Lecture 01
An introduction to R

Csci E63 Big Data Analytics
Zoran B. Djordjevi¢

@Zoran B. Djordjevic 1

Objectives

Review the basic concepts of R as a programming
language.

Get accustomed to a language with counter intuitive
syntax.

Gain skills in using a tool that large number of people
and a large body of literature uses.

@Zoran B. Djordjevic 2

Why R

e Would you rather use T?

e |t appears that R and not T is the mandatory entry on
the resume of every data scientist.

e What is “data scientist”?

e Definition: “a data scientist is a person who has R on
her resume”. Please note: You will become a Big Data
scientist.

* You need a prototyping or modeling tool. Some people

use MatLab, some use Python. Statisticians use R.
e U R a Statistician. R U not? more statisticians started using Python.

@Zoran B. Djordjevic 3

R, S and S-plus

* R has along history.
* Risbased on S, an interactive environment for data analysis
developed at Bell Laboratories since 1976
e 1988 - S2: RA Becker, JIM Chambers, A Wilks
e 1992 -S3: JM Chambers, T) Hastie
e 1998 - S4: JM Chambers

e Exclusively licensed by AT&T/Lucent to Insightful Corporation,
Seattle WA. Product name: “S-plus”.

* Implementation languages are C, and Fortran.
See:
http://cm.bell-labs.com/cm/ms/departments/sia/S/history.html

@Zoran B. Djordjevic 4

R, S and S-plus

R: initially written by Ross Ihaka and Robert Gentleman at
Dept. of Statistics of U of Auckland, New Zealand during 1990s.

Since 1997: The language is maintained and developed by the
international, “R-core” , team of some 15 people with access
to common CVS archive.

GNU General Public License (GPL)

* can be used by anyone for any purpose

* contagious

Open Source

e quality control!

* efficient bug tracking and fixing system supported by the

user community

@Zoran B. Djordjevic 5

Things R does and What R does not do

data handling and storage: ° is not a database, but
numeric, textual connects to DBMSs

e has no graphical user
interfaces, however it
connects to Java, TclTk and it

matrix algebra

hash tables and regular

expressions has R Studio.

high-level data analytic * language interpreters are not

and statistical functions fast. However, R could be

classes (“Object Oriented”) extended by compiled C/C++
, code

graphics

* no spreadsheet view of data,

programming language: but connects to MS Excel

loops, branching,

. * no professional / commercial
subroutines

support

@Zoran B. Djordjevic 6

Statistical Packages

Packaging: a crucial infrastructure to efficiently produce, load
and keep consistent software libraries from (many) different
sources / authors

Most R packages deal with statistics and data analysis

Many statistical researchers publish their state of the art
methods as R packages.

Comprehensive R Archive Network (CRAN) is a place where
you can fetch those packages for free. You can get truly
powerful tools at CRAN.

@Zoran B. Djordjevic 7

R Learning Curve and Approach

In R, simple things are simple and complex things are complex.

Some complexity is somewhat artificial and is caused by sometimes
difficult to penetrate terminology used by Statisticians. Once you
understand the statistical language, R becomes more
understandable.

Some of R syntax will never become understandable to some people.

R is an “experimental language”. The only way to figure out how
some commands work is to experiment. Help is helpful.

The learning curve is somewhat steep.

The language is built for procedural processing. You run a command
at a time. Examine results and run another command.

You should not plan to build complex business applications with R.
Some people do it, though.

@Zoran B. Djordjevic 8

Where to get R and R Studio
¢ Download R of Windows, Mac-0S or Linux from

http://cran.r-project.org/

e If you like command line interface, you do not need more
than that.

e |If prefer and IDE, download R Studio from

http://www.rstudio.com/

* You will keep on fetching packages (libraries) from the CRAN
http://cran.r-project.org/ site.

e Run R installation first, than install R Studio. That is all.

* When we use R, we will use R Studio, except in rare
circumstances.

¢ Eclipse plugins for R exist: http://www.walware.de/goto/statet
@Zoran B. Djordjevic 9

R Studio

B e - S Ss8es S8 ..

file [de Code Yow Plm Sowon Brojert fuild Jooh Help

Ol e
seks | | Rasasrn O] BN Jdto s |] utesignt B — [erp— =
‘Source on Save A L #Eun | Y% s Source « * @ remoon patasete o

1 Anstall, packages("arn ™ |

2 irstall.packages(=

3 install, packages & et T L I

1 iretall, packages fpu 20 obs. of 4 variables

5 fnatall, packages date - - o

2| e L o e fpd2 20 obs. of 4 variables

y fpdat 20 obs. of 4 varfables

: fpe 20 obs. of 3 varfables

0 Vabes

1

Files Pl Packages el

P B

b
LRR Tha B Langusge=

Vst et 1t warnar e 1w oman wewronn | Statistieal Data Analysls
Type "Ticerse()' or 'Ticence()' for distribution details, i

watural language suppart but running in an tnglish locale

15 a collabarative projact with mamy comtriburars.
Type 'contributors()’ for more information and
‘citation()” on how to cite ® or R packages in publications.

Manuals

The R Lanquage Defintion
B Installation and Adminstiation
R Intermats

Type 'demo{)’ for some demos, 'help()’ for on-Tine help, or
‘help.stare()’ for an WTL browser interface to help.
type 'q()" To quit K. e

[werkspace loaded from €:/CLASSES/code/R/, ROATA]

LI Reference

w0 docusentation for ‘m’ in spacified packages and libraries: E

You_ cound ey 2IeR: Packsaes Soarch Engine & Keywords
> Tmanual

Tc:;g:.:::r_uutiu.-. for ‘marual’ in specified packages and Miscellaneous Material

you could try *Trmarual’

o Frmanan] Aol A Bulhrs

> PPinstruction
. License Eraquants tions

Yy Lima.

