
3/14/2014

1

Lecture 07

Map Reduce API-s

Zoran B. Djordjević

@Zoran B. Djordjević 1

Reference

• These slides follow the text of the book:

Hadoop in Action, by Chuck Lam, Manning 2011

@Zoran B. Djordjević 2

3/14/2014

2

New vs. Old Map Reduce API

• Until release 0.183 Hadoop supported a particular Map Reduce API.
With release 0.20 a new API is introduced which simplified coding
and added some new features.

• It appears that many books and examples on the Internet are
written in the old API. In order to help you use those examples we
will present some MapReduce classes in both API-s and describe
key differences. Differences are not huge and are easy to reconcile.

• In the end you will end up using templates in either API and pay
attention to little else but details in methods map() and
reduce().

@Zoran B. Djordjević 3

Source of Data, National Bureau of Economic Research

• http://www.nber.org/data/

• http://data.nber.org/patents/

• Download acite75_99.zip (82MB) and apat63_99.zip (56Mb)

@Zoran B. Djordjević 4

http://www.nber.org/data/
http://www.nber.org/data/
http://data.nber.org/patents/
http://data.nber.org/patents/

3/14/2014

3

Patent Citation Data, cite75_99.txt File
• Source: US Patent office

• This file includes all US patent citations for utility patents

granted in the period 1-Jan-75 to 31-Dec-99.

• No. of observations: 16,522,438

• Variable Name variable type Characters Contents

• CITING numeric 7 Citing Patent Number

• CITED numeric 7 Cited Patent Number

• The file is sorted by Citing Patent Number.

“CITING”, ”CITED”

6009552,5278871

6009552,5598422

6009553,4131849

6009553,4517669

6009553,4519068

6009553,4590473

6009553,4636791

6009553,5671255

.

@Zoran B. Djordjević 5

Patent Citation Data

• If you’re only reading the data file,
the citation data appears to be a
bunch of numbers.

• One way is to visualize it as a
graph. Bellow we show a portion
of this citation graph .

• Some patents are cited often
whereas others aren’t cited at all.

Patents like 5936972 and 6009552
cite a similar set of patents
(4354269, 4486882, 5598422) ,
though they don’t cite each other.

• We could use Hadoop to derive
descriptive statistics about this
patent data, and look for
interesting, non-obvious, patterns.

@Zoran B. Djordjević 6

3/14/2014

4

Patent Description Data, pat63_99.txt file
• The other data set we could use is the patent description data. It has the patent

number, the patent application year, the patent grant year, the number of claims,
and other metadata about patents.

Source: USPTO, and Jaffe and Trajtenberg computations.
The Pat63_99 file includes all utility patents in the USPTO's TAF database granted
during the period 1963 to December 1999. Classification information reflects the U.S.
Patent Classification System as of December 31, 1999.
 No. of observations: 2,923,922
USPTO Original Variables:

Variable Name Variable type Characters Contents
patent numeric 7 Patent Number
gyear numeric 12 Grant Year
gdate numeric 12 Grant Date
appyear numeric 12 Application Year
country character 3 Country of First Inventor
postate character 3 State of First Inventor (if US)
assignee numeric 12 Assignee Identifier (missing 1963-1967)
asscode numeric 12 Assignee Type (see below)
claims numeric 12 number of Claims
Nclass numeric 12 Main Patent Class (3 digit)

New Variables:

Variable Name Variable type Characters Contents
cat numeric 12 Technological Category
subcat numeric 12 Technological Sub-Category

@Zoran B. Djordjević 7

apat63_99.txt
C:\VMs\sharedfolder\patents>head -40 apat63_99.txt
"PATENT","GYEAR","GDATE","APPYEAR","COUNTRY","POSTATE","ASSIGNEE","ASSCODE","CLAIMS","NCLASS","
CAT","SUBCAT","CMADE","CRECEIVE","RATIOCIT","GENERAL","ORIGINAL","FWDAPLAG","BCKGTLAG","SELFCTU
B","SELFCTLB","SECDUPBD","SECDLWBD"

