
3/30/2013

1

1

Pig Latin

Zoran B. Djordjević

csci e185 Big Data Analytics

@Zoran B. Djordjević

Pig

� Map Reduce is relatively difficult to program.

� Data processing is usually accomplished in terms of data flow

operations, such as loops and filters.

� In Map Reduce, you think at the level of mapper and reducer

functions and job chaining.

� Certain functions that are treated as first-class operations in higher-

level languages are nontrivial to implement in Map Reduce.

� Pig is a Hadoop extension that simplifies Hadoop programming by

giving you a high-level data processing and data flow language

while preserving Hadoop’s scalability and reliability.

� Yahoo! Research developed Pig to address the need for a higher

level language that replaces Map Reduce programming.

� Yahoo runs 40 percent of all its Hadoop jobs with Pig.

2@Zoran B. Djordjević

3/30/2013

2

Pig Latin

� Pig has two major components:

1. A high-level data processing language called Pig Latin .

2. A compiler that compiles and runs your Pig Latin script on Hadoop.

� Pig works on Hadoop clusters, but also supports a local mode for

development purposes.

� Pig simplifies programming because of the ease of expressing your

code in Pig Latin.

� The compiler helps to automatically exploit optimization

opportunities in your script.

� As the Pig compiler improves, your Pig Latin program will also get

an automatic speed-up.

� Crucial to efficient use of Pig are the design choices of its

programming language (Pig Latin), the data types it supports, and

its treatment of user-defined functions (UDFs) as first-class citizens.

3@Zoran B. Djordjević

Pig & Pig Latin

� Motivation

� Map Reduce is very powerful, but:

� It requires a Java programmer.

� User has to re-invent common functionality (join, filter, etc.)

� Pig Latin is a higher level language, that:

� Increases productivity.

� In one test 10 lines of Pig Latin ≈ 200 lines of Java.

� What took 4 hours to write in Java took 15 minutes in Pig Latin.

� Opens the system to non-Java programmers.

� Provides common relational-like operations like:

� join,

� group,

� filter,

� sort.

4@Zoran B. Djordjević

3/30/2013

3

Data Flow Language

� Pig Latin programs are written in a sequence of steps where each step

is a single high-level data transformation.

� The transformations support relational-style operations, such as filter,

union, group, and join.

� A Pig Latin program processing a search query log may look like
log = LOAD 'excite-small.log' AS (user, time, query);

grpd = GROUP log BY user;

cntd = FOREACH grpd GENERATE group, COUNT(log);

DUMP cntd;

� Operations are relational in style, however, Pig Latin is a data flow

language. A data flow language is friendlier to programmers who

think in terms of algorithms, which are more naturally expressed by

the data and control flows.

� A declarative language such as SQL is easier for analysts who prefer to

just state the results one expects from a program.

� Hive is a different Hadoop project which is closer to the SQL model.

5@Zoran B. Djordjević

Installing Pig

� We can download the latest release of Pig from

http://pig.apache.org/releases.html .

� Pig requires Java 1.6 or later. We need to point JAVA_HOME to the

root of our Java installation. Windows users should install Cygwin .

� Your Hadoop cluster should already be set up before installing Pig.

Both a real cluster in fully distributed mode, and a pseudo-

distributed setup is fine for practice.

� You install Pig on your local machine by unpacking the downloaded

distribution. There’s nothing to modify on your Hadoop installation.

� Think of the Pig distribution as a compiler and some development

and deployment tools.

� Pig enhances MapReduce programming but is otherwise only

loosely coupled with the production Hadoop cluster.

� If in hurry we could run Pig in the Cloud using services of AWS

Elastic Map Reduce service

@Zoran B. Djordjević 6

3/30/2013

4

Download and Setup on CDH4.2 VM

� For any Pig release you can go to

� http://pig.hadoop.org/releases.html

� Download and untar archives and copy them to a customary place. Like:

$ tar xzf pig-0.5.0.tar.gz

$ sudo mv pig-0.5.0.tar.gz /usr/local

� To match pig with the installation of CDH4.2 we have on our VM-s

we better download the Cloudera’s Pig tarball:
pig-0.10.0-cdh4.2.0.tar.gz

� Just like the above, we will untar the tarball and move the resulting

directory to /usr/local. Subsequently we set JAVA_HOME,

PIG_INSTALL and PIG_CLASSPATH environmental variables.

� PIG_CLASSPATH points to the directory where Hadoop’s file

hadoop-site.xml resides. On our installation of CDH4.2 that

directory appears to be /etc/hadoop/conf.empty

� We add all of those variables to our .bash_profile file.

7@Zoran B. Djordjević

.bash_profile file

� The following is the relevant content of the .bash_profile file:
JAVA_HOME=/usr/local/java/jdk1.6.0_31

export JAVA_HOME

PIG_INSTALL=/usr/local/pig-0.10.0-cdh4.2.0

export PIG_INSTALL

PIG_CLASSPATH=/etc/hadoop/conf.empty

export PIG_CLASSPATH

PATH=$JAVA_HOME/bin:$PIG_INSTALL/bin:$PATH

export PATH

� To make new variables visible to your user, type:
$ source .bash_profile

$ echo $PIG_INSTALL

/usr/local/pig-0.10.0-cdh4.2.0

$ which pig

/usr/local/pig-0.10.0-cdh4.2.0/bin/pig

NOTE: In this CDH4.2 distribution, an important jar file, piggybank.jar,

resides in the directory:

/usr/local/pig-0.10.0-cdh4.2.0/contrib/piggybank/java

8@Zoran B. Djordjević

3/30/2013

5

9

Pig and Elastic MapReduce

� Amazon Elastic MapReduce is a web service which provides you with the

infrastructure on which you could run Pig programs.

� Pig compiler generates a series of map and reduce routines that run on a

Hadoop cluster for efficient processing of large data sets.

� EMR utilizes a hosted Hadoop framework running on the web-scale

infrastructure of Amazon Elastic Compute Cloud (Amazon EC2) and Amazon

Simple Storage Service (Amazon S3).

� Using Amazon Elastic Map Reduce, you can instantly provision Hadoop

clusters of arbitrary size in order to perform data-intensive tasks for

applications such as web indexing, data mining, log file analysis, machine

learning, financial analysis, scientific simulation, and bioinformatics research.

� Amazon Elastic Map Reduce automatically sub-divides the data in a job flow

into smaller chunks so that they can be processed by map functions in

parallel, and eventually recombined into the final solution (the “reduce”

function).

� Amazon S3 serves as the source for the data being analyzed, and as the

output destination for the end results.

@Zoran B. Djordjević

Create a new Job Flow

� Login into AWS Management Console

� Select Elastic MapReduce

� Click on Create New Job Flow

10@Zoran B. Djordjević

3/30/2013

6

Select Sample Application

11@Zoran B. Djordjević

Select your S3 bucket for output

12@Zoran B. Djordjević

3/30/2013

7

Select your Key and Number of Instances

13@Zoran B. Djordjević

Job will run for a few minutes

14@Zoran B. Djordjević

3/30/2013

8

Job is Completed

15@Zoran B. Djordjević

Go to your Bucket, Download Result

� Click a few levels into your bucket until you find your results

value 625

views 426

login 224

search 195

items 112

bigtable 68

google+bigtable 59

%23%21%2Fusr%2Fbin%2Fperl+-w 46

philmont+pictures 45

%23%21%2Fusr%2Fbin%2Fperl 44

philmont 37

google+quick+links 33

pvc+instrument 33

16@Zoran B. Djordjević

3/30/2013

9

Example of a Pig Script: do-report.pig

-- setup piggyback functions

register file:/home/hadoop/lib/pig/piggybank.jar

DEFINE EXTRACT org.apache.pig.piggybank.evaluation.string.EXTRACT();

DEFINE FORMAT org.apache.pig.piggybank.evaluation.string.FORMAT();

-- import logs and break into tuples

raw_logs =

-- load the weblogs into a sequence of one element tuples

LOAD '$INPUT' USING TextLoader AS (line:chararray);

logs_base =

-- for each weblog string convert the weblong string into a

-- structure with named fields

FOREACH

raw_logs

GENERATE FLATTEN (EXTRACT(

line,

'^(\\S+) (\\S+) (\\S+) \\[([\\w:/]+\\s[+\\-]\\d{4})\\] "(.+?)" (\\S+) (\\S+)

"([^"]*)" "([^"]*)"‘)

)

AS (

remoteAddr: chararray, remoteLogname: chararray, user: chararray, time:

chararray,

request: chararray, status: int, bytes_string: chararray, referrer: chararray,

browser: chararray

) ;

referrer matches '.*google.*‘

17@Zoran B. Djordjević

How could we Access Pig

� Submit a script directly.

� Interactively, through Grunt, the pig shell.

� Through PigServer, a Java class, with a JDBC like interface,

that allows Java programs to execute Pig queries.

� Pig could only be run on your Client machine.

� No need to install anything extra on your Hadoop cluster.

� Jobs Pig initiates will run on the Hadoop clusters.

� Pig needs to be installed separately.

� In order to run local tests you need both local Hadoop and Pig

installations.

� In the development environment, Pig could be run in a local mode

which does not use Hadoop at all.