R Studio

The bottom left region is called Console. Console displays
commands and results. You can type commands directly into
the console.

The top left region is the text editor. It has syntax highlighting,
parentheses matching and other features. You can open
scripts (collections of commands) into text editor. You can
highlight and execute individual commands or groups of
commands from the text editor. You should get into the habit
of always typing your commands in the editor.

Top right region has command history and existing variables

Bottom right region displays Help pages. Hit Home icon to get
to the main help page. “An Introduction to R” and other
manuals are quite decent reads.

@Zoran B. Djordjevic 11

R as a Calculator

> 10g2(32)
[1] 5

> sqrt(2)
[1] 1.414214

> seq(0, 5, length=6)
[11] 012345

> plot(sin(seq(0, 2*pi,
+ length=100)))

* To quitR, type
> a0

@Zoran B. Djordjevic

sin(seq(0, 2 * pi, length = 100))

10

05

0.0

-0.5

-1.0

20

40

T
100

12

R Workspace
¢ When you close the R Studio or the R console window, the
system asks if you want to save the workspace image.

e If you select to save the workspace all the objects in your
current R session are saved in a binary file .Rdata located in the
working directory of R.

e During your R session you can also explicitly save the
workspace image to the current working directory
> save.image()
« To check what the current working directory is type
> getwd()
« To save to a specific file and specific location, type
> save. image(""'C:\\CLASSES\\RScripts\\2.RData")
« To set the current working directory type
setwd (""C:\\CLASSES\\RScripts")
« If you saved a workspace, the next time you start R, you can
load(it).
> load("'C:\\CLASSES\\RScripts\\2._RData')
« All previously saved objects are available again.
@Zoran B. Djordjevic 13

R looks like it is written in Java, Help

e R gets confused if you use a path in your code like
c:\mydocuments\myfile.txt

e This is because R sees "\" as an escape character. Instead, use
c:\\my documents\\myfile._txt
or
c:/mydocuments/myfile.txt

e Most R functions are overloaded. It is hard to remember all

varietions, use help(functionName), €.g.
> help(save)

@Zoran B. Djordjevic 14

Objects

¢ Objects in R have names.
e Names start with a letter (A-Z or a-z),
* can contain letters, digits (0-9), and/or periods “.”
* case-sensitive mydata is different from MyData

“w n

¢ do not use underscore

e Types of Objects:vector, factor, array, matrix,
data.frame, list, functions, classes

¢ Objects have attributes
* mode: numeric, character, complex, logical
* length: number of elements in object

@Zoran B. Djordjevic 15

Assignment and Variable Types

e R uses operators —> or <- to assign values.
e Sign =is a substitute for <-

e Atomic variables could be numeric, character or logical
> a<-49 -> z

> sqrt(a) numeric
[11 7

> a = ::The"df).g afe my homework character
> sub(*'dog™,'cat',a) .

[1] "The cat ate my homework* string

> a = (1+1==3) logical

> a

[1] FALSE

@Zoran B. Djordjevic 16

Variables could be Missing Values

* Variables of each data type (numeric, character, logical) can also
take the value NA: not available.
¢ NAisnotthesameasO
¢ NAis not the same as “”
¢ NA is not the same as FALSE

e Operations (calculations, comparisons) that involve NA may or
may not produce NA:

> NA==1

[1] NA > NA | TRUE

> 1+NA [1]1 TRUE

[1] NA > NA & TRUE

> max(c(NA, 4, 7)) [1] NA

[1] NA

> max(c(NA, 4, 7), na.rm=T) | #.rm means remove
[11 7

@Zoran B. Djordjevic 17

Predefined functions

* R comes with some 50+ packages. To see which ones are
there, at the command prompt, type
> library(Q
* R comes with a set of useful demos. To see which ones are
there, at the command prompt, type
> demo()
* Ralso comes with a number of datasets which are used in
some demos and come quite handy for testing your own
procedures. To see a list of provided datasets, type

> data(Q)
e To see all variables in the workspace, type
> IsQ

e To remove some of those variables, provide a comma
separated list of variables to function rmQ), e.g.
> rm(d, fpdat, z)

@Zoran B. Djordjevic 18

Functions and Operators

* Functions do things with data. Functions have
* “Inputs”: i.e. function arguments (0,1,2,...) and an
e “Qutput”: function result (exactly one)

Example, define function add() :
> add = function(a,b)

+ { result = atb // “+” means continuation of
+ return(result) } // command

> add(2,3)

> [1] 5

e Operators are short-cut writings for frequently used
functions of one or two arguments.
Examples:+ - * / 1 & | %%

@Zoran B. Djordjevic 19

Functions and Operators

* Functions do things with data
e “Input”: function arguments (0,1,2,...)
e “Output”: function result (exactly one)

Exceptions to the rule:

* Functions may also use data that sits around in other
places, not just in their argument list: “scoping rules”

* Functions may also do other things than returning a
result, e.g., plot something on the screen: “side
effects”

* Functions could be a target of an assignment.

@Zoran B. Djordjevic 20

10

Vectors, Matrices, Arrays

* R deals with data and data are usually organized as
vectors, matrixes or arrays.
e Vector
* Ordered collection of data of the same data type
* Example:
e last names of all students in this class
e A single number is a vector of length 1
e Matrix
* Rectangular table of data of the same type
* Example
* Mean intensities of all genes measured during a
microarray experiment
e Array
* Higher dimensional matrix

@Zoran B. Djordjevic 21

Vectors, Matrices and Arrays

Vector: an ordered collection of data of the same type

> a=1c¢c(,2,3)
> a*2 // operation on a vector
[1] 2 4 6

Function c(), constructs vectors. You may
remember it as concatenate(), ifyou do not
find that confusing.