3070801,1963,1096,,"BE","",,1,,269,6,69,,1,,0,,,,,,,

3070802,1963,1096,,"US","TX",,1,,2,6,63,,0,,,,,,,,,

3070803,1963,1096,,"US","IL",,1,,2,6,63,,9,,0.3704,,,,,,,

3070804,1963,1096,,"US","OH",,1,,2,6,63,,3,,0.6667,,,,,,,

3070805,1963,1096,,"US","CA",,1,,2,6,63,,1,,0,,,,,,,

3070806,1963,1096,,"US","PA",,1,,2,6,63,,0,,,,,,,,,

3070807,1963,1096,,"US","OH",,1,,623,3,39,,3,,0.4444,,,,,,,

3070808,1963,1096,,"US","IA",,1,,623,3,39,,4,,0.375,,,,,,,

3070809,1963,1096,,"US","AZ",,1,,4,6,65,,0,,,,,,,,,

3070810,1963,1096,,"US","IL",,1,,4,6,65,,3,,0.4444,,,,,,,

3070811,1963,1096,,"US","CA",,1,,4,6,65,,8,,0,,,,,,,

3070812,1963,1096,,"US","LA",,1,,4,6,65,,3,,0.4444,,,,,,,

3070813,1963,1096,,"US","NY",,1,,5,6,65,,2,,0,,,,,,,

3070814,1963,1096,,"US","MN",,2,,267,5,59,,2,,0.5,,,,,,,

3070815,1963,1096,,"US","CO",,1,,7,5,59,,1,,0,,,,,,,

3070816,1963,1096,,"US","OK",,1,,114,5,55,,4,,0,,,,,,,

3070817,1963,1096,,"US","RI",,2,,114,5,55,,5,,0.64,,,,,,,

3070818,1963,1096,,"US","IN",,1,,441,6,69,,4,,0.625,,,,,,,

3070819,1963,1096,,"US","TN",,4,,12,6,63,,0,,,,,,,,,

3070820,1963,1096,,"GB","",,2,,12,6,63,,0,,,,,,,,,

3070821,1963,1096,,"US","IL",,2,,15,6,69,,1,,0,,,,,,,

3070822,1963,1096,,"US","NY",,2,,401,1,12,,4,,0.375,,,,,,,

3070823,1963,1096,,"US","MI",,1,,401,1,12,,8,,0.6563,,,,,,,

3070824,1963,1096,,"US","IL",,1,,401,1,12,,5,,0.48,,,,,,,

3070825,1963,1096,,"US","IL",,1,,401,1,12,,7,,0.6531,,,,,,,

3070826,1963,1096,,"US","IA",,1,,401,1,12,,1,,0,,,,,,,

3070827,1963,1096,,"US","CA",,4,,401,1,12,,2,,0.5,,,,,,,

3070828,1963,1096,,"US","CT",,2,,16,5,59,,4,,0.625,,,,,,,

3070829,1963,1096,,"FR","",,3,,16,5,59,,5,,0.48,,,,,,,

3070830,1963,1096,,"US","NH",,2,,16,5,59,,0,,,,,,,,,

@Zoran B. Djordjević 8

3/14/2014

5

Definition of some attributes of Patent Data Set

Attribute Description

PATENT Patent number

GYEAR Grant year

GDATA Grant date, given as the number of days elapsed since January 1,
1960

APPYEAR Application year (available only for patents granted since 1967)

COUNTRY Country of first inventor

POSTATE State of first inventory (if country is U.S.)

ASSIGNEE Numeric identifier for assignee (i.e., patent owner)

ASSCODE One-digit (1-9) assignee type. (The assignee type includes U.S.
individual,
U.S. government, U.S. organization, non-U.S. individual, etc.)

CLAIMS Number of claims (available only for patents granted since 1975)

NCLASS 3-digit main patent class

@Zoran B. Djordjević 9

List patents and patents that cite them

• We want to invert citation index. Rather than listing citing vs. cited,
we want to invert the data and list cited vs. all citing. We expect to
generate a file that would look like:

“CITED” “CITING”

1000033 4190903,4975983

1000043 4091523

1000044 4082383,4055371

1000045 4290571

1000046 5918892,5525001

1000067 5312208,4944640,5071294

• Patent 1000067 is cited by patents 5312208,4944640 and 5071294

• We will accomplish this objective by writing a MapReduce class
Inverter.java.

