith

 1744 | john | doe

 1746 | john | smith

 You can retrieve data about users whose last name is smith by creating an index,
then querying the table as follows:

CREATE INDEX ON users (lname);

SELECT * FROM users WHERE lname = 'smith';

 user_id | fname | lname

---------+-------+-------

 1745 | john | smith

 1746 | john | smith

 The language we are using here is called CQL of Cassandra Query Language which
is very similar to SQL.

@Zoran B. Djordjevic 60

4/13/2014

11

Cassandra Data Model

 Cassandra's data model is a partitioned row store with tunable
consistency. Rows are organized into tables; the first component of a
table's primary key is the partition key; within a partition, rows are
clustered by the remaining columns of the key. Other columns can be
indexed separately from the primary key.

 Tables can be created, dropped, and altered at runtime without blocking
updates and queries.

 Cassandra does not support joins or subqueries, except for batch analysis
through Hadoop.

 Rather, Cassandra emphasizes denormalization through features like
collections

@Zoran B. Djordjevic 61

Example, Music Service: Playlist/Songs

 A social music service requires a songs table having a title, album, and artist
column, plus a column called data for the actual audio file itself.

 The table uses a UUID as a primary key.
CREATE TABLE songs (

id uuid PRIMARY KEY,

title text, album text, artist text, data blob);

playlist_id); # In relational design, foreign key to playlists

 in Cassandra, we denormalize the data. playlist data, is presented by table:
CREATE TABLE playlists (id uuid,

song_order int, song_id uuid, # In relational design these fields

title text, album text, artist text,

PRIMARY KEY (id, song_order)); # would not be here

 The combination of the id and song_order in the playlists table uniquely identifies a row in the
playlists table. We could have more than one row with the same (playlist) id as long as
the rows contain different song_order values.

CREATE TABLE playlist_songs (# Relational design needs another

playlistid uuid, # table to resent song order

song_id uuid,

song_order int);

 @Zoran B. Djordjevic 62

Example, Music Service

 If one would like select playlist content for a particular artist, as things are
organized now, Cassandra would have to make a full table scan. To avoid
doing that you create an index:

CREATE INDEX ON playlists(artist);

 Now, you can query the playlists for songs by Fu Manchu, for example:
SELECT * FROM playlists WHERE artist = 'Fu Manchu';

 and Cassandra will efficiently return all relevant rows.

 Notice that the primary key on playlists table had two elements:

PRIMARY KEY (id, song_order));

 The first portion is called the partition key. The remaining keys are called
clustering keys.

 Cassandra stores data on a node by partition key. If you have too much
data in a partition and want to spread the data over multiple nodes, use a
composite partition key.

 One consideration is whether to use surrogate or natural keys for a table.
A surrogate key is a generated key (such as a UUID) that uniquely identifies
a row, but has no relation to the actual data in the row.

@Zoran B. Djordjevic 63

Compound Keys and Clustering

 A compound primary key includes the partition key, which determines on
which node data is stored first, and one or more additional columns that
determine clustering.

 Cassandra uses the first column name in the primary key definition as the
partition key. For example, in the playlists table, id is the partition key.

 The remaining column, or columns that are not partition keys in the
primary key definition are the clustering columns. In the case of the
playlists table, the song_order is the clustering column.

 The data for each partition is clustered by the remaining column or
columns of the primary key definition. On a physical node, when rows for
a partition key are stored in order based on the clustering columns,
retrieval of rows is very efficient. For example, because the id in the
playlists table is the partition key, all the songs for a playlist are clustered
in the order of the remaining song_order column.

 Insertion, update, and deletion operations on rows sharing the same
partition key for a table are performed atomically and in isolation

 @Zoran B. Djordjevic 64

Collection Columns

 CQL introduces three collection types:

 set, list, and map

 In a relational database, to allow users to have multiple email addresses,
you create an email_addresses table having a many-to-one (joined)
relationship to a users table.

 CQL handles the classic multiple email addresses use case, and other use
cases, by defining columns as collections.

 To add a collection named tag with elements of type text to table songs,
we would issue statement like this:

ALTER TABLE songs ADD tags set<text>;

 One updates collection columns using + operator
UPDATE songs SET tags = tags + {'2007'}

WHERE id = 8a172618-b121-4136-bb10-f665cfc469eb;

UPDATE songs SET tags = tags + {'covers'}

WHERE id = 8a172618-b121-4136-bb10-f665cfc469eb;

 @Zoran B. Djordjevic 65

Querying Collections

 To query a collection, include the name of the collection column in the
select expression.

 For example, selecting the tags set returns the set of tags, sorted
alphabetically in this case because the tags set is of the text data type:

SELECT id, tags FROM songs;

@Zoran B. Djordjevic 66

http://www.datastax.com/documentation/cql/3.0/share/glossary/gloss_partition_key.html
http://www.datastax.com/documentation/cql/3.0/share/glossary/gloss_clustering.html
http://www.datastax.com/documentation/cql/3.0/cql/cql_using/use_set_t.html
http://www.datastax.com/documentation/cql/3.0/cql/cql_using/use_set_t.html
http://www.datastax.com/documentation/cql/3.0/cql/cql_using/use_list_t.html
http://www.datastax.com/documentation/cql/3.0/cql/cql_using/use_map_t.html

4/13/2014

12

Indexing

 An index in Cassandra refers to an index on column values. Cassandra
implements an index as a hidden table, separate from the table that
contains the values being indexed. Using CQL, you can create an index on a
column after defining a table.

CREATE INDEX artist_names ON playlists(artist);

 An index name is optional. If you provide an index name, such as
artist_idx, the name must be unique within the keyspace. After creating
an index for the artist column and inserting values into the playlists table,
greater efficiency is achieved when you query Cassandra directly for artist
by name, such as Fu Manchu:

SELECT * FROM playlists WHERE artist = 'Fu Manchu';

 As mentioned earlier, when looking for a row in a large partition, narrow
the search. This query, although a contrived example using so little data,
narrows the search to a single id.

SELECT * FROM playlists WHERE id = 62c36092-82a1-3a00-93d1-

46196ee77204 AND artist = 'Fu Manchu';

@Zoran B. Djordjevic 67

Using Multiple Indexes

 One can create multiple indexes on different columns of a table. For
example:

CREATE INDEX album_name ON playlists (album);

CREATE INDEX title_name ON playlists (title);

SELECT * FROM playlists

WHERE album = 'Roll Away' AND title = 'Outside Woman Blues' ALLOW

FILTERING ;

 When multiple occurrences of data match a condition in a WHERE clause,
Cassandra selects the least-frequent occurrence of a condition for
processing first for efficiency. For example, suppose data for Blind Joe
Reynolds and Cream's versions of "Outside Woman Blues" were inserted
into the playlists table. Cassandra queries on the album name first if there
are fewer albums named Roll Away than there are songs called "Outside
Woman Blues" in the database

@Zoran B. Djordjevic 68

DataStax Java Driver 1.0 for Apache Cassandra

 As can be seen on one of the following slides Cassandra has many drivers
for several popular languages. This is perhaps a testimony to its popularity.