In R, a single number is the special case of a vector
with 1 element.

Other vector types: character strings, logical vectors

@Zoran B. Djordjevic 22

11

Vectors

> Mydata <- c(2,3.5,-0.2) Vector constructed with c() function
> Colors <-

c('Red™,""Green™,""Red™) Character vector

> x1 <- 25:30 Vector constructed with Range operator :
> x1

[1] 25 26 27 28 29 30 Number sequences

> Colors[2]

[1] “Green™ Select One element with []

> x1[3:5]

[1] 27 28 29 Selected several elements with range

of index values

@Zoran B. Djordjevic 23

Operations on Vector Elements

> Mydata * Print vector Mydata
[1] 2 3.5 -0.2

> Mydata > O * Logical test on the elements

[1] TRUE TRUE FALSE produces a vector of logical
values

> Mydata[Mydata>O] e Extract the positive elements

using logical vector as indexes

[1] 2 3.5

> Mydata[-c(1,3)]
[1] 3.5

e Minus sign infront of an index or
indexes removes element(s)

@Zoran B. Djordjevic 24

12

Operations on Vectors

> x <- ¢(5,-2,3,-7)

>y <-c(1,2,3,4)*10 Operation on all the elements
>y

[1] 10 20 30 40

> sort(x) Sorting a vector
[1] -7 -2 3 5

> order(x) order() tells us how are elements
[1] 4231 ordered in sorting
> y[order(x)]
[1] 40 20 30 10 Print elements of y using
indexes produced by order(x)
> rev(x) Reverse vector x
[1] =73 -25 @Zoran B. Djordjevic 25
Matrices

e Matrix: Rectangular table of data of the same type
> m <- matrix(1:12, 4, byrow = T); m
[.11 [.2]1 L.3]
[1.1 1 2 3
[2.1 4 5 6
[3.1 7 8 9
[4,] 10 11 12 ## vector y will be added to

>y <- -1:2 ## every column of m
> m.new <- m + vy ## m_new is a new matrix
> t(m.new) ## transpose function t()

[.11 [.21 [.31 [.4]1
[1,1 0 4 8 12
[2,1 1 5 9 13
[3.1 2 6 10 14
> dim(m)
[1] 4 3
> dim(t(m.new)) #i dot in m.new is just part of the name
[1] 3 4

Djordjevic 26

Matrices

Matrix: Rectangular table of data of the same type

> x <- ¢(3,-1,2,0,-3,6)

> x.mat <- matrix(x,ncol=2) ## Matrix with 2 cols
> x.mat
[.11 [.2]

[1,] 3 O
2,1 -1 -3
3.1 2 6

> x.mat <- matrix(x,ncol=2, byrow=T)
By row creation

> Xx.mat ## means the sequence
[.11 [.2] ## is broken into rows

[1.,1 3 -1

[2.1 2 0

[3 ’] -3 6 @Zoran B. Djordjevic 27

Dealing with Matrices

> x.mat[,2] ## 27 col
[1] -1 0 6

> x.mat[c(1,3),] ## 1St and 39 rows

[.11 [.2]
[1=] 3 -1
[2=] -3 6

> x.mat[-2,] ## Give us matrix, exclude 2™ row

[.11 [.2]
[1=] 3 -1
[2=] -3 6

@Zoran B. Djordjevic 28

14

Dealing with Matrices

> dim(x.mat) ## Dimension
[1] 3 2
> t(x.mat) ## Transpose

[.11 [.2] [.31
[, 3 2 -3
[2.1] -1 0 6

> x.mat %*% t(x.mat) ## Matrix Multiplication

[-11 [.21 [,31
[1,1 10 6 -15
[2,1 6 4 -6
[3,1 -15 -6 45
*Quick quiz:Isx <- c(1,2,3) avertical or horizontal vector

> solve(a) ## Inverse of a square matrix
> eigen() ## Eigenvectors and eigenvalues
@Zoran B. Djordjevic 29

Missing Values, again
e Ris designed to handle statistical data and
therefore predestined to deal with missing values
e NA are values that are “not available”
> x <- c(1, 2, 3, NA)
> x + 3
[11 4 5 6 NA
e “NaN” Not a number and “Inf” are somewhat
different
> log(c(0, 1, 2))

[1] -Inf 0.0000000 0.6931472
> 0/0
[1] NaN
@Zoran B. Djordjevic 30

15

Review of Subsetting

e |tis often necessary to extract a subset of a vector or
matrix

e R offers a couple of neat ways to do that
> x <- c("a", "b", "¢, "dv, “e, "f', "g", "h™)
x[1]
X[3:5]
X[-(3:5)]
x[c(T, F, T, F, T, F, T, B)]
x[x <= "d"]
m[,2]
m[3,1

V V.V V V V V

@Zoran B. Djordjevic 31

Lists

* Vector: an ordered collection of data of the same type.

> a = c(7,5,1)

> a[2]

[11 5

* List: an ordered collection of data of arbitrary types. Lists have
elements, each of which can contain any type of R object, i.e.
the elements of a list do not have to be of the same type.

* List elements are accessed through different indexing
operations.

> doe = list(nhame="john", age=28, married=F)

> doe$name

[1] "john ™

> doe[3]

[1] FALSE

@Zoran B. Djordjevic 32

16

Lists

A component of a list can be referred asaa[[1]] or
aa$times. Here aais the name of a list, I is the
position of the component we are extracting and times
is the name of a component of aa.

The names of components may be abbreviated down to
the minimum number of letters needed to identify them
uniquely.

aa[[1]] isthe first component of aa, while aa[1] is
the sublist consisting of the first component of aa only.