18@Zoran B. Djordjević

3/30/2013

10

How Pig Works

� You write a script:
-- max_temp.pig: Finds the maximum temperature by year

records = LOAD 'input/ncdc/micro-tab/sample.txt'

AS (year:chararray, temperature:int, quality:int);

filtered_records = FILTER records BY temperature != 9999 AND

(quality == 0 OR quality == 1 OR quality == 4 OR quality == 5 OR quality ==

9);

grouped_records = GROUP filtered_records BY year;

max_temp = FOREACH grouped_records GENERATE group,

MAX(filtered_records.temperature);

DUMP max_temp;

� Pig parses, checks, optimizes, creates execution plan, and submits

a pig.jar to Hadoop

� Execution plan contains Map and Reduce routines. Sometimes

many of them.

� Pig monitors job progress and reports on errors and results.

� Is Pig slowing you down? Pig adds 20-40% overhead.

19@Zoran B. Djordjević

Data Types

� Basic data types of Pig Latin are:

� Java like scalar type:

� int,

� long,

� double,

� chararray,

� bytearray.

� Complex types:

� map: associative array (Hash table).

� tuple: ordered list of data, elements maybe of any scalar or complex type.

� bag: unordered collection of tuples

� Pig’s philosophy toward data types is summarized in its slogan of

“Pigs eat anything.” Input data can come in any format. Popular

formats, such as tab-delimited text files, are natively supported.

� Pig is architected from the ground up with support for user-defined

functions.

20@Zoran B. Djordjević

3/30/2013

11

Getting Pig Development Environment

� One way of establishing Pig Development environment is to start an

Elastic MapReduce Job Flow and select an Interactive Pig session.

� From the list of AWS Services, select Elastic MapReduce.

� On the following screen select “Create New Job Flow”

@Zoran B. Djordjević 21

Name the Job, select Hadoop Version

22@Zoran B. Djordjević

� On the “Create New Job Flow” screen, please name your job, and more

importantly select

� Hadoop Version 0.20.205 (MapR M3 Edition v1.2.8).

� Pig will run on other versions of Hadoop. There are just some issues with

setup on those other releases.

� Also select “Run your own application and” and “Pig Program”

3/30/2013

12

Select “Start an Interactive Pig Session”

23@Zoran B. Djordjević

Configure EC2 Instances

24@Zoran B. Djordjević

� For development and testing select the smallest available instances

and the minimal count.

3/30/2013

13

Provide EC2 Key Pair & Log Path

� For development always Enable Debugging.

� After Continue, Proceed with no Boostrap Action and Create Job Flow

@Zoran B. Djordjević 25

Create Job Flow

@Zoran B. Djordjević 26

3/30/2013

14

This job must be manually terminated

27

� In difference from the automatic jobs, these must be terminated by you.

� To kill the job, go to the job console, select the job and hit Terminate button.

� You can also terminate EC2 instances making the job.

@Zoran B. Djordjević

Wait until job status changes to Waiting

28@Zoran B. Djordjević

3/30/2013

15

Go to EC2 Console and Identify Master Node

� We have only 2 instances, one of them is the Master, the other a slave.

The Security Group on the master contains noun master in its name. That

security group betrays the master.

� Once the master is identified, right click on it and select Connect. On the

Connect wizard select the Public DNS of the master.

@Zoran B. Djordjević 29

Connection Wizard

� We use the Connection wizard to select the public DNs of the

Master.

@Zoran B. Djordjević 30

3/30/2013

16

Fetch Public DNS (Master), ssh to the Master

� Use user name “hadoop”, public DNS of the Master, and our Private

Key to login into the Master of our cluster (even if we have just one

machine in that cluster ☺).

� Go to your Cygwin prompt, cd to your ec2 directory and type:
$ ssh -i ec2_hu.pem hadoop@ec2-174-129-51-185.compute-1.amazonaws.com

Welcome to Amazon Elastic MapReduce running Hadoop and Debian/Squeeze.

Hadoop is installed in /home/hadoop. Log files are in

/mnt/var/log/hadoop. Check

/mnt/var/log/hadoop/steps for diagnosing step failures.

The Hadoop UI can be accessed via the following commands:

JobTracker lynx http://localhost:9100/

NameNode lynx http://localhost:9101/

hadoop@ip-10-125-14-184:~$
5

� You are on the Hadoop Master.

� Our objective is to enter Pig command shell grunt and develop Pig scripts.

� Most of that work could be done in the “local” mode. Once we have ready

scripts and a lot of data we could switch to the mapreduce mode.

31@Zoran B. Djordjević

Open grunt session in the local mode

� Hadoop is very good in dealing with distributed processes and big data.

� For now we want to “prototype” something and the local mode is

perfectly appropriate. Type

$ pig –x local << this brings us into grunt session
grunt> help << lists all grunt commands

Commands:

<pig latin statement>; - See the PigLatin manual for details:

http://hadoop.apache.org/pig

File system commands:

fs <fs arguments> - Equivalent to Hadoop dfs command:

http://hadoop.apache.org/common/docs/current/hdfs_sell.html

.

quit - Quit the grunt shell.

grunt>

� The number of commands is not enormous. Still, you need to print the

output of the grunt> help command and study it.

32@Zoran B. Djordjević

3/30/2013

17

Pig and Hadoop support 3 File Systems

33

� Pig and Hadoop support three file systems: you Linux file system, denoted

by file:/, MapReduce (hdfs) file system, denoted by maprfs:/ and S3

bucket file system denoted by s3n:/.

� You navigate between those file systems using cd command and you

inquire in which file system you currently reside by typing pwd command.
grunt> pwd // pwd will tell you in which FS you are in now

maprfs:/ // we are at the root of maprfs (HDFS) file system

grunt> ls

maprfs:/cluster-info <dir> // These are directories in HDFS file system

maprfs:/hbase <dir>

maprfs:/var <dir>

grunt>

grunt> cd file:/// // We are switching to the Linux file system

grunt> pwd

file:/ // We are at the root of the Linux file system

grunt> ls

file:/bin <dir> // These are some directories at the root of Linux Fs

file:/home <dir>

file:/mnt <dir>

. . . .

grunt> cd s3n://elasticmapreduce // Will take us to an s3 bucket

Grunt> pwd

Grunt> s3n://elasticmapreduce

@Zoran B. Djordjević

Move data from s3://elasticmapreduce/samples to local FS

� We have sample data (Apache access logs) in the bucket:
grunt> ls s3n://elasticmapreduce/samples/pig-apache/input

s3n://elasticmapreduce/samples/pig-apache/input/access_log_1<r 1> 8754118

s3n://elasticmapreduce/samples/pig-apache/input/access_log_2<r 1> 8902171

s3n://elasticmapreduce/samples/pig-apache/input/access_log_3<r 1> 8896201

grunt>

� However, we do not want to go “over there” for every bit of data.

� Pig can copy data from one file system to another.
grunt> cp s3n://elasticmapreduce/samples/pig-apache/input/access_log_1 file:///home/hadoop

2013-03-30 04:12:54,424 [main] INFO org.apache.hadoop.fs.s3native.NativeS3FileSystem -

Opening 's3n://elasticmapreduce/samples/pig-apache/input/access_log_1' for reading

2013-03-30 04:12:54,790 [main] INFO org.apache.hadoop.util.NativeCodeLoader - Loaded the

native-hadoop library

grunt> cd file:///home/hadoop

Grunt> ls

file:/home/hadoop/bin <dir>

file:/home/hadoop/.pig_history<r 1> 476

file:/home/hadoop/PATCHES.txt<r 1> 0

file:/home/hadoop/lib <dir>

file:/home/hadoop/contrib <dir>

file:/home/hadoop/access_log_1<r 1> 8754118

file:/home/hadoop/hadoop-0.18-test.jar<r 1> 1014156

file:/home/hadoop/.ssh <dir>

34@Zoran B. Djordjević

3/30/2013

18

hadoop fs commands on grunt> prompt

� When in maprfs:/ (HDFS) file system, you can use standard

hadoop fs commands and they will act on the HDFS as if you are

typing them on the Linux prompt. You do not type hadoop, though.

� For example:
grunt> pwd

maprfs:/

grunt> fs -ls /

Found 3 items

drwxr-xr-x - hadoop hadoop 1 2013-03-30 03:29 /cluster-info

drwxrwxrwx - root root 0 2013-03-30 03:29 /hbase

drwxr-xr-x - root root 1 2013-03-30 03:29 /var

grunt> fs -mkdir users

grunt> fs -ls

Found 4 items

drwxr-xr-x - hadoop hadoop 1 2013-03-30 03:29 /cluster-info

drwxrwxrwx - root root 0 2013-03-30 03:29 /hbase

drwxr-xr-x - hadoop hadoop 0 2013-03-30 04:54 /users

drwxr-xr-x - root root 1 2013-03-30 03:29 /var

@Zoran B. Djordjević 35

Linux shell commands on grunt> prompt

� In order to run standard Linux shell commands from the grunt> shell

prompt, just prefix them with “sh”.

� The commands will produce results as if you were on the Linux command

prompt. For example:

grunt> grunt> sh ls

PATCHES.txt

access_log_1

bin

grunt> sh mkdir trash

grunt> sh ls -la trash

total 8

drwxr-xr-x 2 hadoop hadoop 4096 Mar 30 05:02 .

drwxr-xr-x 7 hadoop hadoop 4096 Mar 30 05:02 ..

grunt> sh touch trash/somefile.txt

grunt> sh ls trash

somefile.txt

@Zoran B. Djordjević 36

3/30/2013

19

Processing Data

� The first step is loading data into Pig.

� LOAD command loads data into a “bag”, a collection of tuples

grunt> RAW_LOGS = LOAD 'file:///home/hadoop/access_log_1'

using TextLoader as (line:chararray);

� Commands are normally terminated by a semicolon (;).

� If a command is to continue on the next line, the prompt changes to >>.