 We will present a Java driver maintained by Datastax Corp. Our hope is
that a driver maintained by a commercial entity will have a long shelf life.

 Material on the following slides could be found at:
http://www.datastax.com/documentation/developer/java-

driver/1.0/common/drivers/introduction/introArchOverview_c.html

 The Java Driver 1.0 for Apache Cassandra works exclusively with the
Cassandra Query Language version 3 (CQL3) and Cassandra's new binary
protocol which was introduced in Cassandra version 1.2.

 The driver architecture is a layered. At the bottom lies the driver core. This
core handles everything related to the connections to a Cassandra cluster
(for example, connection pool, discovering new nodes, etc.) and exposes a
simple, relatively low-level API on top of which a higher level layer can be
built.

 A Mapping and a JDBC module will be added on top of that in upcoming
versions of the driver.

@Zoran B. Djordjevic 69

DataStax Java Driver 1.0 for Apache Cassandra
 The driver relies on Netty to provide non-blocking I/O with Cassandra for

providing a fully asynchronous architecture.

 Netty is an asynchronous event-driven NIO client-server network
application framework for rapid development of maintainable high
performance protocol servers & clients. (see: http://netty.io)

 Multiple queries can be submitted to the driver which then will dispatch
the responses to the appropriate client threads.

 The driver has the following features:

 connection pooling

 node discovery

 automatic failover

 load balancing

 The default behavior of the driver can be changed or fine tuned by using
tuning policies and connection options.

 Queries can be executed synchronously or asynchronously, prepared
statements are supported, and a query builder auxiliary class can be used
to build queries dynamically.

 @Zoran B. Djordjevic 70

Dependencies

 The Java driver only supports the Cassandra Binary Protocol and CQL3

Cassandra binary protocol

 The driver uses the binary protocol that was introduced in Cassandra 1.2. It
only works with a version of Cassandra greater than or equal to 1.2.
Furthermore, the binary protocol server is not started with the default
configuration file in Cassandra 1.2. Edit the cassandra.yaml file for each
node and set: start_native_transport: true. Then restart the node.

Maven dependencies

 The latest release of the driver is available on Maven Central. You can install
it in your application using the following Maven dependency:

<dependency>

 <groupId>com.datastax.cassandra</groupId>

 <artifactId>cassandra-driver-core</artifactId>

 <version>1.0.6</version>

</dependency>

 Build your project using the Mojo Versions plug-in. Add the
versions:display-dependency-updates setting to the POM file. It lets you
know when the driver is out of date during the build process.

@Zoran B. Djordjevic 71

Download Driver

 On the site http://www.datastax.com/download, you will see a link
DataStax Drivers. You could download the source code and compile it, or
you can download binary driver and just use provide jar files.

 Binary driver downloads as cassandra-java-driver-2.0.0.tar.gz

 Untar the file using command

$ tar zxvf cassandra-java-driver-2.0.0.tar

 In the resulting directory, you will see two jar files:

cassandra-driver-core-2.0.0.jar and

cassandra-driver-dse-2.0.0

Also, in the subdirectory lib you will see a bunch of additional jars:
bsh-2.0b4.jar, guava-16.0.1.jar, jcommander-1.27.jar,

log4j-1.2.17.jar, lz4-1.2.0.jar,

metrics-core-3.0.2.jar, netty-3.9.0.Final.jar,

slf4j-api-1.7.5.jar, slf4j-log4j12-1.7.6.jar,and

snappy-java-1.0.5.jar

 All of those jars need to be referenced in the CLASSPATH variable of
your Java applications or in the Build Path of your Java projects.

@Zoran B. Djordjevic 72

http://www.datastax.com/documentation/developer/java-driver/1.0/common/drivers/introduction/introArchOverview_c.html
http://www.datastax.com/documentation/developer/java-driver/1.0/common/drivers/introduction/introArchOverview_c.html
http://www.datastax.com/documentation/developer/java-driver/1.0/common/drivers/introduction/introArchOverview_c.html
http://www.datastax.com/documentation/developer/java-driver/1.0/common/drivers/introduction/introArchOverview_c.html
http://netty.io/
http://netty.io/
http://mojo.codehaus.org/versions-maven-plugin/display-dependency-updates-mojo.html
http://mojo.codehaus.org/versions-maven-plugin/display-dependency-updates-mojo.html
http://mojo.codehaus.org/versions-maven-plugin/display-dependency-updates-mojo.html
http://www.datastax.com/download
http://www.datastax.com/download

4/13/2014

13

Install Eclipse

 It is convenient to create Java applications using Eclipse.

 Eclipse can be installed on your Debian Linux VM. This not difficult at all.
Eclipse for 64 bit Linux is packaged as tar.gz file. Download and un-tar the
file. In the resulting directory “eclipse” find executable “eclipse”.
Run the executable from the command line as

$./eclipse

 the familiar GUI will open. If you want to be fancy, copy your directory
eclipse to /usr/local directory, and then create a symbolic link in
/usr/bin directory pointing to the eclipse executable:

$ sudo ln –s /usr/local/eclipse/eclipse /usr/bin/eclipse

 Make sure that any Linux user can run the executable by issuing
command:

$ sudo +x /usr/bin/eclipse

 Now you can open start eclipse from any directory.

 Client applications will connect to Cassandra cluster and run some
database commands: create database tables, modify tables, insert, update
or delete objects (rows) in those tables.

@Zoran B. Djordjevic 73

Creating Client
 In Eclipse, before creating the client class, create a project. You can call the

project CassandraClient, for example.

 Our client will be the class, edu.hu.cassandra.SimpleClient

 We will need an instance field, cluster, to hold a Cluster reference.

private Cluster cluster;

 We will add an instance method, connect(), to our new class.

public void connect(String node) {}

 The connect() method:

 adds a contact point (node IP address) using the Cluster.Build
auxiliary class, builds a cluster instance,

 retrieves metadata from the cluster and prints out:

 the name of the cluster, the datacenter, host name or IP address, and rack
for each of the nodes in the cluster

 We could run the client class as a Java application from the Eclipse itself.

 Complete code of this class is presented on one of the following slides.