There are functions whose return value is a List. We have
seen some of them: eigen, max, min, svd,

@Zoran B. Djordjevic 33

>

>
LL

Lists are very flexible

List can contain a numeric vector as one component and a
character vector as the other. The following is a list with

anonymous components

my.list <- list(c(5,4,-1),c("X1","X2","X3"))
my.list

111:

[1] 5 4 -1
[[2]1]:

[1] ""X1' *"X2'™ ""X3"
> my. list[[1]1]

[1] 5 4 -1

You can name components of your list, and access them by
their names

> my.list <- list(cl=c(5,4,-1),c2=c("X1","X2",""X3"))
> my.list$c2[2:3]
[1] IIX2II IIX3II

@Zoran B. Djordjevic 34

17

Rename Components, Convert to Vector

Empl <- list(employee="Anna", spouse="Fred", children=3,
child.ages=c(4,7,9))

* You can change names of components of a list. Rather than
employee, spouse, childern and child.ages, those names
could, for example, be first 4 letters. Rename component names
by assigning those letters to the function names(Empl), like

names(Empl) <- letters[1:4] # printnew Empl to see the effect

* You can extend a list with new components

Empl <- c(Empl, service=8)

* You can concatenate lists

newList <- c(firstList, secondList)

e You can convert a list to a vector. Mixed types will be converted
to character, giving a character vector

unlist(Empl).

@Zoran B. Djordjevic 35

Extracting a Slice of a List

e For example, the following variable x is a list containing copies of
three vectors n, s, b, and a numeric value 3.

>n =c(2, 3, 5

> s = c("aa", "bb", "cc'", "dd", "ee')

> b = c¢(TRUE, FALSE, TRUE, FALSE, FALSE)

> x = list(n, s, b, 3) # x contains copies of n, s, b

e Aslice is a copy of one or several components of a list.

e We retrieve a list slice with the single square bracket "[]"
operator. The following is a slice containing the second member of
X, which is a copy of s.

x[2]

[[111
[1] "aa'™ "bb™ "cc'™ *'dd" "ee"

* Please note that you cannot modify a slice

@Zoran B. Djordjevic 36

18

Slice with multiple components of a List

e With an index vector, we can retrieve a slice with
multiple members. Here is a slice containing the second
and fourth members of x.

> x[c(2, D]
[[111
[1] aa™ "bb' "'cc™ "dd" 'ee™

[[211
[11 3

@Zoran B. Djordjevic 37

Referencing a Component of a List

e Toreference a member of the list and modify it, we have to use
the double square bracket [[]] operator. x[[2]] is the second
member of x. x[[2]] is a copy of s, but is not a slice containing S

> x[[2]1]
[1] aa™ "bb' "'cc™ "dd" 'ee™

We can modify the content of the referenced component directly.

> x[[2]11[5] = "ff"
> x[[2]1]
[1] "aa’™ "bb™ "cc™ *'dd™ "ff"

If the referenced component is modified, the list x itself is modified
> X

[[111

[1]1235

Lr211

[1] "aa™ *bb*"™ *cc™ *"dd" "“ff”

[[311 [1] TRUE FALSE TRUE FALSE FALSE

L4171 [1]1 3

@Zoran B. Djordjevic 38

19

Naming Rows and Columns of a Matrix

e Consider matrix x.mat:
> x.mat
.11 [.2]
[1.] 3 -1
[2.] 2 0
3.1 -3 6

* You can name rows and columns of a matrix using a list with two
components (names of rows and names o columns)

> dimnames(x.mat)<- list(c('L1","L2","L3"),c(" 'R1","R2"))

> x.mat

R1 R2
L1 3 -1
L2 2 0
L3 -3 6
@Zoran B. Djordjevic 39
Factors

e Afactoris a vector object used to specify a set of discrete values (categories,
enumerations) appearing as results of certain measurement, e.g.
Gender {male, female}, Income {low, medium, high},etc.

e For efficiency, factors are stored as numbers but have character labels for

display.
e Consider a list of students in a class by gender:
class<-c("male™, "female'", "female™, "male™, "male"™, "female™)

e Apply function Factor() and place the result in a new variable
> student.gender <- factor(class)
> student.gender
[1] male female female male male female
Levels: female male
> str(student.gender)
Factor w/ 2 levels "female","male': 2 11221
>class(student.gender) [1] "factor™
> mode(student.gender) [1]1 "numeric”
> levels(student.gender) [1] "female"™ "male"
> labels(student.gender) [1] "1™ "2' "3 "4'" "5 "6"

@Zoran B. Djordjevic 40

20

Factors and tapply()

Let us look at grades in the same class

class <- c("male","female","female™, "male","male","female')
grades <- c(4,3,4,3,3,4)

* To calculate sample mean grade for each gender, we can use

function tapply()

> grades.mean <- tapply(grades, student.gender, mean)
> grades.mean

> female male

3.666667 3.333333

* Function tapply() is used to apply a function, here mean(), to
each group of components of the first argument, here grades,
defined by the levels of the second component, student.gender.

« tapply() also works in this case when its second argument is not
a factor, e.g., tapply(grades, class, mean). This is true for many
other functions, since arguments are coerced to factors when
necessary (using as. factor()).

@Zoran B. Djordjevic 41

?factor(Q

* The function factor() is used to encode a vector as a factor (a
set of ‘categories’ or ‘enumerated types’). If argument
ordered is TRUE, the factor levels are assumed to be ordered.
is.factor, is.ordered, as.factor and as.ordered are the
membership and coercion functions for these classes.