� Clause (line:chararray) creates a schema. It states that data

are inserted into a tuple with a single column of type chararray.

� To see what we are we doing we use ILLUSTRATE command.

� Illustrate takes a small sample of data and presents them to us.

� It actually presents the pipeline of processes that took place.

� If we know that we have a very small amount of data, we could also

DUMP command, which dumps raw_logs, or any other variable.

37@Zoran B. Djordjević

Illustrate RAW_LOGS
� grunt> illustrate RAW_LOGS

--

| RAW_LOGS | line: bytearray

|

--

| | 74.125.75.17 - - [21/Jul/2009:12:28:16 -0700] "GET /gadgets/adp

owers/AlexaRank/ALL_ALL.xml HTTP/1.1" 200 1160 "-" "Mozilla/5.0 (compatible) Fee

dfetcher-Google; (+http://www.google.com/feedfetcher.html)" |

--

--

| RAW_LOGS | line: chararray

|

--

| | 74.125.75.17 - - [21/Jul/2009:12:28:16 -0700] "GET /gadgets/adp

owers/AlexaRank/ALL_ALL.xml HTTP/1.1" 200 1160 "-" "Mozilla/5.0 (compatible) Fee

dfetcher-Google; (+http://www.google.com/feedfetcher.html)" |

--

� Pig treated input as a bytearray and transformed it into a chararray.

� Please note that names of variables and many functions are case sensitive.

� Most frequently used commands are not.

38@Zoran B. Djordjević

3/30/2013

20

Function to split the line

� To split lines into tokens or sections we need special functions.

� All UDF (User Defined Functions) are created as extensions of a set of Java

classes which are stored in jar-s and then registered with the Pig.

� PiggyBank is one such library of functions. Information on functions contained

in the PiggyBank could be found at:

https://cwiki.apache.org/confluence/display/PIG/PiggyBank

� On Elastic MapReduce EC2 instance with MapR M3 0.2. version of Hadoop,

file piggybank.jar resides in the directory /home/hadoop/lib/pig.

� To use a particular function within piggybank.jar we need to create an

alias for that function using DEFINE command.

� We know that function EXTRACT breaks the line using a regular expression

and places matched regions into tuples. We use grunt command DEFINE to

create short alias EXTRACT, otherwise we will have to call the function by its

full Java path.

grunt> DEFINE EXTRACT

org.apache.pig.piggybank.evaluation.string.EXTRACT();

39@Zoran B. Djordjević

Regular Expression

� The regular expression is a little tricky because the Apache log

defines a couple of fields with quotes. What you need is:

'^(\S+) (\S+) (\S+) \[([\w:/]+\s[+\-]\d{4})\] "(.+?)"

(\S+) (\S+) "([^"]*)" "([^"]*)"‘

� Java, and by extension, Pig need to escape all of those back slashes,

so your expression reads:

'^(\\S+) (\\S+) (\\S+) \\[([\\w:/]+\\s[+\\-]\\d{4})\\]

"(.+?)" (\\S+) (\\S+) "([^"]*)" "([^"]*)"'

� Function EXTRACT takes chararray line as it first

argument and the above regular expression as the second and FOR

EACH line returns a tuple with matched strings, i.e. strings selected

by parenthesis (\\S+) as elements.

40@Zoran B. Djordjević

3/30/2013

21

Pig Parsing Command

LOGS_BASE = FOREACH RAW_LOGS GENERATE

FLATTEN(

EXTRACT(line, '^(\\S+) (\\S+) (\\S+) \\[([\\w:/]+\\s

[+\\-]\\d{4})\\] "(.+?)" (\\S+) (\\S+) "([^"]*)" "([^"]*)"')

)

as (

remoteAddr: chararray,

remoteLogname: chararray,

user: chararray,

time: chararray,

request: chararray,

status: int,

bytes_string: chararray,

referrer: chararray,

browser: chararray

);

� To see what came out, we could use: ILLUSTRATE LOGS_BASE

41@Zoran B. Djordjević

ILLUSTRATE LOGS_BASE
grunt> ILLUSTRATE LOGS_BASE;

--

| RAW_LOGS | line: bytearray

--

| | 85.137.49.58 - - [21/Jul/2009:13:39:28 -0700] "GET /gwidgets/go

ogle-glossary.html HTTP/1.1" 200 870 "-" "Java/1.6.0_13" |

--

--

| RAW_LOGS | line: chararray

--

| | 85.137.49.58 - - [21/Jul/2009:13:39:28 -0700] "GET /gwidgets/go

ogle-glossary.html HTTP/1.1" 200 870 "-" "Java/1.6.0_13" |

--

| LOGS_BASE | remoteAddr: chararray | remoteLogname: chararray | user: chara

rray | time: chararray | request: chararray

| status: int | bytes_string: chararray | referrer: chararray | browser: chararr

ay |

| | 85.137.49.58 | - | -

| 21/Jul/2009:13:39:28 -0700 | GET /gwidgets/google-glossary.html HTTP/1.1

| 200 | 870 | - | Java/1.6.0_13

|

grunt>

� We did split every line into a tuple

42@Zoran B. Djordjević

3/30/2013

22

FOR … EACH

� FOREACH … GENERATE command creates a tuple for every (each)

row of data.

� The “FLATTEN” command flattens nested structures.

� FLATTEN generates a new row for every element of a nested data

bag.

� For example:

FLATTEN { (‘foo.txt’, (‘bar’, ‘baz’, ‘bam’))}

Creates:

{ (‘foo.txt’, ‘bar’),

(‘foo.txt’, ‘baz’),

(‘foo.txt’, ‘bam’) }.

43@Zoran B. Djordjević

Schema

� Clause:
as (

remoteAddr: chararray,

remoteLogname: chararray,

user: chararray,

time: chararray,

request: chararray,

status: int,

bytes_string: chararray,

referrer: chararray,

browser: chararray

);

� defined the schema for generated tuples. Most elements of LOGS_BASE

bag of tuples are chararrays. status is apparently and int.

� If schema is not defined, Pig tries to infer it based on element usage.

44@Zoran B. Djordjević

3/30/2013

23

Narrow Query

� We want to determine the top 50 search terms used to refer to the

website. This site apparently has the UTL : http://example.com

� We need to look at the referrer element in the tuples.

� The first thing to do is create a bag containing tuples with just this

element:

grunt> REFERRER_ONLY = FOREACH LOGS_BASE GENERATE referrer;

� We want to see more tuples of data than ILLUSTRATE would provide.

� The DUMP command outputs the complete contents of a bag to the

screen. There is usually too much data to display so we add a LIMIT

instruction:

45@Zoran B. Djordjević

DUMP TEMP
grunt> DUMP TEMP;

2010-03-08 20:30:36,540 [main] INFO org.apache.pig.backend.local.executionengin

e.LocalPigLauncher

2010-03-08 20:30:36,540 [main] INFO org.apache.pig.backend.local.executionengin

e.LocalPigLauncher

2010-03-08 20:30:36,540 [main] INFO org.apache.pig.backend.local.executionengin

e.LocalPigLauncher

2010-03-08 20:30:36,540 [main] INFO org.apache.pig.backend.local.executionengin

e.LocalPigLauncher

2010-03-08 20:30:36,540 [main] INFO org.apache.pig.backend.local.executionengin

e.LocalPigLauncher

(-)

(-)

(http://example.org/)

(http://example.org/)

(-)

grunt>

� Messages with dash (-) values don't have referrers.

� http://example.org/ is just the site referring to itself.

46@Zoran B. Djordjević

3/30/2013

24

Add FILTER to select google and bing
grunt> FILTERED = FILTER REFERRER_ONLY BY referrer matches '.*bing.*'

OR referrer matches '.*google.*';

grunt> TEMP = LIMIT FILTERED 10;

grunt> DUMP TEMP;

(http://www.bing.com/search?q=value)

(http://www.bing.com/search?q=philmont)

(http://www.bing.com/search?q=value)

(http://www.bing.com/search?q=philmont)

(http://images.google.co.th/imgres?imgurl=http://example.org/images/toothin

imgrefurl=http://example.org/%3Fnews%3Dall&usg=__KOkVEA0KxJVHqDP2vTY1XLJKZN

340&w=640&sz=48&hl=th&start=7&tbnid=CFyUh41SsH2g9M:&tbnh=73&tbnw=137&prev=/

s%3Fq%3Dapple%2Badvertisement%26gbv%3D2%26hl%3Dth%26sa%3DX)

(http://images.google.co.th/imgres?imgurl=http://

imgrefurl=http://example.org/%3Fnews%3Dall&usg=__

340&w=640&sz=48&hl=th&start=7&tbnid=CFyUh41SsH2g9M:&tbnh=73&tbnw=137&prev=/

s%3Fq%3Dapple%2Badvertisement%26gbv%3D2%26hl%3Dth%26sa%3DX)

47@Zoran B. Djordjević

Extract Search Queries

� Both search engines indicate the beginning of the query string using a key

of "q=" and then separating query terms with "+".

� To extract these, the first step is to use our EXTRACT function to grab

everything from the "q=" up to the end of a string or an ampersand (&).