@Zoran B. Djordjevic 74

Create Eclipse Project, add log4j.properties File

 Before running the client class, create a file named: log4j.properties, with
a content similar to the following:

log4j.rootLogger=debug, stdout, R

log4j.appender.stdout=org.apache.log4j.ConsoleAppender

log4j.appender.stdout.layout=org.apache.log4j.PatternLayout

Pattern to output the caller's file name and line number.

log4j.appender.stdout.layout.ConversionPattern=%5p [%t](%F:%L) - %m%n

log4j.appender.R=org.apache.log4j.RollingFileAppender

log4j.appender.R.File=example.log

log4j.appender.R.MaxFileSize=100KB

Keep one backup file

log4j.appender.R.MaxBackupIndex=1

log4j.appender.R.layout=org.apache.log4j.PatternLayout

log4j.appender.R.layout.ConversionPattern=%p %t %c - %m%n

 Place file log4j.properties in

 the src directory of your Eclipse project,

 like in the image to the right. This is

 important. Otherwise, the driver will complain

 that your Log4J is not properly initialized.
@Zoran B. Djordjevic 75

edu.hu.cassandra.SimpleClient
package cassandra.hu.edu;

import com.datastax.driver.core.Cluster; import com.datastax.driver.core.Host;

import com.datastax.driver.core.Metadata;

public class SimpleClient {

 private Cluster cluster;

 public void connect(String node) {

 cluster = Cluster.builder().addContactPoint(node).build();

 Metadata metadata = cluster.getMetadata();

 System.out.printf("Connected to cluster: %s\n",

 metadata.getClusterName());

 for (Host host : metadata.getAllHosts()) {

 System.out.printf("Datatacenter: %s; Host: %s; Rack: %s\n",

 host.getDatacenter(), host.getAddress(), host.getRack());

 }

 }

 public void close() {

 cluster.close(); }

 public static void main(String[] args) {

 SimpleClient client = new SimpleClient();

 client.connect("127.0.0.1");

 client.close();

 }

} @Zoran B. Djordjevic 76

Running your Client

 When you right clink on your Java client class, select Run as Java Application.

 The result should look something like this:
 DEBUG [main] (Cluster.java:930) - Starting new cluster with

contact points [/127.0.0.1]

DEBUG [main] (ControlConnection.java:226) - [Control connection]

Refreshing node list and token map

DEBUG [main] (ControlConnection.java:229) - [Control connection]

Refreshing schema

DEBUG [main] (ControlConnection.java:154) - [Control connection]

Successfully connected to /127.0.0.1

Connected to cluster: Test Cluster

Datatacenter: datacenter1; Host: /127.0.0.1; Rack: rack1

DEBUG [main] (Cluster.java:1037) - Shutting down

 This basically tells you that your Java client did connect to Cassandra server
(cluster). Not bad at all.

@Zoran B. Djordjevic 77

Client that executes SQL Commands

 We will create a client class, CQLClient and enable it to execute CQL
(SQL like) commands. We start building CQLClient by copying the
content of SimpleClient class. Subsequently, we add new code.

 In order to execute CQL commands we need to create an object of type:
com.datastax.driver.core.Session;

 We do that by adding an instance field, session, of type Session:
private Session session;

 We get the session from the cluster object using method connect():
session = cluster.connect();

 Queries are executed by calling the execute() method on the session
object. The session maintains multiple connections to the cluster nodes,
provides policies to choose which node to use for each query (round-robin
on all nodes of the cluster by default), and handles retries for failed
queries when it makes sense.

 A given session can only be set to one keyspace at a time, so one
instance per keyspace is necessary. Your application typically only needs
a single cluster object, unless you're dealing with multiple physical clusters

@Zoran B. Djordjevic 78

4/13/2014

14

Create Schema

 We need to add an instance method that will create Schema.
public createSchema() { }

 Inside this method we will execute an CQL command to create a keyspace
simplex, i.e.

session.execute("CREATE KEYSPACE simplex WITH replication " +

 "= {'class':'SimpleStrategy', 'replication_factor':3};");

 We will also execute statements to create two new tables, songs and
playlists.

session.execute("CREATE TABLE simplex.songs (" + "id uuid

PRIMARY KEY," + "title text," + "album text," + "artist text," +

"tags set<text>," + "data blob" + ");");

session.execute("CREATE TABLE simplex.playlists (" + "id uuid,"

+ "title text," + "album text, " + "artist text," + "song_id

uuid," + "PRIMARY KEY (id, title, album, artist)" + ");");

@Zoran B. Djordjevic 79

Load Data

 Data will be loaded using instance method loadData()
public void loadData() { }

 The code that performs Insert statements for two table looks like the
following:

session.execute(

"INSERT INTO simplex.songs (id, title, album, artist, tags) " +

"VALUES (" + "756716f7-2e54-4715-9f00-91dcbea6cf50," +

"'La Petite Tonkinoise'," + "'Bye Bye Blackbird'," +

"'Joséphine Baker'," + "{'jazz', '2013'})" + ";");

session.execute(

"INSERT INTO simplex.playlists (id, song_id, title, album, " +

" artist) " +

"VALUES (" + "2cc9ccb7-6221-4ccb-8387-f22b6a1b354d," +

"756716f7-2e54-4715-9f00-91dcbea6cf50," +

"'La Petite Tonkinoise'," +

"'Bye Bye Blackbird'," + "'Joséphine Baker'" + ");");

 @Zoran B. Djordjevic 80

Select content of playlists table

 Lastly, we will query the content of the playlists table. For that
purpose we add instance method querySchema().

 Inside querySchema() method we execute query (select statement) which
returns an object of type: com.datastax.driver.core.ResultSet.
ResultSet object contains objects of type
com.datastax.driver.core.Row which represents rows returned by
the select statement.

ResultSet results = session.execute("SELECT * FROM

simplex.playlists " + "WHERE id = 2cc9ccb7-6221-4ccb-8387-

f22b6a1b354d;");

 To see individual rows we iterate through the ResultSet
for (Row row : results) {

 System.out.println(String.format("%-30s\t%-20s\t%-20s",

 row.getString("title"), row.getString("album"),

 row.getString("artist")));

}

@Zoran B. Djordjevic 81

main()Method

 Method main() organizes above instance methods in the proper order:
 public static void main(String[] args) {

 CQLClient client = new CQLClient();

 client.connect("127.0.0.1");

 client.createSchema();

 client.loadData();

 client.querySchema();

 client.close();

 }

 We should note that it is wise and necessary to close or end cluster
connection. We do that using method close(), defined as:

 public void close() {

 cluster.close(); // .shutdown();

 }

 Complete code of class CQLClient is presented on the following slides.