Usage

factor(x = character(), levels, labels = levels, exclude = NA,

ordered = is.ordered(x))

X

a vector of data, usually taking a small number of distinct values

levels 3n optional vector of the values that x might have taken. The default is the unique

set of values taken by as.character(x), sorted into increasing order of x

labels ejther an optional vector of labels for the levels (in the same order as levels after

removing those in exclude), or a character string of length 1.

exclude 3 yector of values to be excluded when forming the set of levels

ordered |ogijcal flag to determine if the levels should be regarded as ordered

42
@Zoran B. Djordjevic

21

Data Frames

Data Frame represents the typical data table with rows and columns,
like a spreadsheet. Data frame is the central type in R.

Data within each column (variable, component) have the same type
(e.g. number, text, logical). Different columns may have different types.
Both rows and columns have human readable names

The components must be vectors (numeric, character, or logical),
factors, numeric matrices, lists, or other data frames.

Matrices, lists, and data frames provide as many variables to the new
data frame as they have columns, elements, or variables, respectively.
Numeric vectors, logicals and factors are included as is, and character
vectors are coerced to be factors, whose levels are the unique values
appearing in the vector.

Vector structures appearing as variables of the data frame must all
have the same length, and matrix structures must all have the same
row size.

@Zoran B. Djordjevic 43

Making Data Frames

* Letusadd vector income to the description of our student class
income <-c(45000, 34500, 67000, 42000, 81000, 53000)

¢ We will construct a data frame students using components
(variables): student._gender, grades and income

> students <- data.frame(gender=student.gender,
grade=grades, householdincome=income)

> students
gender grade householdincome

1 male 4 45000
2 female 3 34500
3 female 4 67000
4 male 3 42000
5 male 3 81000
6 female 4 53000
@Zoran B. Djordjevic 44

22

Data Frames

* You have noticed that names of data frame components: gender, grade and
housholdincome appear as names of columns or variables in the printout of
the students data frame.

* We could fetch those “column” names using function names()

> names(students)

[1] “gender™ *‘grade'™ *"householdincome*

¢ We could fetch rownames using rownames() or row.names()

> row.names(students)

[1] 1™ 2t 3t 4t 5Tt vte™

e We do not treat students as numbers. Let us change rownames

> row.names(students)<- c(''John","Mary","Dianna","Bob",""Mike","Joann')

¢ When we ask for rownames now, we get

>rownames(students)

[1] "John™ "Mary' *"Dianna' "Bob™ *"Mike"™ 'Joann®

@Zoran B. Djordjevic 45

Function labels(Q)

e Function labels() returns names of both
variables (columns) and rows:

> labels(students)

[l

[l] "John™ "Mary" "Dianna™ "Bob" "Mike' "Joann™

L[211]

[1] "gender'™ *‘grade’™ *"householdincome"

@Zoran B. Djordjevic 46

23

Characterizing Data Frames

* Data frames respond to standard inquiry functions:

> class(students)

[1] "data.frame"

> is.data.frame(students)

[1] TRUE

> mode(students)

[1] "list”

> str(students)

"data.frame": 6 obs. of 3 variables:

$ gender :Factor w/ 2 levels "female'","male":2 112 2 1
$ grade cnum 4 3 4334

$ housholdincome:num 45000 34500 67000 42000 81000 53000

¢ Notice that function str(Qtells us the number of rows
(observations) in the data frame and the number of variables
(columns). Function nrow() does the same.

@Zoran B. Djordjevic 47

Importing a Data Frame

e Functiondata(), run without an argument, lists all data sets
provided with the standard distribution of R. Those are all data
frames.

¢ Letusload mtcars data set (Motor Trend Cars Road Test) by passing
the data set name to data() function:
data(mtcars)

\%

* You can inspect the top of the data set with Unix like function head)
and the bottom with function tail)

= tail(mtcars)

mpg cyl disp hp drat wt gsec vs am gear carb

Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.7 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.17014.5 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.5 0 1 5 6
Maserati Bora 15.0 § 301.0 335 3.54 3.570 14.6 0 1 5 8
Volvo 142E 21.4 4121.0 109 4.11 2.780 18.6 1 1 4 2
@Zoran B. Djordjevic 48

24

Subsetting

* You can select a single column of a data frame using $ notation:
> head(mtcars$mpg)
[1] 21.0 21.0 22.8 21.4 18.7 18.1

* You can extract subsets of data frame data using bracket [] notation

> mtcars[1:5,3] # rows 1 to 5, column 3
[1] 160 160 108 258 360
> mtcars[1:5,"hp"] # rows 1 to 5 column *"hp"

[1] 110 110 93 110 175

> mtcars[mtcars$mpg < 15,c("mpg","'gear’™)] # rows where mpg <15
mpg gear # coulmns MPG and GEAR

Duster 360 14.3 3

Cadillac Fleetwood 10.4 3

Lincoln Continental 10.4 3

> mtcars[c(1,2),] # rows 1 and 2, all columns

mpg cyl disp hp drat wt gsec vs am gear carb
Mazda RX4 21 6 160 110 3.9 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21 6 160 110 3.9 2.875 17.02 0 1 4 4
> mtcars[1,2] # Treating data.form as a matrix
[1] 6 # element in the 1st row, 2" column
> mtcars[3,1]
[1] 22.8 # element in the 3rd row, 1st column

@Zoran B. Djordjevic 49

Convert a Matrix into Data Frames

e Let us consider matrix x.mat with named rows and columns.
We could verify the type (class) of the object

> X.mat

R1 R2
L1 3 -1
L2 20
L3 -3 6

> class(x.mat)

[1] “matrix”

* The above matrix could be transformed into a data frame
> y <- data.frame(x.mat)

> class(y)

[1] “data.frame”

@Zoran B. Djordjevic 50

25

attach() and detach() aDataFrame

If you do a lot of work with one particular data frame, typing
the name of the data frame followed by $ sign followed by

the variable name becomes tedious. If you type:
attache(mtcars)

Your data frame, mtcars in this case, becomes the default
location for data lookups and from that point on you can
refer to column mtcars$gpm just as gpm. The same applies
for all columns of the attached data frame.