• That class will serve as a template for our future developments.

• In future classes, most of the lines of code will remain the same, while we

will change a few lines in the map()and reduce()methods.

@Zoran B. Djordjević 10

3/14/2014

6

Inverter.java, Old API, Template Class

package edu.hu.bigdata;

import java.io.IOException;

import java.util.Iterator;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.conf.Configured;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.FileInputFormat;

import org.apache.hadoop.mapred.FileOutputFormat;

import org.apache.hadoop.mapred.JobClient;

import org.apache.hadoop.mapred.JobConf;

import org.apache.hadoop.mapred.KeyValueTextInputFormat;

import org.apache.hadoop.mapred.MapReduceBase;

import org.apache.hadoop.mapred.Mapper;

import org.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapred.Reducer;

import org.apache.hadoop.mapred.Reporter;

import org.apache.hadoop.mapred.TextOutputFormat;

import org.apache.hadoop.util.Tool;

import org.apache.hadoop.util.ToolRunner;

@Zoran B. Djordjević 11

Inverter.java

public class Inverter extends Configured implements Tool {

 public static class MapClass extends MapReduceBase

 implements Mapper<Text, Text, Text, Text> {

 public void map(Text key, Text value,

 OutputCollector<Text, Text> output,

 Reporter reporter) throws IOException {

 output.collect(value, key);

 }

 }

 public static class Reduce extends MapReduceBase

 implements Reducer<Text, Text, Text, Text> {

 public void reduce(Text key, Iterator<Text> values,

 OutputCollector<Text, Text> output,

 Reporter reporter) throws IOException {

 String csv = "";

 while (values.hasNext()) {

 if (csv.length() > 0) csv += ",";

 csv += values.next().toString();

 }

 output.collect(key, new Text(csv));

 }

 }

@Zoran B. Djordjević 12

3/14/2014

7

Inverter.java

 public int run(String[] args) throws Exception {

 Configuration conf = getConf();

 JobConf job = new JobConf(conf, Inverter.class);

 Path in = new Path(args[0]);

 Path out = new Path(args[1]);

 FileInputFormat.setInputPaths(job, in);

 FileOutputFormat.setOutputPath(job, out);

 job.setJobName("Inverter");

 job.setMapperClass(MapClass.class);

 job.setReducerClass(Reduce.class);

 job.setInputFormat(KeyValueTextInputFormat.class);

 job.setOutputFormat(TextOutputFormat.class);

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(Text.class);

 job.set("key.value.separator.in.input.line", ",");

 JobClient.runJob(job);

 return 0;

 }

 public static void main(String[] args) throws Exception {

 int res = ToolRunner.run(new Configuration(),new
Inverter(),args);

 System.exit(res);

 }

}

@Zoran B. Djordjević 13

Result of Running Inverter job
• We compiled Inverter.java in Eclipse with Build Path containing:

– hadoop-core-2.0.0-mr1-cdh4.6.0.jar,

– hadoop-common-2.0.0-chd4.6.0.jar and commons-cli-1.2.jar
• Exported invertercounter.jar, moved cite-99.txt to HDFS input

directory on MRv1 VM and ran command:
$ hadoop jar inverter.jar edu.hu.bigdata.Inverter input outputinv

• Command hadoop fs –tail outputinv/part-00000 gave the following:
.
999936 5014973,5642878

999940 4022472,3876070

999941 5447466

999945 5569166,5207231

999949 5640640

999951 5374468,5316622

999957 5755359

999961 5738381,5782495,5878901,4871140,4832301,5048788,4171117,4262874

999965 5052613

999968 3916735

999971 3965843

999972 4038129

999973 5427610,4900344

999974 4728158,4560073,5464105

.

@Zoran B. Djordjević 14

3/14/2014

8

Programming Convention

• Standard convention is that a single class, Inverter in this case,
completely defines each MapReduce job.