� We then FILTER out any string that does not match our regular expression.

grunt> SEARCH_TERMS = FOREACH FILTERED GENERATE

>> FLATTEN(EXTRACT(referrer, '.*[&\\?]q=([^&]+).*'))

>> as terms:chararray;

grunt> SEARCH_TERMS_FILTERED = FILTER SEARCH_TERMS BY NOT $0 IS

NULL;

grunt> DUMP SEARCH_TERMS_FILTERED
(search)

(value)

(about+me+website)

(linux+%2Fusr%2Fbin%2Fperl)

(%21%2Fusr%2Fbin%2Fperl+-w)

(value)

48@Zoran B. Djordjević

3/30/2013

25

Count the Search Terms

� To count most frequently used terms we use Pig operators GROUP

and COUNT:
Grunt> SEARCH_TERMS_COUNT = FOREACH (GROUP SEARCH_TERMS_FILTERED BY $0)

GENERATE $0, COUNT($1) as num;

Grunt> SEARCH_TERMS_COUNT_SORTED = LIMIT(ORDER SEARCH_TERMS_COUNT BY num

DESC) 50;

Grunt > DUMP SEARCH_TERMS_COUNT_SORTED;

49@Zoran B. Djordjević

Most Frequently Queried Terms
(value,100L)

(views,70L)

(login,39L)

(search,37L)

(items,19L)

(bigtable,12L)

(google+bigtable,9L)

(%23%21%2Fusr%2Fbin%2Fperl,8L)

(philmont+pictures,7L)

(%23%21%2Fusr%2Fbin%2Fperl+-w,6L)

(philmont,6L)

(google+quick+links,5L)

(pig,5L)

(pvc+instrument,5L)

(vegas,5L)

(about+me+website,4L)

(google+big+table,4L)

(pig+the+pc+nerd,4L)

(seattle,4L)

(walla,4L)

(bikes,3L)

(biking,3L)

(comments,3L)

50

(escalator,3L)

(fishing,3L)

(hadoop+0.20,3L)

(homemade,3L)

(m0n0wall+ipv6,3L)

(pebble,3L)

(phone,3L)

(pig+sample,3L)

(seahawks,3L)

(travis,3L)

(%21%2Fusr%2Fbin%2Fperl+-w,2L)

(%22rm+-rf%22,2L)

(%23!%2Fusr%2Fbin%2Fperl+-w,2L)

(%23%21%2Fusr%2Fbin%2Fperl+-wT,2L)

(Andrew+sample,2L)

(BigTable,2L)

(Google+BigTable,2L)

(Website+about+me,2L)

(apple,2L)

(balam,2L)

(big+table,2L)

(bigtable+example,2L)

(bigtable+google,2L)

@Zoran B. Djordjević

3/30/2013

26

Store Your Results

� Store your data with STORE:

STORE SEARCH_TERMS_COUNT_SORTED into

'file:///home/hadoop/output/run0';

� Examine the file with CAT

CAT file:///home/hadoop/output/run0

To get out we type:

grunt> quit;

51@Zoran B. Djordjević

Store Your Script

� We do not want to keep repeating this typing over and over again and

keep working in the interactive mode.

� We can save out commands in a file (script), save that script in an S3

bucket and in the future invoke that script for another job on, perhaps, a

different machine.

� We will do that on the command prompt of the remote machine, where

we could open vi or vim and save the script.

� Note that all command lines end with semicolon “;”.

� Also, while working in the interactive mode our input file was accessed as:

� RAW_LOGS = LOAD 'file:///home/hadoop/access_log_1‘

� That is not convenient. We might have that file in another location.

� We “parameterize” log location by introducing place holder ‘$INPUT’.

� Similarly we parameterize the output file with ‘$OUTPUT’

52@Zoran B. Djordjević

3/30/2013

27

Saved Script

register file:/home/hadoop/lib/pig/piggybank.jar

DEFINE EXTRACT org.apache.pig.piggybank.evaluation.string.EXTRACT();

RAW_LOGS = LOAD '$INPUT' USING TextLoader as (line:chararray);

LOGS_BASE = foreach RAW_LOGS generate FLATTEN (EXTRACT (line, '^(\\S+)

(\\S+) (\\S+) \\[([\\w:/]+\\s[+\\-]\\d{4})\\] "(.+?)" (\\S+) (\\S+)

"([^"]*)" "([^"]*)"')) as (remoteAddr:chararray,

remoteLogname:chararray, user:chararray, time:chararray,

request:chararray, status:int, bytes_string:chararray,

referrer:chararray, browser:chararray) ;

REFERRER_ONLY = FOREACH LOGS_BASE GENERATE referrer;

FILTERED = FILTER REFERRER_ONLY BY referrer matches '.*bing.*' OR referrer

matches '.*google.*';

SEARCH_TERMS = FOREACH FILTERED GENERATE FLATTEN(EXTRACT(referrer,

'.*[&\\?]q=([^&]+).*')) as terms:chararray;

SEARCH_TERMS_FILTERED = FILTER SEARCH_TERMS BY NOT $0 IS NULL;

SEARCH_TERMS_COUNT = FOREACH (GROUP SEARCH_TERMS_FILTERED BY $0) GENERATE

$0, COUNT($1) as num;

SEARCH_TERMS_COUNT_SORTED = LIMIT(ORDER SEARCH_TERMS_COUNT BY num DESC) 50;

STORE SEARCH_TERMS_COUNT_SORTED into '$OUTPUT';

� Save in /home/hadoop/script.pig

53@Zoran B. Djordjević

Run Script from the Command Line

� To run your Pig job from the command line do the following:

� On the command prompt of your Hadoop system type:

$ pig -p INPUT=file:///home/hadoop/access_log_1

-p OUTPUT=file:///home/hadoop/output/run2

file:///home/hadoop/script.pig

� The output should end up in /home/hadoop/output/run2 directory.

54@Zoran B. Djordjević

3/30/2013

28

Upload Script to S3

� Hadoop’s dfs command, executed on the command prompt of the

remote (Hadoop) system will copy the script to a properly named

S3 bucket:

$ hadoop dfs -copyFromLocal /home/hadoop/script.pig
s3://zoran0302mr/pig/scripts/script.pig

55

Since we are done with the interactive job flow we could terminate it.

@Zoran B. Djordjević

56

Pig Latin

Syntax

Zoran B. Djordjević

csci e185 Big Data Analytics

3/30/2013

29

Data Types

� Pig Latin statements work with relations.

� A relation can be defined as follows:
� A relation is a bag (more specifically, an outer bag).

� A bag is a collection of tuples.

� A tuple is an ordered set of fields.

� A field is a piece of data.

� A Pig relation is similar to a table in a relational database, where the

tuples in the bag correspond to the rows in a table.

� Unlike a relational table, Pig relations don't require that every tuple

contain the same number of fields or that the fields in the same

position (column) have the same type.

� Relations are unordered which means there is no guarantee that

tuples are processed in any particular order.

� Processing may be parallelized in which case tuples are not

processed according to any ordering.

57

Referencing Relations, Fields

� Names are assigned by you using schemas (or, in the case of the

GROUP operator and some functions, by the system).

� You can use any name that is not a Pig keyword;

� When you names are assigned to fields we can still refer to the

fields using positional notation. For debugging and comprehension,

better use names.
A = LOAD 'student' USING PigStorage() AS (name:chararray,

age:int, gpa:float); << A is a relation

X = FOREACH A GENERATE name,$2; << Could mix notations

DUMP X;

(John,4.0F)

A = LOAD 'data' AS (f1:int,f2:int,f3:int);

B = FOREACH A GENERATE $3; << Will generate an error.

DUMP B;

2009-01-21 23:03:46,715 [main] ERROR

org.apache.pig.tools.grunt.GruntParser - java.io.IOException:

Out of bound access. Trying to access non-existent : 3. Schema

{f1: bytearray,f2: bytearray,f3: bytearray} has 3 column(s).

58

3/30/2013

30

Referencing Fields of Complex Types

� Fields in a tuple could be atomic or complex type: bag, tuple, and maps.

� Schemas could name fields in complex data types.

� Dereference operator (dot, ".") is used for referencing fields in complex types.

� A schema for complex data types (in this case, tuple) is used to load the data. Then,

dereference operators (the dot in t1.t1a and t2.$0) accesses fields in the tuples.
cat da;

(3,8,9) (4,5,6)

(1,4,7) (3,7,5)

(2,5,8) (9,5,8)

A = load 'da' as (t1:tuple(t1a:int,t1b:int,t1c:int),t2:tuple(t2a:int,t2b:int,t2c:int));

DUMP A;

((3,8,9),(4,5,6))

((1,4,7),(3,7,5))

((2,5,8),(9,5,8))

X = FOREACH A GENERATE t1.t1a,t2.$0;

DUMP X;

(3,4)

(1,3)

(2,9)

59

Note that tuple is key word

and the data type

Data Types

60

3/30/2013

31

Implicit Conversion, Casting

� Use schemas to assign types to fields. Untyped fields default to

bytearray.

� Implicit conversion applied based on context in which that data is

used.
A = LOAD 'data' AS (f1,f2,f3);

B = FOREACH A GENERATE f1 + 5; << f1 converted to int

C = FOREACH A generate f1 + f2; << f1 and f2 converted to double

� If the data does not conform to the schema, the loader will

generate a null value or an error.
A = LOAD 'data' AS (name:chararray, age:int, gpa:float);

� If an explicit cast is not supported, an error will occur. Cannot cast a

chararray to int.
A = LOAD 'data' AS (name:chararray, age:int, gpa:float);

B = FOREACH A GENERATE (int)name; << Will cause an error

� Incompatible types that could not be cast implicitly cause an error.

� For example, you cannot add chararray and float.
A = LOAD 'data' AS (name:chararray, age:int, gpa:float);

B = FOREACH A GENERATE name + gpa; 61

Tuple

� A tuple is an ordered set of fields.