Once you are done and would like to work with another data

frame, you detach the data frame, e.g.
detach(mtcars)

@Zoran B. Djordjevic 51

Program Branching

1T (logical expression) {
statements

} else {
alternative statements

}

else branch is optional

@Zoran B. Djordjevic 52

26

Grouped expressions in R

e Notice that we use parentheses to group expressions.

“Han

e We could also use “;” to indicate the end of a statement.

X =1:11
if (length(x) <= 10)
{
X <- ¢(%,10:20);
print(x)
} else {
print(xX[1]D)
}

e To run this set of statements, copy them to the text editor,
highlight them all, and then apply CTRL Carriage Return

@Zoran B. Djordjevic 53

Loops
e When the same or similar tasks need to be
performed multiple times; for all elements of a list;
for all columns of an array; etc. R uses for loops

for(i in 1:10) {
print(i*i)
by

i=1
while(i<=10) {
print(i*i);
i=i+sqrt(n)
by

@Zoran B. Djordjevic 54

27

User Defined Functions

¢ We have already seen that users could define functions.

The general form of function definition is
name <- function(arguments) {
expression
}

e For example, function larger is defined as
larger <- function(x, y=9) {

if(any(x < 0)) return(NA)

y.is_bigger <- y > x

X[y-is.bigger] <- y[y.is.bigger]

X

}

¢ Note, y=9 provided the default value for paramtery

@Zoran B. Djordjevic

55

Missing Arguments in Functions

e |f a function definition does not provide default
arguments, or provide proper handling of missing
arguments, function will return an error on missing
argument

> add <- function(x,y=0){x + y}
> add(4)

> add <- function(x,y){

iT(missing(y)) X
else x+y

> add(4)

@Zoran B. Djordjevic

56

28

Variable Number of Arguments

e The special argument name “...” in the function
definition will match any number of arguments in
the call.

e Function nargs() returnsthe number of
arguments in the current call.

@Zoran B. Djordjevic 57

Variable Number of Arguments

> mean.of.all <- function(.) mean(c(..))
> mean.of.all(1:10,20:100,12:14)

> mean.of.means <- function(.)
{
means <- numeric()

for(x in list(.)) means <-
c(means,mean(x))

mean(means)

@Zoran B. Djordjevic 58

29

Variable Number of Arguments

mean.of.means <- function(..)
{
n <- nargsQ
means <- numeric(n)
all_.x <- list(.)
for(in 1:n) means[j] <- mean(all_X[[J1D)
mean(means)

by
mean.of.means(1:10,10:100)

@Zoran B. Djordjevic 59

Mathematical operations

Standard operations: + - * /
Exponentiation: 2”5 or 2**5

Integral Division: %/% 8%/%3 gives 2
Modulus: %% (7%%5 gives 2)

Standard Functions :abs(), sign(), log(), l1ogl0(), sqrt(),

exp(), sin(Q), cosQ, tanQ
gamma(), lgamma(), choose()

Rounding: round (X, 3) round with 3 decimal digits

floor(2.5) gives 2, ceiling(2.5) gives3

@Zoran B. Djordjevic 60

30

Useful functions

> seq(2,12,by=2)

[1] 2 4 6 8 10 12

> seq(4,5, length=5)

[1] 4.00 4.25 4.50 4.75 5.00

> rep(4,10)
[11 44444444144

> paste("'V",1:5,sep=""")
[1] "vi™ v2™ w3t tv4rt tyet

> LETTERS[1:7]
[1] "A" "B" "'C" "D" "E" "F" "G"

@Zoran B. Djordjevic 61

lapply, sapply, apply

When the same or similar tasks need to be performed multiple times for all
elements of a list or for all columns of an array. May be easier and faster
than “for” loops

lapply(i, fct)
To each element of the list 1, the function Fct is applied. The result is a
list whose elements are the individual FCt results.
i = list("klaus™,"martin","georg')
lapply(li, toupper)
[[11]
[1] "KLAUS™

[[21]
[1] "MARTIN"

[[31]
[1] "GEORG"

VVVVYVYVYVYV

@Zoran B. Djordjevic 62

31

lapply, sapply, apply
sapply(li, fct)
* Like apply, but tries to simplify the result, by converting it into a
vector or array of appropriate size

> li = list(Mklaus","martin", "'georg')
> sapply(li, toupper)
[1] "KLAUS"™ "MARTIN" "GEORG"

> fct = function(x) { return(c(x, xX*x, X*x*x)) }
> sapply(1:5, fct)
[.11 [-.2] [.3]1 [.4] [.5]

1 5

[1.] 2 3 4

[2.1 1 4 9 16 25

3.1 1 8 27 64 125
@Zoran B. Djordjevic 63
apply

apply(arr, margin, fct)

* Applies the function fct along some dimensions of the array arr,
according to margin, and returns a vector or array of the
appropriate size.

> X

[.11 [.21 [.31
[1.1 5 7 0
[2.1 7 9 8
[3.1 4 6 7
[4.1 6 3 5

> apply(x, 1, sum)
[1] 12 24 17 14

> apply(x, 2, sum)
[1] 22 25 20

@Zoran B. Djordjevic 64

32

Hash Tables

In vectors, lists, data frames and arrays, elements are stored one after
another, and are accessed in that order by their offset (or: index), which is
an integer number.