• Hadoop requires the Mapper and the Reducer to be their own
static classes. These classes are quite small, and our template
includes them as inner classes in the Inverter class.

• The advantage is that everything fits in one file, simplifying code
management.

• These inner classes are independent and don’t interact much with
the Inverter class.

• Various nodes with different JVMs clone and run the Mapper and
the Reducer during job execution , whereas the rest of the job class
is executed only at the client machine.

@Zoran B. Djordjević 15

Inverter extends Configured implements Tool

• Inverter is a subclass of Configured, which is an
implementation of the Configurable interface.

• All implementations of Tool need to implement Configurable
(since Tool extends it).

• Extending, i.e. subclassing, Configured is a way to achieve this.

• The run() method obtains the Configuration using
getConf() method of Configurable interface

@Zoran B. Djordjević 16

3/14/2014

9

org.apache.hadoop.conf.Configured class
@InterfaceAudience.Public

@InterfaceStability.Stable

public class Configured

extends Object

implements Configurable

Configured is the base class for objects that may be configured with a
Configuration

Constructors:
Configured() Constructs a Configured object.
Configured(Configuration conf) Construct a Configured object
based on specified Configuration object conf.

Methods:
Configuration getConf() Return the configuration used by this object.

void setConf(Configuration conf) Set the Configuration by passing a
Configuration object conf.

@Zoran B. Djordjević 17

org.apache.hadoop.util.Tool class

@InterfaceAudience.Public

@InterfaceStability.Stable

public interface Tool extends Configurable

Tool interface supports handling of generic command-line options.

Tool, is the standard for any MapReduce tool/application.

The tool/application should delegate the handling of standard
command-line options to ToolRunner.run(Tool, String[]) and
only handle its custom arguments.

Method Summary

 int run(String[] args)

 Execute the command with the given arguments.

 Tool has methods inherited from interface
org.apache.hadoop.conf.Configurable

getConf(), setConf()

• A typical implementation of the Tool interface looks like Inverter class

@Zoran B. Djordjević 18

3/14/2014

10

org.apache.hadoop.util.Tool class
public class Inverter extends Configured implements Tool {

 public int run(String[] args) throws Exception { // must implement run()
 // Configuration processed by ToolRunner

 Configuration conf = getConf();

 // Create a JobConf using the provided conf

 JobConf job = new JobConf(conf, MyApp.class);

 // Process custom command-line options

 Path in = new Path(args[1]);

 Path out = new Path(args[2]);

 FileInputFormat.setInputPaths(job, in);

 FileOutputFormat.setOutputPath(job, out);

 // Specify various job-specific parameters

 job.setJobName(“inverter");

 job.setInputPath(in);

 job.setOutputPath(out);

 job.setMapperClass(MapClass.class);

 job.setReducerClass(Reducer.class);

 // Submit the job, then poll for progress until the job is complete

 JobClient.runJob(job);

 return 0;

 }

 public static void main(String[] args) throws Exception {

 // Let ToolRunner handle generic command-line options

 int res = ToolRunner.run(new Configuration(), new Inverter(), args);

 System.exit(res);

 }

 }

@Zoran B. Djordjević 19

org.apache.hadoop.util.ToolRunner
@InterfaceAudience.Public

@InterfaceStability.Stable

public class ToolRunner extends Object

• A utility to help run Tools.
• ToolRunner can be used to run classes implementing Tool interface. It works in

conjunction with GenericOptionsParser to parse the generic command line
arguments of command hadoop and modifies the Configuration of the Tool.
The application-specific options are passed along without being modified.

• Constructor Summary
ToolRunner()

• Method Summary
 static boolean confirmPrompt(String prompt)

• Print out a prompt to the user, and return true if the user responds with "y" or "yes".
 static void printGenericCommandUsage(PrintStream out)

• Prints generic command-line argurments and usage information.
 static int run(Configuration conf, Tool tool, String[] args)

• Runs the given Tool by Tool.run(String[]), after parsing with the given generic
arguments.

 static int run(Tool tool, String[] args)

• Runs the Tool with its Configuration.

@Zoran B. Djordjević 20

3/14/2014

11

“Client” portion of Inverter class

• The core of Inverter class is within the run() method.