@Zoran B. Djordjevic 82

CQLClient.java

package cassandra.hu.edu;

import com.datastax.driver.core.Cluster;

import com.datastax.driver.core.Host;

import com.datastax.driver.core.Metadata;

import com.datastax.driver.core.Session;

import com.datastax.driver.core.ResultSet;

import com.datastax.driver.core.Row;

public class CQLClient {

 private Cluster cluster;

 private Session session;

 public void connect(String node) {

 cluster = Cluster.builder()

 .addContactPoint(node).build();

 session = cluster.connect();

 }

@Zoran B. Djordjevic 83

CQLClient.createSchema()

public void createSchema() {

 session.execute("CREATE KEYSPACE simplex WITH replication " +

 "= {'class':'SimpleStrategy', 'replication_factor':1};");

 session.execute(

 "CREATE TABLE simplex.songs (" +

 "id uuid PRIMARY KEY," +

 "title text," + "album text," +

 "artist text," + "tags set<text>," +

 "data blob" +

 ");");

 session.execute(

 "CREATE TABLE simplex.playlists (" +

 "id uuid," +

 "title text," + "album text, " +

 "artist text," + "song_id uuid," +

 "PRIMARY KEY (id, title, album, artist)" +

 ");");

 }

@Zoran B. Djordjevic 84

4/13/2014

15

CQLClient.loadData()

 public void loadData() {

 session.execute("INSERT INTO simplex.songs (id, title,album,"

+ "artist, tags)" +

 "VALUES (" +

 "756716f7-2e54-4715-9f00-91dcbea6cf50," +

 "'La Petite Tonkinoise'," +

 "'Bye Bye Blackbird'," +

 "'Joséphine Baker'," +

 "{'jazz', '2013'})" +

 ";");

session.execute("INSERT INTO simplex.playlists (id, song_id," +

" title, album, artist) " +

 "VALUES (" +

 "2cc9ccb7-6221-4ccb-8387-f22b6a1b354d," +

 "756716f7-2e54-4715-9f00-91dcbea6cf50," +

 "'La Petite Tonkinoise'," +

 "'Bye Bye Blackbird'," +

 "'Joséphine Baker'" +

 ");");

}

@Zoran B. Djordjevic 85

CQLClient.querySchema()
public void querySchema(){

 ResultSet results = session.execute(

"SELECT * FROM simplex.playlists " +

 "WHERE id = 2cc9ccb7-6221-4ccb-8387-

f22b6a1b354d;");System.out.println(String.format(

"%-30s\t%-20s\t%-20s\n%s", "title", "album", "artist",

"-------------------------------+--------------------" +

"---+--------------------"));

 for (Row row : results) {

 System.out.println(String.format("%-30s\t%-20s\t%-20s",

 row.getString("title"),

 row.getString("album"), row.getString("artist")));

 }

 System.out.println();

}

public void close() {

 cluster.close(); // .shutdown();

}

@Zoran B. Djordjevic 86

CQLClieNT.main(String[] arg)
 public static void main(String[] args) {

 CQLClient client = new CQLClient();

 client.connect("127.0.0.1");

 client.createSchema(); client.loadData();

 client.querySchema(); client.close();

 }

}

 The output on the Eclipse console is presented on the next slide. We have
removed a few DEBUG lines to fit the output into one slide.

 One can open cqlsh prompt, issue command:
cqlsh> user simplex;

 and then, examine the content of table playlists:

@Zoran B. Djordjevic 87

Console Output of CQLClient
DEBUG [main] (Cluster.java:930) - Starting new cluster with contact points [/127.0.0.1]
DEBUG [Cassandra Java Driver worker-0] (SessionManager.java:238) - Adding /127.0.0.1 to list of
queried hosts
Connected to cluster: Test Cluster
Datatacenter: datacenter1; Host: /127.0.0.1; Rack: rack1
DEBUG [New I/O worker #1] (Cluster.java:1466) - Received event EVENT CREATED simplex,
scheduling delivery
DEBUG [New I/O worker #1] (Cluster.java:1466) - Received event EVENT CREATED simplex.songs,
scheduling delivery
DEBUG [New I/O worker #2] (Cluster.java:1433) - Refreshing schema for simplex
DEBUG [New I/O worker #1] (Cluster.java:1466) - Received event EVENT CREATED
simplex.playlists, scheduling delivery
DEBUG [Cassandra Java Driver worker-1] (ControlConnection.java:242) - [Control connection]
Refreshing schema for simplex
DEBUG [New I/O worker #2] (Cluster.java:1433) - Refreshing schema for simplex
DEBUG [Cassandra Java Driver worker-0] (ControlConnection.java:507) - Checking for schema
agreement: versions are [d5a20e46-0062-35fd-b148-180af989ae5f]
title album artist
-------------------------------+-----------------------+--------------------
La Petite Tonkinoise Bye Bye Blackbird Joséphine Baker
DEBUG [main] (Cluster.java:1037) - Shutting down

DEBUG [main] (HostConnectionPool.java:393) - Shutting down pool

@Zoran B. Djordjevic 88

Drivers for Cassandra
Cassandra has a large number of drivers. The following is a partial list (04/2014)

 Ruby:

 Cassandra: http://github.com/fauna/cassandra/tree/master

 Cassandra_object: http://github.com/NZKoz/cassandra_object/tree/master (for
Rails)

 Small Record: http://github.com/astrails/smallrecord/tree/master (for
ruby/ActiveModel, Rails)

 Perl:

 Net-Cassandra: http://search.cpan.org/dist/Net-
Cassandra/lib/Net/Cassandra.pm

 Net-Cassandra-Easy: http://search.cpan.org/dist/Net-Cassandra-Easy/ (A simpler,
much less Thrift-oriented interface than Net::Cassandra; includes a CLI called
cassidy.pl)

 Python:

 Telephus: http://github.com/driftx/Telephus/tree/master (Twisted)

 Pycassa: http://github.com/vomjom/pycassa (version 0.3.0)

 Tragedy: http://github.com/enki/tragedy/

 Lazy Boy: http://github.com/digg/lazyboy/tree/master
@Zoran B. Djordjevic 89

Drivers for Cassandra

 Scala:
 Scromium: http://github.com/cliffmoon/scromium

 Cascal: http://github.com/shorrockin/cascal

 Cassandra4o: http://code.google.com/p/cassandra4o/ (works with Java, includes hooks
for Hibernate-like Object-mapping)

 Akka: http://akkasource.org/ (Akka includes a Cassandra client but is more than that)

 Cassie: http://github.com/codahale/cassie

 Java :

 Hector: http://github.com/rantav/hector

 Pelops: http://code.google.com/p/pelops/

 HelenaORM: http://github.com/marcust/HelenaORM (ORM layer built on
Hector)

 OCM: http://github.com/charliem/OCM (higher level client built on Hector)

 Datanucleus-Cassandra plug-in: http://github.com/PedroGomes/datanucleus-
cassandra (Persistence of objects through the JDO/JPA APIs under the
Datanucleus platform).