� Syntax

(field [, field …])

� A tuple is enclosed in parentheses ().

� A field in a tuple is a piece of data.

� A field can be any data type (including tuple and bag).

� A tuple is a row with one or more fields, where each field can be

any data type and any field may or may not have data.

� If a field has no data, then the following happens:

� In a load statement, the loader will inject null into the tuple.

� The actual value that is substituted for null is loader specific;

� PigStorage substitutes an empty field for null.

� In a non-load statement, if a requested field is missing from a tuple,

Pig will inject null.

62

3/30/2013

32

Bag

� A bag is a collection of tuples.

� Syntax: Inner bag

{ tuple [, tuple …] }

� An inner bag is enclosed in curly brackets { }.

� A bag can have duplicate tuples.

� A bag can have tuples with differing numbers of fields.

� If Pig tries to access a field that does not exist, a null value is

substituted.

� A bag can have tuples with fields that have different data types.

� For Pig to effectively process bags, the schemas of the tuples within

those bags should be the same.

� If half of the tuples include chararray fields and while the other half

include float fields, only half of the tuples will participate in any kind

of arithmetics because the chararray fields will be converted to null.

� Bags have two forms: outer bag (or relation) and inner bag.

63

Outer Bag

A = LOAD 'data' as (f1:int, f2:int, f3;int);

DUMP A;

(1,2,3)

(4,2,1)

(8,3,4)

(4,3,3)

� A is a relation or bag of tuples. This is an outer bag.

64

3/30/2013

33

Inner Bag

� We could group relation A by the first field to form relation X.

� X is a relation or bag of tuples.

� The tuples in relation X have two fields.

� The first field is type int.

� The second field is type bag; That bag is an inner bag.

X = GROUP A BY f1;

DUMP X;

(1,{(1,2,3)})

(4,{(4,2,1),(4,3,3)})

(8,{(8,3,4)})

65

Map

� A map is a set of key value pairs.

� Syntax

[key#value <, key#value …>]

� Maps are enclosed in straight brackets [].

� Key and value in a pair are separated by the pound sign #.

� Key : Must be chararray data type. Must be a unique value in a

relation.

� Value: Any data type.

� Key values within a relation must be unique.

� In the following example the map includes two key value pairs.

[name#John, phone#555-1212]

� keys are: name and phone, corresponding values are John and 555-

1212

66

3/30/2013

34

Nulls

� Nulls are implemented using the SQL meaning of unknown or non-

existent.

� Nulls can occur naturally in data or can be the result of an operation.

� If a FILTER expression results in null value, the filter does not pass

them through.

67

Operations producing Nulls

� Nulls can be the result of:

� Division by zero

� User defined functions (UDFs)

� Dereferencing a field that does not exist.

� Dereferencing a key that does not exist in a map

� Accessing a field that does not exist in a tuple.

� Example: Accessing a field that does not exist in a tuple
cat data;

2 3

4

A = LOAD 'data' AS (f1:int,f2:int,f3:int)

DUMP A;

(,2,3)

(4,,)

B = FOREACH A GENERATE f1,f2;

DUMP B;

(,2)

(4,)

68

3/30/2013

35

Nulls and Load Function

� Nulls can occur naturally in the data.

� If nulls are part of the data, it is the responsibility of the load

function to handle them correctly. What is considered a null value is

loader-specific.

� The load function should always communicate null values to Pig by

producing Java nulls.

� The Pig Latin load functions (for example, PigStorage and

TextLoader) produce null values wherever data is missing. Empty

strings (chararrays) are not loaded; instead, they are replaced by

nulls.

� PigStorage is the default load function for the LOAD operator.

� In the following "is not null" operator is used to filter names with

null values.

A = LOAD 'student' AS (name, age, gpa);

B = FILTER A BY name is not null

69

Constants

� Pig provides constant representations for all data types except

bytearrays.

� Complex constants (either with or without values) can be used in the same places

scalar constants can be used; that is, in FILTER and GENERATE statements.

� A = LOAD 'data' USING MyStorage() AS (T: tuple(name:chararray,

age: int));

� B = FILTER A BY T == ('john', 25);

� D = FOREACH B GENERATE T.name, [25#5.6], {(1, 5, 18)};

70

3/30/2013

36

Expressions

� Expressions are language constructs used with the FILTER,

FOREACH, GROUP, and SPLIT operators as well as the eval functions.

� Expressions are written in conventional mathematical infix notation

and are adapted to the UTF-8 character set. Depending on the

context, expressions can include:

� Any Pig data type (simple data types, complex data types)

� Any Pig operator (arithmetic, comparison, null, boolean, dereference,

sign, and cast)

� Any Pig built-in function.

� Any user-defined function (UDF) written in Java.

71

Examples of Expressions

� An arithmetic expression could look like this:

X = GROUP A BY f2*f3;

� A string expression could look like this, where a and b are both

chararrays:

X = FOREACH A GENERATE CONCAT(a,b);

� A boolean expression could look like this:

X = FILTER A BY (f1==8) OR (NOT (f2+f3 > f1));

72

3/30/2013

37

Star Expression

� The star symbol, *, can be used to represent all the fields of a tuple.

It is equivalent to writing out the fields explicitly.

� In the following example the definition of B and C are the same

� MyUDF will be invoked with exactly the same arguments in both

cases.

A = LOAD 'data' USING MyStorage() AS (name:chararray, age: int);

B = FOREACH A GENERATE *, MyUDF(name, age);

C = FOREACH A GENERATE name, age, MyUDF(*);

� A common error when using the star expression is the following:

G = GROUP A BY $0;

C = FOREACH G GENERATE COUNT(*)

� In this example, the programmer really wants to count the number

of elements in the bag in the second field: COUNT($1).

73

Schemas

� Schemas enable you to assign names to and declare types for fields.

� Schemas are optional but encouraged.

� Type declarations result in better parse-time error checking and efficient code.

� Defined with AS keyword with LOAD, STREAM, and FOREACH operators.

� You can define a schema that includes both the field name and field type.

� You can define a schema that includes the field name only; in this case, the field

type defaults to bytearray.

� You can choose not to define a schema; in this case, the field is un-named and the

field type defaults to bytearray.

� If you assign a name to a field, you can refer to that field by name or by position.

� If you don't assign a name to a field (the field is un-named) you can only refer to

the field using positional notation.

� If you assign a type to a field, you can subsequently change the type using the cast

operators.

� If you don't assign a type to a field, the field defaults to bytearray; you can

change the default type using the cast operators.

74

3/30/2013

38

Schemas with LOAD, Stream, FOREACH

� With LOAD and STREAM statements, the schema following the AS keyword must

be enclosed in parentheses.

� This LOAD statement includes a schema definition for simple data types.

A = LOAD 'data' AS (f1:int, f2:int);

� With FOREACH statements, the schema following the AS keyword must be

enclosed in parentheses when the FLATTEN operator is used. Otherwise, the

schema should not be enclosed in parentheses.

� This FOREACH statement includes FLATTEN and a schema for simple

types.
X = FOREACH C GENERATE FLATTEN(B) AS (f1:int, f2:int, f3:int);

� The following FOREACH statement includes a schema for simple types and no

parenthesis

X = FOREACH A GENERATE f1+f2 AS x1:int;

Syntax

(alias[:type]) [, (alias[:type]) …])

alias: The name assigned to the field.

type: (Optional) The data type assigned to the field.

The alias and type are separated by a colon (:).
75

Schema Examples with Simple Types

cat student;

John 18 4.0

Mary 19 3.8

Joe 18 3.8

A = LOAD 'student' AS (name:chararray, age:int, gpa:float);

DESCRIBE A;

A: {name: chararray,age: int,gpa: float}

DUMP A;

(John,18,4.0F)

(Mary,19,3.8F)

(Joe,18,3.8F)

cat student;

John 18 4.0

Mary 19 3.8

Joe 18 3.8

A = LOAD 'data' AS (name:chararray, age:int, gpa);

DESCRIBE A;

A: {name: chararray,age: int,gpa: bytearray}

DUMP A;

(John,18,4.0)

(Mary,19,3.8)

(Joe,18,3.8)

76

3/30/2013

39

A Schema with one tuple

� Syntax

� alias[:tuple] (alias[:type])[, (alias[:type])

…])

� alias: The name assigned to the tuple.

� :tuple (Optional) The data type, tuple (case insensitive).

� () The designation for a tuple, a set of parentheses.

� alias[:type] : The constituents of the tuple.

� Next schema defines one tuple. The load statements are equivalent.
cat data;

(3,8,9)

(1,4,7)

(2,5,8)

A = LOAD 'data' AS (T: tuple (f1:int, f2:int, f3:int));

A = LOAD 'data' AS (T: (f1:int, f2:int, f3:int));

DESCRIBE A;

A: {T: (f1: int,f2: int,f3: int)}

DUMP A;

((3,8,9))

((1,4,7))

((2,5,8)) 77

A Schema with two tuples

cat data;

(3,8,9) (mary,19)

(1,4,7) (john,18)

(2,5,8) (joe,18)

A = LOAD data
AS(F:tuple(f1:int,f2:int,f3:int),T:tuple(t1:chararray,t2:int));

DESCRIBE A;

A: {F: (f1: int,f2: int,f3: int),T: (t1: chararray,t2: int)}

DUMP A;

((3,8,9),(mary,19))

((1,4,7),(john,18))

((2,5,8),(joe,18))

78

3/30/2013

40

Bag Schema

� A bag is a collection of tuples.

� Syntax

alias[:bag] {tuple}

� { } The designation for a bag, a set of curly brackets.