Sometimes, consecutive integer numbers are not the “natural” way to
access: e.g., gene names, oligo sequences

E.g., if we want to look for a particular gene name in a long list or data
frame with tens of thousands of genes, the linear search may be very

slow.

Solution: instead of list, use a hash table. It sorts, stores and accesses its
elements in a way similar to a telephone book.

@Zoran B. Djordjevic 65

Hash Tables

In R, a hash table is the same as a workspace for variables, which is the
same as an environment.

> tab = new.env(hash=T)

> assign(“'‘cenp-e", list(cloneid=682777,
description="putative kinetochore motor ..."), env=tab)

\%

assign(btk"”, list(cloneid=682638,
ful Iname="Bruton agammaglobulinemia tyrosine kinase'), env=tab)

> Is(env=tab)

[1] "btk" ‘'‘cenp-e"*
> get("'btk"™, env=tab)
$cloneid

[1] 682638

$fullname

[1] "Bruton agammaglobulinemia tyrosine kinase"

@Zoran B. Djordjevic 66

33

Regular Expressions

* R provides text matching and replacement features in the form similar to the
one found in many programming languages (Perl, Unix shells, Java)

> a = c("CENP-F","Ly-9", "MLN50", "ZNF191', "CLH-17'")
> grep('L", a)

[1] 2 3 5

> grep(''L"™, a, value=T)

[1] "Ly-9" “MLN50*"" "CLH-17"

> grep('~L", a, value=T)

[l] IlLy_9ll

> grep("'[0-9]", a, value=T)

[1] "Ly-9" “MLN50" "ZNF191' "'CLH-17"

> gsub(ll[o_g]ll’ IIXII’ a)

[1] "CENP-F' "'Ly-X" UMLNXX'™ "ZNFXXX'™ ""CLH-XX"

@Zoran B. Djordjevic 67

Storing data

* Every R object can be stored into and restored from
a file with the commands

* “save” and “load”.

* This uses the XDR (external data representation)
standard of Sun Microsystems and others, and is
portable between MS-Windows, Unix, Mac.

e Make sure you can write to the directory

save(x, File=**x_Rdata’)
load(““x.Rdata’)

e Rdatais a binary format. You can save as text.

vV V

@Zoran B. Djordjevic 68

34

Importing and exporting data
* There are many ways to get data into R and out of R.
* Most programs (e.g. Excel), as well as humans, know how to
deal with rectangular tables in the form of tab-delimited text

files.

> x = read.delim(“filename.txt”)
also: read.table, read.csv

> write.table(x, file=*x.txt”, sep=“\t”)

@Zoran B. Djordjevic 69

Importing data: caveats

* Type conversions: by default, the read functions try to guess
and autoconvert the data types of the different columns (e.g.
number, factor, character). There are options as.is and
colClasses to control this

e Special characters: the delimiter character (space, comma,
tabulator) and the end-of-line character cannot be part of a
data field. To circumvent this, text may be “quoted”. However, if
this option is used (the default), then the quote characters
themselves cannot be part of a data field. Except if they
themselves are within quotes...

* Understand the conventions your input files use and set the
quote options accordingly.

@Zoran B. Djordjevic 70

35

plot()

e If xandy are vectors, plot(X,y) producesa
scatterplot of x against y.

e plot(x) produces atime series plot if x is a numeric
vector or time series object.

e plot(df), plot(~ expr), plot(y ~ expr),
where dT is a data frame, y is any object, expr is a list of
object names separated by “+" (e.g. a + b + ©).

e The first two forms produce distributional plots of the
variables in a data frame (first form) or of a number of
named objects (second form). The third form plots y

against every object named in expr.

@Zoran B. Djordjevic 71

rnorm(100)

Graphics with plot()

> plot(rnorm(100), rnorm(100))

Function rnorm()
Simulates a random
° normal distribution .

° 50 ° o2 ° Help ?rnorm,
0° o5 To ©° ?runif,
° °0 % & © 0% o ?rexp,
?binom, ...

rnorm(100)

@Zoran B. Djordjevic 72

36

Graphics with plot()

X <- seq(-2*pi,2*pi, length=100)

y <- sin(x)

par(mfrow=c(2,2))
plot(x,y,xlab="x",ylab=""Sin x')
plot(x,y,type= "I'", main="A Line')

plot(x[seq(5,100,by=5)], AR A
y[seq(5,100,by=5)], A
type= "b",axes=F)

plot(x,y,type="n", B
ylim=c(-2,1) .
par(mfrow=c(1,1))

@Zoran B. Djordjevic v ° e 73

ssssssss

Graphical Parametersof plot ()

., n,

type = “c”: c =p (default), I, b,s,o0,h,n.
pch=“+": character or numbers 1 — 18
lty=1 : numbers

lwd=2 : numbers

axes=“L":L=F, T

xlab =“string”, ylab="string”

sub = “string”, main =“string”

xlim = c(lo,hi), ylim= c(lo,hi)

And some more.

@Zoran B. Djordjevic 74

37

Graphical Parameters of plot ()

X <- 1:10
y <- 2*x + rnorm(10,0,1)
plot(x,y,type=“p”) #Try 1,b,s,o,h,n
axes=T, F
xlab=*age”, ylab="weight”
sub=*sub title”, main="“main title”
xlim=c(0,12), ylim=c(-1,12)

@Zoran B. Djordjevic 75

Other graphical functions

See also:

barplot()
image()
hist()
pairs()
perspQ)
piechart()

polygon()

library(modreg)
scatter.smooth()

@Zoran B. Djordjevic ™ 76

38

Interactive Graphics Functions

= locator(n,type=“p™) :Waits for the user to
select locations on the current plot using the left
mouse button. This continues until n (default
500) points have been selected.

e identify(x, y, labels) :Allow the user to
highlight any of the points defined by x and y.