 Jassandra: http://code.google.com/p/jassandra/

 Kundera: http://code.google.com/p/kundera/

@Zoran B. Djordjevic 90

http://github.com/fauna/cassandra/tree/master
http://github.com/NZKoz/cassandra_object/tree/master
http://github.com/astrails/smallrecord/tree/master
http://search.cpan.org/dist/Net-Cassandra/lib/Net/Cassandra.pm
http://search.cpan.org/dist/Net-Cassandra/lib/Net/Cassandra.pm
http://search.cpan.org/dist/Net-Cassandra/lib/Net/Cassandra.pm
http://search.cpan.org/dist/Net-Cassandra-Easy/
http://search.cpan.org/dist/Net-Cassandra-Easy/
http://search.cpan.org/dist/Net-Cassandra-Easy/
http://search.cpan.org/dist/Net-Cassandra-Easy/
http://search.cpan.org/dist/Net-Cassandra-Easy/
http://github.com/driftx/Telephus/tree/master
http://github.com/vomjom/pycassa
http://github.com/enki/tragedy/
http://github.com/digg/lazyboy/tree/master
http://github.com/cliffmoon/scromium
http://github.com/shorrockin/cascal
http://code.google.com/p/cassandra4o/
http://akkasource.org/
http://github.com/codahale/cassie
http://github.com/rantav/hector
http://code.google.com/p/pelops/
http://github.com/marcust/HelenaORM
http://github.com/charliem/OCM
http://github.com/PedroGomes/datanucleus-cassandra
http://github.com/PedroGomes/datanucleus-cassandra
http://github.com/PedroGomes/datanucleus-cassandra
http://code.google.com/p/jassandra/
http://code.google.com/p/kundera/

4/13/2014

16

Drivers for Cassandra

 PHP :

 PHP Cassandra Client Library: http://github.com/kallaspriit/Cassandra-PHP-
Client-Library

 Pandra: http://github.com/mjpearson/Pandra/tree/master

 PHP Cassa: http://github.com/hoan/phpcassa [port of pycassa to PHP]

 Clojure :

 CLJ-Cassandra: http://github.com/robertluo/clj-cassandra

 Grails : Grails-Cassandra: http://github.com/wolpert/grails-cassandra
(Download 0.5.4 from the github site for 0.6 compatibility)

 C++ :

 LibCassandra: http://github.com/posulliv/libcassandra

 C# / .NET

 Aquiles: http://aquiles.codeplex.com/

 Hector Sharp: http://www.hectorsharp.com

 Fluent Cassandra: http://github.com/managedfusion/fluentcassandra

@Zoran B. Djordjevic 91

References

 Moderately complete documentation on CQL language could be found at
http://www.datastax.com/documentation/cql/3.0/cql/aboutCQL.html#.

./cql/aboutCQL.html

Drivers for Cassandra could be found at:

 JDBC:
http://code.google.com/a/apache-extras.org/p/cassandra-jdbc/

 DATASTAX Java Driver Similar to JDBC
http://www.datastax.com/documentation/developer/java-

driver/1.0/common/drivers/introduction/introArchOverview_c.html

 Thrift is the low level driver used by many other drivers
http://wiki.apache.org/cassandra/ThriftExamples

 Hector
http://hector-client.github.io/hector/build/html/index.html

@Zoran B. Djordjevic 92

What is MongoDB?

MongoDB (from "humongous") is an

• Open-source document database

• Written in C++

• Agile and scalable.

@Zoran B. Djordjevic 93

History of MongoDB

 First developed by 10gen (now MongoDB Inc.) in October 2007 as a
component of a planned platform as a service product, the company
shifted to an open source development model in 2009, with 10gen
offering commercial support and other services.

 Since then, MongoDB has been adopted as backend software by a number
of major websites and services, including Craigslist, eBay, Foursquare,
SourceForge, and The New York Times, among others. MongoDB is the
most popular NoSQL database system.

@Zoran B. Djordjevic 94

 BSON is a computer data
interchange format used
mainly as a data storage
and network transfer
format in the MongoDB
database.

 It is a binary form for
representing simple data
structures and associative
arrays (called objects or
documents in MongoDB).

 The name "BSON" is based
on the term JSON and
stands for "Binary JSON".

@Zoran B. Djordjevic 95

Terminology and Concepts

SQL Terms/Concepts MongoDB Terms/Concepts

database database

table collection

row document or BSON document

column field

index index

table joins embedded documents and linking

primary key
Specify any unique column or column
combination as primary key.

primary key
In MongoDB, the primary key is
automatically set to the _id field.

@Zoran B. Djordjevic 96

http://github.com/kallaspriit/Cassandra-PHP-Client-Library
http://github.com/kallaspriit/Cassandra-PHP-Client-Library
http://github.com/kallaspriit/Cassandra-PHP-Client-Library
http://github.com/kallaspriit/Cassandra-PHP-Client-Library
http://github.com/kallaspriit/Cassandra-PHP-Client-Library
http://github.com/kallaspriit/Cassandra-PHP-Client-Library
http://github.com/kallaspriit/Cassandra-PHP-Client-Library
http://github.com/mjpearson/Pandra/tree/master
http://github.com/hoan/phpcassa
http://github.com/robertluo/clj-cassandra
http://github.com/robertluo/clj-cassandra
http://github.com/robertluo/clj-cassandra
http://github.com/wolpert/grails-cassandra
http://github.com/wolpert/grails-cassandra
http://github.com/wolpert/grails-cassandra
http://wiki.apache.org/cassandra/LibCassandra
http://github.com/posulliv/libcassandra
http://aquiles.codeplex.com/
http://www.hectorsharp.com/
http://github.com/managedfusion/fluentcassandra
http://www.datastax.com/documentation/cql/3.0/cql/aboutCQL.html
http://www.datastax.com/documentation/cql/3.0/cql/aboutCQL.html
http://www.datastax.com/documentation/cql/3.0/cql/aboutCQL.html
http://www.datastax.com/documentation/cql/3.0/cql/aboutCQL.html
http://www.datastax.com/documentation/cql/3.0/cql/aboutCQL.html
http://www.datastax.com/documentation/cql/3.0/cql/aboutCQL.html
http://www.datastax.com/documentation/cql/3.0/cql/aboutCQL.html
http://www.datastax.com/documentation/cql/3.0/cql/aboutCQL.html
http://code.google.com/a/apache-extras.org/p/cassandra-jdbc/
http://code.google.com/a/apache-extras.org/p/cassandra-jdbc/
http://code.google.com/a/apache-extras.org/p/cassandra-jdbc/
http://code.google.com/a/apache-extras.org/p/cassandra-jdbc/
http://code.google.com/a/apache-extras.org/p/cassandra-jdbc/
http://code.google.com/a/apache-extras.org/p/cassandra-jdbc/
http://code.google.com/a/apache-extras.org/p/cassandra-jdbc/
http://www.datastax.com/documentation/developer/java-driver/1.0/common/drivers/introduction/introArchOverview_c.html
http://www.datastax.com/documentation/developer/java-driver/1.0/common/drivers/introduction/introArchOverview_c.html
http://www.datastax.com/documentation/developer/java-driver/1.0/common/drivers/introduction/introArchOverview_c.html
http://www.datastax.com/documentation/developer/java-driver/1.0/common/drivers/introduction/introArchOverview_c.html
http://wiki.apache.org/cassandra/ThriftExamples
http://hector-client.github.io/hector/build/html/index.html
http://hector-client.github.io/hector/build/html/index.html
http://hector-client.github.io/hector/build/html/index.html

4/13/2014

17

SQL to MongoDB Mapping

SQL Schema Statements MongoDB Schema Statements

CREATE TABLE users (id MEDIUMINT NOT
NULL AUTO_INCREMENT, user_id
Varchar(30), age Number, status char(1),
PRIMARY KEY (id))

db.users.insert({ user_id: "abc123", age:
55, status: "A" })

Implicitly created on first insert()
operation. The primary key _id is
automatically added if _id field is not
specified.