� This schema defines a bag. The two load statements are equivalent.
� cat data;

� {(3,8,9)}

� {(1,4,7)}

� {(2,5,8)}

� A = LOAD 'data' AS (B: bag {T: tuple(t1:int, t2:int, t3:int)});

� A = LOAD 'data' AS (B: {T: (t1:int, t2:int, t3:int)});

� DESCRIBE A:

� A: {B: {T: (t1: int,t2: int,t3: int)}}

� DUMP A;

� ({(3,8,9)})

� ({(1,4,7)})

� ({(2,5,8)})

79

Map Schema

� A map is a set of key value pairs.

� Syntax

� alias<:map> []

� [] The designation for a map, a set of straight brackets.

� This schema defines a map. The load statements are equivalent.
cat data;

[open#apache]

[apache#hadoop]

A = LOAD 'data' AS (M:map []);

A = LOAD 'data' AS (M:[]);

DESCRIBE A;

a: {M: map[]}

DUMP A;

([open#apache])

([apache#hadoop])

80

3/30/2013

41

Schemas with Multiple Types

� You can define schemas for data that includes multiple types.

� These schemaa inlcude a tuple, bag, and map.

A = LOAD 'mydata' AS (T1:tuple(f1:int, f2:int),

B:bag{T2:tuple(t1:float,t2:float)}, M:map[]);

A = LOAD 'mydata' AS (T1:(f1:int, f2:int),

B:{T2:(t1:float,t2:float)}, M:[]);

81

Parameter Substitution

� Pig allows you to substitute values of parameters at run time.

� We could pass parameters to pig, exec, run, and

explain commands.

� Parameters are passed at the command line or using preprocessor

statements:

� Specifying parameters using the Pig command line

pig {–param param_name = param_value | –param_file

file_name} [-debug | -dryrun] script

� Specifying parameters using preprocessor statements in a Pig script

{%declare | %default} param_name param_value

82

3/30/2013

42

Preprocessor Statements

%declare

� Preprocessor statement included in a Pig script.

� Use to describe one parameter in terms of other parameters.

� The declare statement is processed prior to running the Pig script.

� The scope of a parameter value defined using declare is all the lines

following the declare statement until the next declare statement that

defines the same parameter is encountered.

� In this example the command is executed and its stdout is used as the

parameter value.

%declare CMD `generate_date`;

A = LOAD '/data/mydata/$CMD';

B = FILTER A BY $0>'5';

� In this example the characters are enclosed in single or double quotes, and the

quote within the sequence of characters is escaped.

%declare DES 'Joe\'s URL';

A = LOAD 'data' AS (name, description, url);

B = FILTER A BY description == '$DES';

83

Preprocessor Statements

%default

� Preprocessor statement included in a Pig script.

� Provides a default value for a parameter. The default value has the

lowest priority. Used if a parameter value has not been defined by

other means.

� The default statement is processed prior to running the Pig script.

� The scope is the same as for %declare.

� In this example the parameter (DATE) and value ('20090101')

are specified in the Pig script using the default statement.

� If a value for DATE is not specified elsewhere, the default value

20090101 is used.

%default DATE '20090101';

A = load '/data/mydata/$DATE';

84

3/30/2013

43

Parameters on the command line

� Suppose we have a data file called 'mydata' and a pig script called
'myscript.pig'.

mydata

1 2 3

4 2 1

8 3 4

myscript.pig

A = LOAD '$data' USING PigStorage() AS (f1:int, f2:int, f3:int);

DUMP A;

� The parameter (data) and the parameter value (mydata) are specified in the

command line.

� If the parameter name in the command line (data) and the parameter name in the

script ($data) do not match, the script will not run.

$ pig –param data=mydata myscript.pig

(1,2,3)

(4,2,1)

(8,3,4)

85

Parameters in a parameter file

� We could have a parameter file called 'myparams.‘ with the

following content:

my parameters

data1 = mydata1

cmd = `generate_name`

� The parameters and values are passed to the script using that file.

$ pig –param_file myparams script2.pig

86

3/30/2013

44

Arithmetic Operators

87

� Pig has a sign operator, as well.

� + does nothing, - changes the sign.
A = LOAD 'data' as (x, y, z);

B = FOREACH A GENERATE -x, y;

Example of an arithmetic calculation

� Suppose we have relation A.

A = LOAD 'data' AS (f1:int, f2:int,

B:bag{T:tuple(t1:int,t2:int)});

DUMP A;

(10,1,{(2,3),(4,6)})

(10,3,{(2,3),(4,6)})

(10,6,{(2,3),(4,6),(5,7)})

� The modulo operator is used with fields f1 and f2.

X = FOREACH A GENERATE f1, f2, f1%f2;

DUMP X;

(10,1,0)

(10,3,1)

(10,6,4)

88

3/30/2013

45

Example of an arithmetic calculation

� In this example the bincond operator is used with fields f2 and B.

� The condition is "f2 equals 1";

� if the condition is true, return 1; if the condition is false, return the

count of the number of tuples in B.

X = FOREACH A GENERATE f2, (f2==1?1:COUNT(B));

DUMP X;

(1,1L)

(3,2L)

(6,3L)

� Fortunately, there are no fractions.

89

Comparison Operators

90

3/30/2013

46

Examples of use of Comparison Operators

� Use comparison operators with numeric and string data

� Example: numeric

X = FILTER A BY (f1 == 8);

� Example: string

X = FILTER A BY (f2 == 'apache');

� Example: matches

X = FILTER A BY (f1 matches '.*apache.*');

� Types Table: equal (==) and not equal (!=) operators

91

Boolean Operators

� Pig supports Boolean operators: AND, OR and NOT.

� Pig does not support a Boolean data type.

� However, the result of a Boolean expression (an expression that

includes Boolean and comparison operators) is always of type

Boolean (true or false).

� Example

X = FILTER A BY (f1==8) OR (NOT (f2+f3 > f1));

92

3/30/2013

47

Dereference Operators

� Tuple dereferencing can be done by name

� (tuple.field_name) or position

� (mytuple.$0).

� If a set of fields are dereferenced
� (tuple.(name1, name2)) or

� (tuple.($0, $1)),

� the expression represents a tuple composed of the specified fields.

� If the dot operator is applied to a bytearray, the bytearray will be

assumed to be a tuple.

93

Example, Dereferencing Tuples

� Suppose we have relation A.

LOAD 'data' as (f1:int, f2:tuple(t1:int,t2:int,t3:int));

DUMP A;

(1,(1,2,3))

(2,(4,5,6))

(3,(7,8,9))

(4,(1,4,7))

(5,(2,5,8))

� In this example dereferencing is used to retrieve two fields from tuple f2.

X = FOREACH A GENERATE f2.t1,f2.t3;

DUMP X;

(1,3)

(4,6)

(7,9)

(1,7)

(2,8)

94

3/30/2013

48

Dereference Operators

� Bag dereferencing can be done by name

� bag.field_name or position

� bag.$0.

� If a set of fields are dereferenced
� bag.(name1, name2 or

� bag.($0, $1)),

� the expression represents a bag composed of the specified fields.

� Map dereferencing must be done by key

� field_name#key or position

� $0#key).

� If the pound operator is applied to a bytearray, the bytearray is

assumed to be a map.

� If the key does not exist, the empty string is returned.

95

Examples of Dereference Operator with Bags

� Suppose we have relation B, formed by grouping relation A.

A = LOAD 'data' AS (f1:int, f2:int,f3:int);

DUMP A;

(4,2,1)

(8,3,4)

(4,3,3)

(8,4,3)

B = GROUP A BY f1;

DUMP B;

(4,{(4,2,1),(4,3,3)})

(8,{(8,3,4),(8,4,3)})

ILLUSTRATE B;

--

| b | group: int | a: bag({f1: int,f2: int,f3: int}) |

--

� We want to project the first field (f1) of each tuple in the bag (a).

X = FOREACH B GENERATE a.f1;

DUMP X;

({(4),(4)})

({(8),(8)})

96

3/30/2013

49

Dereferencing a Map

� Suppose we have relation A.
A = LOAD 'data' AS (f1:int, f2:map[]);

DUMP A;

(1,[open#apache])

(2,[apache#hadoop])

(3,[hadoop#pig])

(4,[pig#grunt])

� In this example dereferencing is used to look up the value of key

'open'.
X = FOREACH A GENERATE f2#'open';

DUMP X;

(apache)

()

()

()

97

Dereferencing Tuple and Bag

� Suppose we have relation B, formed by grouping relation A.

A = LOAD 'data' AS (f1:int, f2:int, f3:int);

DUMP A;

(1,2,3)

(4,2,1)

(8,3,4)

(4,3,3)

B = GROUP A BY (f1,f2);

DUMP B;

((1,2),{(1,2,3)})

((4,2),{(4,2,1)})

((4,3),{(4,3,3)})

((8,3),{(8,3,4)})

ILLUSTRATE B;

| b | group: tuple({f1: int,f2: int}) | a: bag({f1: int,f2: int,f3: int}) |

| | (8, 3) | {(8, 3, 4), (8, 3, 4)} |

--

� Project a field (f1) from a tuple (group) and a field (f1) from a bag (a).
X = FOREACH B GENERATE group.f1, a.f1;

DUMP X;

(1,{(1)})

(4,{(4)})

(4,{(4)})

(8,{(8)})
98

3/30/2013

50

FLATTEN Operator

� The FLATTEN operator changes the structure of tuples and bags.