- text(x,y,”Hey”): Write text at coordinate x,y.

@Zoran B. Djordjevic 77

Plots for Multivariate Data

pairs(stack.x)

X <- 1:20/20

y <- 1:20/20

z <-
outer(x,y,function(a,b){cos(10*a*b)/(1+
a*b”"2)})

contour(X,y,z)

persp(x.,y,z)

image(X,y,z)

@Zoran B. Djordjevic 78

39

Other graphical functions

> axis(1l,at=c(2,4,5), Axis details (“ticks”, legend,
)
legend('A",""B","'C™)) Use xaxt="n"" and yaxt="n" inside
plotQ
> lines(X,Y,..) Line plots
> abline(Isfit(x,y)) Add an adjustment
> abline(0,1) add a line of slope 1 and

intercept 0

\

legend(locator(l),..) Legends: very flexible

@Zoran B. Djordjevic 79

Histogram

e A histogram is a special kind of bar plot

e It allows you to visualize the distribution of values
for a numerical variable

e When drawn with a density scale:

* the AREA (NOT height) of each bar is the
proportion of observations in the interval

e the TOTAL AREA is 100% (or 1)

@Zoran B. Djordjevic 80

40

R: Histogram

Type ?hist to view the help file

* Note some important arguments, esp breaks

Simulate some data, make histograms varying the number of bars (also called

‘bins’ or ‘cells’), e.g.

> par(mfrow=c(2,2))# set up multiple plots
simdata <-rchisq(100,8)

>
> hist(simdata) # default number of bins
>

hist(simdata,breaks=2) # etc,4,20

@Zoran B. Djordjevic 81
Histogram of simdata Histogram of simdata
=
==
] B
3
] .
g 2 g
2 2 g
g g
2 2
g = g R
i w
g
o
=]
o —/ o
T T T 1 T T T T 1
0] 10 15 20 o] 10 15 20
simdata simdata
Histogram of simdata Histogram of simdata
= ~
2 o
=
g 2
= = 0
=) o
23 2
g H
= = w
ES ES
2 o @
[] ' =t
o
- [}
. . 0
T T T 1 | I R . |
0 5 10 15 20 1) 5 10 15
simdata @Zoran B. Djordjevic simdata 82

41

R: setting your own breakpoints

> bps <- ¢(0,2,4,6,8,10,15,25)
> hist(simdata,breaks=bps)

Histogram of simdata

008 0.10
| |

006
|

Density

04
|

002
|

g J
CIJ ; @Zoranrla B. Djordjexéc 2‘0 2‘5 83
simdata
Scatterplot

e A scatterplot is a standard two-dimensional (X,Y)
plot

e Used to examine the relationship between two
(continuous) variables

e |t is often useful to plot values for a single
variable against the order or time the values were
obtained

@Zoran B. Djordjevic 84

42

R: Scatterplot

Type ?plot to view the help file
¢ For now we will focus on simple plots, but R allows extensive
user control for highly customized plots

Simulate a bivariate data set:

> z1 <- rnorm(50)
> z2 <- rnorm(50)

> rho <- .75 # (or any number between -1 and 1)
> x2<- rho*zl+sqrt(1-rho”2)*z2
> plot(zl,x2)

@Zoran B. Djordjevic 85

Scatterplot of X2 vs. 21

%2

@Zoran B. Djbrdjevic 86

43

Getting help

e Details about a specific command whose name you know (input
arguments, options, algorithm, results):

>? t.test
or

>help(t.test)

R Information - Help for "t.test' -3 =]

File Edit View

t.test package:ctest R Documentation m
student's t-Test

pescription:

performs one and two sample T-tests on vectors of data.

Usage: I
t.test(x, ¥ = NULL, alternative = c("two.sided", "less", "greater'),
mu = 0, paired = FALSE, var.egual = FALSE,
conf.level = 0.95, ...
t.test{formula, data, subset, na.action, ...D)
Arguments :

x: a numeric vector of data values.
y: an optional numeric vector data walues.
alternative: a character string specifying the alternative hypothesis,
must be one of “"two.sided"'” {default), ““greater"
“"ess" vou can specify just the initial Tetter.

mu: a number indicating the true wvalue of the mean or difference
in means if you are performing a two sample test).

paired: a logical indicating whethaer you want a paired T-test.

wvar.egual: a logical variable indicating whether to treat the two

1] @Zoran B. Djordjevic 87

Microsoft Interne ;IEIEI
Datei Bearbeiten Ansicht Favoriten Extras 7 |
Gk - =ov (G 2] 3| @ouchen GiFevorien (# | By S = - 15
Adresse Ia C:\ProgrammeiRirw 1051 docthtmiisearchiSearchEngine. html - @Wechse\n 2u
. =
e Getting help .
Search Engine
HTML search
H Search
engine |
You can search for keywords, function and data names and tezt in help page titles
. Usage: Enter a siring in the text Seld below and kit RETURN.
Search for topics
. calibration ¥ Help page titles ¥ Keywords ¥ Object names
with regular Search | | Raset
expressions:
" 4
help.search Keywords
Keywords by Topic
Basics
 attribute: Data Attnibutes
« chron: Dates and Times
o classes: Data Types (hot OO)
@Zoran B. Diotdjeirig Values 88
o rateeary Cateeorinal Data =l
Q‘I Fertig | ’_| |E Arbeitsplatz /ﬂ

44

Web sites
www.r-project.org
cran.r-project.org
www.bioconductor.org
Full text search:
www.r-project.org

or
www.google.com

with ‘... site:.r-project.org’ or other R-specific keywords

@Zoran B. Djordjevic

89

45