SELECT * FROM users db.users.find()

@Zoran B. Djordjevic 97

MongoDB Server-Side JavaScript

 JavaScript may be executed in the MongoDB server processes for various
functions, such as query enhancement and map/reduce processing.

 Example:

 for (var i = 1; i <= 25; i++) db.testData.insert({ x : i })

 db.testData.find() displays first 20 docs in the collection

{ "_id" : ObjectId("51a7dc7b2cacf40b79990be6"), "x" : 1 } { "_id" :
ObjectId("51a7dc7b2cacf40b79990be7"), "x" : 2 } { "_id" :
ObjectId("51a7dc7b2cacf40b79990be8"), "x" : 3 }

@Zoran B. Djordjevic 98

Data Models

 Data in MongoDB has a flexible schema.

 Collections do not enforce document structure.

 This flexibility gives you data-modeling choices to match your application
and its performance requirements.

 In other words: Data Modeling for MongoDB Applications documents in
the same collection do not need to have the same set of fields or
structure, and common fields in a collection’s documents may hold
different types of data.

@Zoran B. Djordjevic 99

Indexes
 Indexes provide high performance read operations for frequently used

queries.

 Full Index Support - Index on any attribute, just like you're used to.

 Example, Create an Index on a Single Field:

 db.people.ensureIndex({ "phone-number": 1 })

 A value of 1 specifies an index that orders items in ascending order.

 A value of -1 specifies an index that orders items in descending order

@Zoran B. Djordjevic 100

Replication

 Replication provides redundancy and increases data availability. Example:

 The primary is the only member in the replica set that receives write
operations. A secondary maintains a copy of the primary’s data set.
Replica sets may have arbiters to add a vote in elections of for primary.

 @Zoran B. Djordjevic 101

Sharding
 Sharding is the process of storing data records across multiple machines

and is MongoDB’s approach to meeting the demands of data growth.

 As the size of the data increases, a single machine may not be sufficient to
store the data nor provide an acceptable read and write throughput.

 Sharding solves the problem with horizontal scaling.

 With sharding, you add more machines to support data growth and the
demands of read and write operations.

@Zoran B. Djordjevic 102

http://docs.mongodb.org/manual/reference/method/db.collection.insert/
http://docs.mongodb.org/manual/reference/glossary/
http://docs.mongodb.org/manual/reference/glossary/

4/13/2014

18

Installation

 Release 2.4.8, available for:

 32-bit version has limitations – max 2Gb of data

 Drivers for: C, C++, C#, Erlang, Java, Perl, PHP, Python, Ruby, Scala

 Source for MongoDB and mongodb.org supported drivers are open source

Windows Linux Mac OS X Solaris

@Zoran B. Djordjevic 103

Java Driver API

MongoClient mongoClient = new MongoClient();

mongoClient.close();

DB db = mongoClient.getDB(dbName);

DBCollection dBCollection = db.getCollection(c);

BasicDBObject doc = new BasicDBObject();

doc.put(string1, string2);

newCollection.insert(doc);

collection.ensureIndex(new BasicDBObject("STR", 1),

indexName);

BasicDBObject query = new BasicDBObject();

query.put("_id", new ObjectId(id));

DBObject dbObj = dbCollection.findOne(query);

@Zoran B. Djordjevic 104

indeed.com job trends for MongoDB

@Zoran B. Djordjevic 105

Cassandra Job Trends, indeed.com

 I have impression that number of MongoDB jobs is somewhat higher than
Cassandra’s

@Zoran B. Djordjevic 106

Indeed.com job trend for HBase

 If I read this right, HBase skill’s are least sought for

@Zoran B. Djordjevic 107

HBase

 HBase is a clone of Google’s Bigtable, originally created for use with
Hadoop (it’s actually a subproject of the Apache Hadoop project). In the
way that Google’s Bigtable uses the Google File System (GFS), HBase
provides database capabilities for Hadoop, allowing you to use it as a
source or sink for MapReduce jobs. Unlike some other columnar
databases that provide eventual consistency, HBase is strongly consistent.

 Perhaps it is interesting to note that Microsoft is a contributor to HBase,
following their acquisition of Powerset.

 Website: http://hbase.apache.org

 Orientation: Columnar

 Created: HBase was created at Powerset in 2007 and later donated to
Apache.

 Implementation language: Java

 Distributed: Yes. You can run HBase in standalone, pseudodistributed, or
fully distributed mode. Pseudodistributed mode means that you have
several instances of HBase, but they’re all running on the same host.

@Zoran B. Djordjevic 108

4/13/2014

19

HBase

 Storage: HBase provides Bigtable-like capabilities on top of the Hadoop
File System.

 Schema: HBase supports unstructured and partially structured data. To do
so, data is organized into column families (a term that appears in
discussions of Apache Cassandra). You address an individual record, called
a “cell” in HBase, with a combination of row key, column family, cell
qualifier, and timestamp. As opposed to RDBMS, in which you must define
your table well in advance, with Hbase you can simply name a column
family and then allow the cell qualifiers to be determined at runtime. This
lets you be very flexible and supports an agile approach to development.

 Client: You can interact with HBase via Thrift, a RESTful service gateway,
Protobuf (see “Additional Features” below), or an extensable JRuby Shell

@Zoran B. Djordjevic 109

Hbase (C+P)

• HBase is strongly consistent. Each row is hosted by a single
region server at a time, and a combination of row locks and
multi-version concurrency control is used to provide
consistency within a row.

• During failover, we take care to not allow writes from a new
region server until the previous one has been blocked out.

• Replication is taken care of at the HDFS layer.
• HBase will also be completely durable - no edit will be

acknowledged to the client until it has been flushed to three
HDFS replicas.

HBase is ..

 HBase is an open-source, distributed, column-oriented
database built on top of HDFS based on concept developed by
Google BigTable!

 A distributed data store that can scale horizontally to
1,000s of commodity servers and petabytes of
indexed storage.

 Designed to operate on top of the Hadoop
distributed file system (HDFS) for scalability, fault
tolerance, and high availability.

@Zoran B. Djordjevic 111

HBase Deficiencies

 Tables have one primary index, the row key.

 No join operators.

 Scans and queries can select a subset of available
columns, perhaps by using a wildcard.

 There are three types of lookups:

 Fast lookup using row key and optional timestamp.