� Flatten un-nests tuples as well as bags. The idea is the same, but

the operation and result is different for each type of structure.

� For tuples, flatten substitutes the fields of a tuple in place of the

tuple.

� For example, if a relation has a tuple of the form

(a, (b, c))

� Expression

GENERATE $0, flatten($1),

� will cause that tuple to become

(a, b, c).

99

FLATTEN Operator

� For bags, the situation becomes more complicated.

� When we un-nest a bag, we create new tuples.

� If we have a relation that is made up of tuples of the form

({(b,c),(d,e)})

� and we apply

GENERATE flatten($0),

� we end up with two tuples

(b,c) and (d,e).

� When we remove a level of nesting in a bag, sometimes we cause a

cross product to happen.

� Consider a relation that has a tuple of the form (a, {(b,c),

(d,e)}), commonly produced by the GROUP operator.

� If we apply the expression GENERATE $0, flatten($1) to

this tuple, we will create new tuples: (a, b, c) and (a, d,
e). 100

3/30/2013

51

Cast

� Cast operators enable you to cast or convert data from one type to

another, as long as conversion is supported.

� Suppose you have an integer field, myint, which you want to

convert to a string. You can cast this field from int to chararray using

(chararray)myint.

� A field can be explicitly cast. Once cast, the field remains that type

(it is not automatically cast back). In this example $0 is explicitly

cast to int.

B = FOREACH A GENERATE (int)$0 + 1;

� Where possible, Pig performs implicit casts. In this example $0 is

cast to int (regardless of underlying data) and $1 is cast to double.

� B = FOREACH A GENERATE $0 + 1, $1 + 1.0

� When two bytearrays are used in arithmetic expressions or with

built-in aggregate functions (such as SUM) they are implicitly cast to

double.

� If the underlying data is really int or long, you’ll get better

performance by declaring the type or explicitly casting the data.

� Downcasts may cause loss of data. Casting from long to int may

101

Supported Casts

102

Syntax

{(data_type)| (tuple(data_type))|(bag{tuple(data_type)})|(map[]) } field

3/30/2013

52

Examples of Cast

� In this example a bytearray (fld in relation A) is cast to type

map.
cat data;

[open#apache]

[apache#hadoop]

A = LOAD 'data' AS fld:bytearray;

DESCRIBE A;

A: {fld: bytearray}

DUMP A;

([open#apache])

([apache#hadoop])

B = FOREACH A GENERATE ((map[])fld;

DESCRIBE B;

B: {map[]}

DUMP B;

([open#apache])

([apache#hadoop])

103

bytearray Cast to type bag

� In this example a bytearray (fld in relation A) is cast to type

bag.
cat data;

{(4829090493980522200L)}

{(4893298569862837493L)}

A = LOAD 'data' AS fld:bytearray;

DESCRIBE A;

A: {fld: bytearray}

DUMP A;

({(4829090493980522200L)})

({(4893298569862837493L)})

B = FOREACH A GENERATE (bag{tuple(long)})fld;

DESCRIBE B;

B: {{(long)}}

DUMP B;

({(4829090493980522200L)})

({(4893298569862837493L)})

104

3/30/2013

53

bytearray Cast to type tuple

� In this example a bytearray (fld in relation A) is cast to type tuple.
cat data;

(1,2,3)

(4,2,1)

A = LOAD 'data' AS fld:bytearray;

DESCRIBE A;

a: {fld: bytearray}

DUMP A;

((1,2,3))

((4,2,1))

B = FOREACH A GENERATE (tuple(int,int,float))fld;

DESCRIBE B;

b: {(int,int,float)}

DUMP B;

((1,2,3))

((4,2,1))

105

Relational Operators

Pig offers a number of operators which provide some of the standard

functionality found in relational database system.

� GROUP, Groups the data in one or multiple relations

� COGROUP, the same as GROUP but used with multiple relations

� CROSS, Computes the cross product of two or more relations.

� DISTINCT, Removes duplicate tuples in a relation.

� FILTER, Selects tuples from a relation based on some condition

(where).

� FOREACH … GENERATE, Generates data by picking some columns of

data

� JOIN (inner), Performs inner, equijoin of two or more relations

based on common field values

� JOIN (outer), Performs an outer join of two or more relations based

on common field values.

� LIMIT, Limits the number of output tuples.

� LOAD, Loads data from the file system. 106

3/30/2013

54

Relational Operators

Pig offers a number of operators which provide some of the standard

functionality found in relational database system.

� GROUP, Groups the data in one or multiple relations

� COGROUP, the same as GROUP but used with multiple relations

� CROSS, Computes the cross product of two or more relations.

� DISTINCT, Removes duplicate tuples in a relation.

� FILTER, Selects tuples from a relation based on some condition

(where).

� FOREACH … GENERATE, Generates data by picking some columns of

data

� JOIN (inner), Performs inner, equijoin of two or more relations

based on common field values

� JOIN (outer), Performs an outer join of two or more relations based

on common field values.

� LIMIT, Limits the number of output tuples.

� LOAD, Loads data from the file system. 107

Relational Operators

� ORDER, Sorts a relation based on one or more fields.

� SAMPLE, Partitions a relation into two or more relations.

� SPLIT, Partitions a relation into two or more relations.

� STORE, Stores or saves results to the file system.

� STREAM, Sends data to an external script or program.

� UNION, Computes the union of two or more relations.

� DESCRIBE, diagnostic operator, returns the schema of an alias

� DUMP, diagnostic operator, dumps or displays results to screen.

� EXPLAIN, diagnostic operator, displays execution plans.

� ILLUSTRATE, displays a step-by-step execution of a sequence of statements.

108

3/30/2013

55

Comparison with SQL

� SQL is high level language that specifies a query execution plan.

� Example: For each sufficiently large category, retrieve the average

pagerank of high-pagerank urls in that category.

� Assume there is a table URLS (url , category,
pagerank)

SELECT category, AVG(pagerank)

FROM urls

WHERE pagerank > 0.2

GROUP BY category

HAVING count(*) > 1000000;

109

Pig Latin

� The same problem

� Example: For each sufficiently large category, retrieve the average

pagerank of high-pagerank urls in that category.

� Assume existence of a relation: urls with necessary data: (url

, category, pagerank)

� Availability of schema is optional!

� Columns are referenced using $0, $1, $2,

Good_urls = FILTER urls BY pagerank > 0.2;

Groups = GROUP Good_urls BY category;

Big_groups = FILTER Groups by COUNT(Good_urls) > 1000000;

Output = FOREACH Big_groups GENERATE category,

AVG(Good_urls, AVG(Good_urls.pagerank);

110

3/30/2013

56

CROSS

� Use the CROSS operator to compute the cross product (Cartesian

product) of two or more relations.

� CROSS is an expensive operation and should be used sparingly.
� Suppose we have relations A and B.

A = LOAD 'data1' AS (a1:int,a2:int,a3:int);

DUMP A;

(1,2,3)

(4,2,1)

B = LOAD 'data2' AS (b1:int,b2:int);

DUMP B;

(2,4)

(8,9)

� The cross product of relation A and B is:

X = CROSS A, B;

DUMP X;

(1,2,3,2,4)

(1,2,3,8,9)

(4,2,1,2,4)

(4,2,1,8,9)

111

DISTINCT

� Use the DISTINCT operator to remove duplicate tuples in a relation.

DISTINCT does not preserve the original order of the contents (to

eliminate duplicates, Pig must first sort the data).

� You cannot use DISTINCT on a subset of fields. To do this, use

FOREACH … GENERATE to select the fields, and then use DISTINCT.
DUMP A;

(8,3,4)

(1,2,3)

(4,3,3)

(4,3,3)

(1,2,3)

� All duplicate tuples are removed.
X = DISTINCT A;

DUMP X;

(1,2,3)

(4,3,3)

(8,3,4)

112

3/30/2013

57

FILTER

� Use the FILTER operator to select particular rows of data.
A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;

(1,2,3)

(4,2,1)

(8,3,4)

(4,3,3)

(7,2,5)

(8,4,3)

� The condition states that if the third field equals 3, then include the

tuple with relation X.
X = FILTER A BY f3 == 3;

DUMP X;

(1,2,3)

(4,3,3)

(8,4,3)

113

FOREACH … GENERATE

114

3/30/2013

58

FOREACH … GENERATE, Inner vs. Outer Bag

� FOREACH …GENERATE works with relations (outer bags) as well as

inner bags:

� If A is a relation (outer bag), a FOREACH statement could look like

this.

X = FOREACH A GENERATE f1;

� If A is an inner bag, a FOREACH statement could look like this.

X = FOREACH B {

S = FILTER A BY 'xyz';

GENERATE COUNT (S.$0);

}

115

Example with Nested Block

� Suppose we have relations A and B. Relation B contains an inner bag.
A = LOAD 'data' AS (url:chararray,outlink:chararray);

DUMP A;

(www.ccc.com,www.hjk.com)

(www.ddd.com,www.xyz.org)

(www.aaa.com,www.cvn.org)

(www.www.com,www.kpt.net)

(www.www.com,www.xyz.org)

(www.ddd.com,www.xyz.org)

B = GROUP A BY url;

DUMP B;

(www.aaa.com,{(www.aaa.com,www.cvn.org)})

(www.ccc.com,{(www.ccc.com,www.hjk.com)})

(www.ddd.com,{(www.ddd.com,www.xyz.org),(www.ddd.com,www.xyz.org)})

(www.www.com,{(www.www.com,www.kpt.net),(www.www.com,www.xyz.org)})

116

3/30/2013

59

FOREACH … GENERATE in the Inner block

� We perform two of the operations allowed in a nested block, FILTER

and DISTINCT.

� The last statement in the nested block must be GENERATE.

X = foreach B {

FA= FILTER A BY outlink == 'www.xyz.org';

PA = FA.outlink;

DA = DISTINCT PA;

GENERATE GROUP, COUNT(DA);

}

DUMP X;

(www.ddd.com,1L)

(www.www.com,1L)

117

GROUP or COGROUP

118

3/30/2013

60

Example: GROUP

A = load 'student' AS (name:chararray,age:int,gpa:float);

DESCRIBE A;

A: {name: chararray,age: int,gpa: float}

DUMP A;

(John,18,4.0F)

(Mary,19,3.8F)

(Bill,20,3.9F)

(Joe,18,3.8F)

� Group relation A on field "age". Relation B has two fields. The first field is named

"group" and is type int, the same as field "age" in relation A. The second field is

name "A" after relation A and is type bag.
B = GROUP A BY age;

DESCRIBE B;

B: {group: int, A: {name: chararray,age: int,gpa: float}}

ILLUSTRATE B;

| B | group: int | A: bag({name: chararray,age: int,gpa: float}) |

| | 18 | {(John, 18, 4.0), (Joe, 18, 3.8)}

| | 20 | {(Bill, 20, 3.9)}

119

Example, GROUP continued

DUMP B;

(18,{(John,18,4.0F),(Joe,18,3.8F)})

(19,{(Mary,19,3.8F)})

(20,{(Bill,20,3.9F)})

� As shown in following FOREACH statements, we can refer to the fields in relation B

by names "group" and "A" or by positional notation.

C = FOREACH B GENERATE group, COUNT(A);

DUMP C;

(18,2L)

(19,1L)

(20,1L)

C = FOREACH B GENERATE $0, $1.name;

DUMP C;

(18,{(John),(Joe)})

(19,{(Mary)})

(20,{(Bill)})

120

3/30/2013

61

COGROUP Example

A = LOAD 'data1' AS (owner:chararray,pet:chararray);

DUMP A;

(Alice,turtle) (Alice,goldfish)(Alice,cat)(Bob,dog)

B = LOAD 'data2' AS (friend1:chararray,friend2:chararray);

DUMP B;

(Cindy,Alice) (Mark,Alice) (Paul,Bob)

� Tuples are co-grouped using field “owner” from relation A and field “friend2” from

relation B as the key fields. R

� Relation X, has three fields, "group“, "A“ and “B”.

X = COGROUP A BY owner, B BY friend2;

DESCRIBE X;

X: {group: chararray,A: {owner: chararray,pet: chararray},b:

{firend1: chararray,friend2: chararray}}

DUMP X;

(Alice,{(Alice,turtle),(Alice,goldfish),(Alice,cat)},{(Cindy,Alice)

,(Mark,Alice)})

(Bob,{(Bob,dog)},{(Paul,Bob)})

121

COGROUP Example, continued

� Next, tuples are co-grouped and the INNER keyword is used to ensure that only bags

with at least one tuple are returned.

X = COGROUP A BY owner INNER, B BY friend2 INNER;

DUMP X;

(Alice,{(Alice,turtle),(Alice,goldfish),(Alice,cat)},{(Cindy,Alice),

(Mark,Alice)})

(Bob,{(Bob,dog)},{(Paul,Bob)})

� In this following, tuples are co-grouped and the INNER keyword is used

asymmetrically on only one of the relations.

X = COGROUP A BY owner, B BY friend2 INNER;

DUMP X;

(Bob,{(Bob,dog)},{(Paul,Bob)})

(Alice,{(Alice,turtle),(Alice,goldfish),(Alice,cat)},{(Cindy,Alice),

(Mark,Alice)})

122

3/30/2013

62

JOIN (inner)

123

JOIN, A and B joined by their first field

A = LOAD 'data1' AS (a1:int,a2:int,a3:int);

DUMP A;

(1,2,3)

(4,2,1)

(8,3,4)

(4,3,3)

(7,2,5)

B = LOAD 'data2' AS (b1:int,b2:int);

DUMP B;

(2,4)

(8,9)

(1,3)

(2,7)

(2,9)

(4,6)

X = JOIN A BY a1, B BY b1;

DUMP X;

(1,2,3,1,3)

(4,2,1,4,6)

(4,3,3,4,6)

(8,3,4,8,9)

124

3/30/2013

63

JOIN (outer)

125

Examples, Outer JOIN

� This example shows a left outer join.

A = LOAD 'a.txt' AS (n:chararray, a:int);

B = LOAD 'b.txt' AS (n:chararray, m:chararray);

C = JOIN A by $0 LEFT OUTER, B BY $0;

� This example shows a full outer join.

A = LOAD 'a.txt' AS (n:chararray, a:int);

B = LOAD 'b.txt' AS (n:chararray, m:chararray);

C = JOIN A BY $0 FULL, B BY $0;

� This example shows a replicated left outer join.

A = LOAD ‘large’;

B = LOAD ‘tiny’;

C= JOIN A BY $0 LEFT, B BY $0 USING "replicated";

� This example shows a skewed full outer join.

A = LOAD ‘studenttab’ as (name, age, gpa);

B = LOAD 'votertab' as (name, age, registration, contribution);

C = JOIN A BY name FULL, B BY name USING "skewed";

126

3/30/2013

64

ORDER

� Syntax

alias = ORDER alias BY { * [ASC|DESC] | field_alias [ASC|DESC] [,

field_alias [ASC|DESC] …] } [PARALLEL n];

� In Pig, relations are unordered (see Relations, Bags, Tuples, and

Fields):

� If you order relation A to produce relation X

X = ORDER A BY * DESC;

� relations A and X still contain the same thing.

� If you retrieve the contents of relation X (DUMP X;) they are

guaranteed to be in the order you specified (descending).

� However, if you further process relation X :

Y = FILTER X BY $0 > 1;

� there is no guarantee that the contents will be processed in the

order you originally specified (descending).

127

Example ORDER

� Suppose we have relation A.

A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;

(1,2,3)

(4,2,1)

(8,3,4)

(4,3,3)

(7,2,5)

� In this example relation A is sorted by the third field, f3 in descending order. Note

that the order of the three tuples ending in 3 can vary.

X = ORDER A BY a3 DESC;

DUMP X;

(7,2,5)

(8,3,4)

(1,2,3)

(4,3,3)

(4,2,1)

128

3/30/2013

65

SAMPLE

� Use the SAMPLE operator to select a random data sample with the

stated sample size. SAMPLE is a probabalistic operator;

� There is no guarantee that the exact same number of tuples will be

returned for a particular sample size each time the operator is used.

� In this example relation X will contain 1% of the data in relation A.

A = LOAD 'data' AS (f1:int,f2:int,f3:int);

X = SAMPLE A 0.01;

129

SPLIT

Syntax: SPLIT alias INTO alias IF expression, alias IF expression [,

alias IF expression …];

� Use the SPLIT operator to partition the contents of a relation into two or more

relations based on some expression.

� Depending on the conditions stated in the expression: A tuple may be assigned to

more than one or none relation
A = LOAD 'data' AS (f1:int,f2:int,f3:int);

DUMP A;

(1,2,3)

(4,5,6)

(7,8,9)

SPLIT A INTO X IF f1<7, Y IF f2==5, Z IF (f3<6 OR f3>6);

DUMP X;

(1,2,3)

(4,5,6)

DUMP Y;

(4,5,6)

DUMP Z;

(1,2,3)

(7,8,9)

130

3/30/2013

66

STREAM

� Use the STREAM operator to send data through an external script

or program. Multiple stream operators can appear in the same Pig

script. The stream operators can be adjacent to each other or have

other operations in between.

� When used with a command, a stream statement could look like

this:

A = LOAD 'data';

B = STREAM A THROUGH `stream.pl -n 5`;

� When used with a cmd_alias, a stream statement could look like

this, where cmd is the defined alias.

A = LOAD 'data';

DEFINE cmd `stream.pl –n 5`;

B = STREAM A THROUGH cmd;

131

UNION

� Syntax: alias = UNION alias, alias [, alias …];

� Use the UNION operator to merge the contents of two or more

relations. The UNION operator:

� Does not preserve the order of tuples.

� Does not ensure (as databases do) that all tuples adhere to the

same schema or that they have the same number of fields.
A = LOAD 'data' AS (a1:int,a2:int,a3:int);

DUMP A;

(1,2,3)

(4,2,1)

B = LOAD 'data' AS (b1:int,b2:int);

DUMP A;

(2,4)

(8,9)

X = UNION A, B;

DUMP X;

(1,2,3)

(4,2,1)

(2,4)

(8,9)
132

3/30/2013

67

Sum All Columns

� Imagine data
(1950, 0.0,1)

(1950, 22.0,1)

(1950,-11.0,1)

(1949,111.0,1)

A = LOAD ‘data’ as (year:int, temp:double, qual:int);

� We want something that, in SQL, would be done as

SELECT sum(qual) from A;

grunt> allData = GROUP A by 1;

grunt> describe allData;

allData: {group: int,A: {year: int,temp: double,qual: int}}

grunt> sumAll = foreach allData generate group, SUM(A.qual);

grunt> describe sumAll;

sumAll: {group: int,long}

grunt> suma = FOREACH sumAll GENERATE $1;

grunt> dump suma;

(4L)

133

Summing with GROUP ALL

� One should be able to do previous sum with command like:

� sumAll = foreach A generate GROUP ALL SUM(qual);

134