 Full table scan

 Range scan from region start to end.

@Zoran B. Djordjevic 112

HBase Is Not …(2)

 Limited atomicity and transaction support.

 HBase supports multiple batched mutations of single rows
only.

 Data is unstructured and untyped.

 Not accessed or manipulated via SQL.

 Programmatic access via Java, REST, or Thrift APIs.

 Scripting via JRuby.

@Zoran B. Djordjevic 113

Why HBase ?

 HBase is a Bigtable clone.

 It is open source

 It has a good community and promise for the future

 It is developed on top of and has good integration for the
Hadoop platform, if you are using Hadoop already.

 No real indexes

 Automatic partitioning

 Scale linearly and automatically with new nodes

 Commodity hardware

 Fault tolerance

 Batch processing

@Zoran B. Djordjevic 114

4/13/2014

20

Data Model

 Tables are sorted by Row

 Table schema only define it’s column families .

 Each family consists of any number of columns

 Each column consists of any number of versions

 Columns only exist when inserted, NULLs are free.

 Columns within a family are sorted and stored together

 Everything except table names are byte[]

 (Row, Family: Column, Timestamp)  Value

Row key

Column Family

value TimeStamp
@Zoran B. Djordjevic 115

Hbase Components

 Master

 Responsible for monitoring region servers

 Load balancing for regions

 Redirect client to correct region servers

 The current SPOF

 Region Server slaves

 Serving requests(Write/Read/Scan) of Client

 Send HeartBeat to Master

 Throughput and Region numbers are scalable by region
servers

@Zoran B. Djordjevic 116

Architecture

@Zoran B. Djordjevic 117

ZooKeeper

 Zookeeper is an open
source distributed
configuration service,

providing synchronization
and naming registry for
large distributed systems.

 HBase depends on
ZooKeeper and by default
it manages a ZooKeeper
instance as the authority
on cluster state

@Zoran B. Djordjevic 118

Installation (1)

$ mkdir hbase-install

$ cd hbase-install

$ wget http://apache.claz.org/hbase/hbase-0.92.1/hbase-

0.92.1.tar.gz

$ tar xvfz hbase-0.92.1.tar.gz

$ export HBASE_HOME=`pwd`/hbase-0.92.1

 Once that’s done, you can spin up HBase using the provided scripts:
$ $HBASE_HOME/bin/start-hbase.sh

starting master, logging to .../hbase-0.92.1/bin/../logs/...-

master out

• If you want a distributed system, must have Hadoop in place.

• HBase could work as a standalone system and that is what you want

to use for development and initial testing.

• Download the tarball from the Apache HBase website’s download

section (http://hbase.apache.org/):

@Zoran B. Djordjevic 119

Setup

 If you want, you can also put $HBASE_HOME/bin in your PATH
so you can simply run hbase rather than
$HBASE_HOME/bin/hbase next time.

 That’s all there is to it. You just installed HBase in standalone
mode.

 The configurations for HBase primarily go into two files: hbase-
env.sh and hbase-site.xml.

 These exist in the /etc/hbase/conf/ directory.
 By default in standalone mode, HBase writes data into /tmp,

which isn’t the most durable place to write to.
 You can edit the hbase-site.xml file and put the following

configuration into it to change that location to a directory of your
choice:

<property>

 <name>hbase.rootdir</name>

 <value>file:///home/user/myhbasedirectory/</value>

</property>

@Zoran B. Djordjevic 120

4/13/2014

21

Examine HBase, Master Status Page

 Your HBase install has a management console of sorts running
on http://localhost:60010.

@Zoran B. Djordjevic 121

Testing (4)

$ hbase shell

> create 'test', 'data'

0 row(s) in 4.3066 seconds

> list

test

1 row(s) in 0.1485 seconds

> put 'test', 'row1', 'data:1', 'value1'

0 row(s) in 0.0454 seconds

> put 'test', 'row2', 'data:2', 'value2'

0 row(s) in 0.0035 seconds

> put 'test', 'row3', 'data:3', 'value3'

0 row(s) in 0.0090 seconds

> scan 'test'

ROW COLUMN+CELL

row1 column=data:1, timestamp=1240148026198,
value=value1

row2 column=data:2, timestamp=1240148040035,
value=value2

row3 column=data:3, timestamp=1240148047497,
value=value3

3 row(s) in 0.0825 seconds

> disable 'test'

09/04/19 06:40:13 INFO client.HBaseAdmin: Disabled
test

0 row(s) in 6.0426 seconds

> drop 'test'

09/04/19 06:40:17 INFO client.HBaseAdmin: Deleted
test

0 row(s) in 0.0210 seconds

> list

0 row(s) in 2.0645 seconds

@Zoran B. Djordjevic 122

Connecting to HBase

 Java client
 get(byte [] row, byte [] column, long timestamp, int

versions);

 Non-Java clients
 Thrift server hosting HBase client instance

 Sample ruby, c++, & java (via thrift) clients
 REST server hosts HBase client

 TableInput/OutputFormat for MapReduce
 HBase as MR source or sink

 HBase Shell
 JRuby IRB with “DSL” to add get, scan, and admin

 ./bin/hbase shell YOUR_SCRIPT

@Zoran B. Djordjevic 123

Hive and HBase Could be Integrated

 Reasons to use Hive on HBase:

 A lot of data sitting in HBase due to its usage in a real-time
environment, but never used for analysis

 Give access to data in HBase usually only queried through
MapReduce to people that don’t code (business analysts)

 When needing a more flexible storage solution, so that rows
can be updated live by either a Hive job or an application and
can be seen immediately to the other

Integration

 Hive can use tables that already exist in HBase or
manage its own ones, but they still all reside in the same
HBase instance

HBase

H
iv

e
 t
a
b
le

 d
e
fi
n
it
io

n
s

Points to an existing table

Manages this table from Hive

Integration

 When using an already existing table, defined as EXTERNAL,
you can create multiple Hive tables that point to it

 HBase

H
iv

e
 t
a
b
le

 d
e
fi
n
it
io

n
s

Points to some column

Points to other

columns,

different names

4/13/2014

22

Integration

 Columns are mapped however you want, changing
names and giving types

 HBase table Hive table definition

name STRING

age INT

siblings MAP<string, string>

d:fullname

d:age

d:address

f:

persons people

CREATE EXTERNAL TABLE blocked_users(

 userid INT,

 blockee INT,

 blocker INT,

 created BIGINT)

STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler’

WITH SERDEPROPERTIES ("hbase.columns.mapping" =

 ":key,f:blockee,f:blocker,f:created")

TBLPROPERTIES("hbase.table.name" = "m2h_repl-

userdb.stumble.blocked_users");

• HBase is a special case here, it has a unique row key

map with :key

• Not all the columns in the table need to be mapped

Using a simple table in HBase:

Using a complicated table in HBase:

CREATE EXTERNAL TABLE ratings_hbase(

 userid INT,

 created BIGINT,

 urlid INT,

 rating INT,

 topic INT,

 modified BIGINT)

STORED BY

'org.apache.hadoop.hive.hbase.HBaseStorageHandler’

WITH SERDEPROPERTIES ("hbase.columns.mapping" =

":key#b@0,:key#b@1,:key#b@2,default:rating#b,default:topic#

b,default:modified#b")

TBLPROPERTIES("hbase.table.name" = "ratings_by_userid");

#b means binary, @ means position in composite key

HBase Provides Low-latency Random Access

HBase provides Low-latency Random Access
Writes:

• 1-3ms, 1k-10k writes/sec per node

Reads:

• 0-3ms cached, 10-30ms disk

• 10-40k reads / second / node from cache

Cell size:

• 0-3MB preferred

• Read, write and insert data anywhere in the table

• No sequential write limitations

CouchDB

 As a database, CouchDB is perhaps most similar to Lotus Notes. Its creator,
Damien Katz, worked on Lotus Notes at IBM before deciding to build a
database ”of the Web.” The documents stored by CouchDB do not need to
share the same schema, and query capabilities are made available via
views, which are constructed as JavaScript functions.

 CouchDB is interesting in part for what it terms Multi-Version Concurrency
Control (MVCC). MVCC means that readers will not block writers and
writers will not block readers. All writes occur as appends to the
document store, making it much harder to corrupt datafiles. This is similar
to Cassandra; using an append-only model means that files can grow very
large quickly, requiring a background process to run compactions.

 CouchDB: The Definitive Guide, by J. Chris Anderson, Jan Lehnardt, Noah
Slater.

 Website: http://couchdb.apache.org

 Orientation: Document

 Work was begun in 2005. In 2008, it became an Apache IncubatorHBase is
a Bigtable clone.

@Zoran B. Djordjevic 131

CouchDB

 Implementation language: Erlang

 Distributed: Yes. Data can be read and updated by users and the server
while disconnected, and any changes can then be replicated bi-
directionally later.

 Schema: There is no required schema. Documents are stored in their
entirety using JSON. Each document is assigned a unique ID.

 Client: RESTful JSON API that allows access from any language capable of
making HTTP requests.

 CAP: Eventually consistent. Replication is used to synchronize multiple
copies of data on different nodes. CouchDB features ACID semantics
similar to many relational database systems.

 Production use: CouchDB is not yet in a 1.0 release as of this writing, but
it is used in production in a variety of social websites and software
applications. See http://bit.ly/dn73DY for a list of specific production
instances.

 Additional features: MapReduce, incremental replication, and fault-
tolerance are all supported. Comes with a web console.

@Zoran B. Djordjevic 132

4/13/2014

23

RIAK

 Riak is a hybrid database based on Amazon Dynamo that acts as a
document-oriented database and also a distributed key-value store. It’s
fault-tolerant and scales linearly, and it’s intended for use in web
applications. It is similar to Cassandra in that it does not have a central
controller, and therefore no single point of failure.

 The design of Riak includes three basic elements: buckets, keys, and
values. Data is organized into buckets, which are little more than flat
namespaces for logically grouping key-value pairs. This much is similar in
design and terminology to the Google Storage system.

 Basho Technologies, the maker of Riak, offers both a commercial version
and an open source version.

 Riak runs on most Unix-based systems, but is not supported on Windows.

 Website: http://wiki.basho.com

 Orientation: Document and key-value store

 Created: Basho Technologies in Cambridge, Massachusetts. This company
was formed in 2008 by architects from Akamai.

@Zoran B. Djordjevic 133

RIAK

 Implementation language: Primarily Erlang, with some C and JavaScript

 Distributed: Yes

 Replication: Replication can be set at the bucket level.

 Schema: Riak is schema-less and doesn’t use specific data types. The
values associated with keys are objects. All data is stored as opaque
BLOBs, so you can store just about any kind of data in Riak.

 Client: Riak offers three primary ways of interacting with it: via a JSON
over HTTP interface; drivers for Erlang, Python, Java, PHP, JavaScript, and
Ruby; and, finally, a Protocol Buffers client interface. Protocol Buffers is a
Google project that they use internally for very fast RPC, and is available at
http://code.google.com/p/ protobuf/.

 CAP: Riak is similar to Cassandra in that the database allows for
“tuneability” for desired levels of consistency, availability, and partition
tolerance.

@Zoran B. Djordjevic 134

MongDB

 MongoDB is perhaps most similar to CouchDB. It purports to combine the best
of keyvalue stores, document databases, object databases, and RDBMS. That
is, it shards automatically as with a key-value store, allows JSON-based
dynamic schema documents, and offers a rich query language in the manner of
a relational database.

 MongoDB: The Definitive Guide, by Kristina Chodorow & Michael Dirolf.

 Website: http://www.mongodb.org

 Orientation: Document

 Created: Developed at 10gen by Geir Magnusson and Dwight Merriman

 Implementation language: C++

 Distributed: Yes

 Schema: JSON-style documents are stored, and you can use dynamic schemas.

 CAP: MongoDB uses a single master for any shard, making it completely

 consistent.

 Production use: MongoDB is used in production at SourceForge, Bit.ly,
Foursquare, GitHub, Shutterfly, Evite, The New York Times, Etsy, and more

@Zoran B. Djordjevic 135

FlockDB

 In April 2010, Twitter announced that they were open-sourcing to GitHub
their new graph database called FlockDB. They created FlockDB to store
the adjacency lists for followers on Twitter, so they could readily
understand who follows whom and who blocks whom. It scales
horizontally and is designed for online, low-latency, high throughput
environments. The Twitter FlockDB cluster stores 13+ billion edges and
sustains peak traffic of 20,000 writes per second and 100,000 reads per
second.

 Website: http://github.com/twitter/flockdb

 Orientation: Graph

 Created: Created in 2010 by Twitter

 Implementation language: Scala

 License: Apache License v2

 Distributed: Yes

@Zoran B. Djordjevic 136

FlockDB

 • Schema: The schema is very straightforward, as FlockDB does not
attempt to solve every database problem, but only those relating to the
set of problems Twitter faces with their relationship graphs and the size of
their dataset. The graph contains entries with four attributes: a source ID,
a destination ID, a position, and a state.

 Client: FlockDB uses the Thrift 0.2 client, and Twitter has also written a
Ruby frontend that offers a richer interface.

 Replication: Yes

 Storage: MySQL

 Production use: Twitter

 Additional features: FlockDB allows you to quickly page through result
sets that contain millions of entries and to archive and later restore
previously archived graph edges. It uses Kestrel as a loosely coupled,
reliable message queue that picks a server at random to write to, so there
is no cross-server communication (no clustering, no multicast, etc.

@Zoran B. Djordjevic 137

http://code.google.com/p/