• run() method is also known as the driver.

• The driver instantiates, configures, and passes a JobConf object
named job to JobClient. runJob() to start the MapReduce
job.

• The JobClient class, in turn, will communicate with the
JobTracker to start the job across the cluster.

• The JobConf object holds all configuration parameters necessary
for the job to run.

• JobConf is fed configuration parameters from the
Configuration object which is retrieved by the getConf()
method of Configurable interface our main class implements.

@Zoran B. Djordjević 21

“Client” portion of Inverter

• The driver needs to specify the basic parameters for every job

– input Path,

– output Path,

– MapperClass, and

– ReducerClass.

• In addition, each job can reset the default properties, such as

– InputFormat,

– OutputFormat

• One can also call the set() method on the JobConf object to
set up any configuration parameter.

• Once you pass the JobConf object to JobClient.runJob(),
it’s treated as the master plan for the job. It becomes the blueprint
for how the job will be run.

@Zoran B. Djordjević 22

3/14/2014

12

org.apache.hadoop.mapred.JobConf

@InterfaceAudience.Public

@InterfaceStability.Stable

public class JobConf extends Configuration

• A map/reduce job configuration.

• JobConf is the primary interface for a user to describe a map-reduce job to the
Hadoop framework for execution. The framework tries to execute the job as-is
described by JobConf,

• Some configuration parameters might have been marked as final by administrators and
hence cannot be altered.

• While some job parameters are straight-forward to set (e.g.
setNumReduceTasks(int)), some parameters interact subtly with the rest of the
framework and/or job-configuration and are relatively more complex for the user to
control finely (e.g. setNumMapTasks(int)).

• JobConf typically specifies the Mapper, combiner (if any), Partitioner,
Reducer, InputFormat and OutputFormat implementations to be used
etc.

• Optionally JobConf is used to specify other advanced facets of the job such as
Comparators to be used, files to be put in the DistributedCache, whether or
not intermediate and/or job outputs are to be compressed (and how), debugability via
user-provided scripts (
setMapDebugScript(String)/setReduceDebugScript(String)), for
doing post-processing on task logs, task's stdout, stderr, syslog. and etc.

@Zoran B. Djordjević 23

org.apache.hadoop.mapred.JobConf

• The following demonstrates how to configure a job via JobConf:
 // Create a new JobConf

 JobConf job = new JobConf(new Configuration(),Inverter.class);

 // Specify various job-specific parameters

 job.setJobName("Inverter");

 FileInputFormat.setInputPaths(job, new Path("in"));

 FileOutputFormat.setOutputPath(job, new Path("out"));

 job.setMapperClass(Inverter.MapClass.class);

 job.setCombinerClass(Inverter.Reducer.class);

 job.setReducerClass(Inverter.Reducer.class);

 job.setInputFormat(SequenceFileInputFormat.class);

 job.setOutputFormat(SequenceFileOutputFormat.class);

@Zoran B. Djordjević 24

3/14/2014

13

JobConf and Configuration

• The JobConf object has many parameters, but we don’t want to
program the driver to set up all of them.

• The configuration files of the Hadoop installation are a good
starting point.

• When starting a job from the command line, the user may also
want to pass extra arguments to alter the job configuration.

• The driver can define its own set of commands and process the user
arguments itself to enable the user to modify some of the
configuration parameters.

• Configuration files are represented by the Configuration
object.

• ToolRunner internally runs GenericOptionsParser object
which reads and parses the command line arguments.

@Zoran B. Djordjević 25

 org.apache.hadoop.conf.Configuration class
@InterfaceAudience.Public

@InterfaceStability.Stable

public class Configuration

extends Object

implements Iterable<Map.Entry<String,String>>, Writable

Provides access to configuration parameters.

Resources

Configurations are specified by resources. A resource contains a set of
name/value pairs as XML data. Each resource is named by either a String or
by a Path. If named by a String, then the classpath is examined for a file with
that name. If named by a Path, then the local file system is examined directly,
without referring to the classpath. Unless explicitly turned off, Hadoop by
default specifies two resources, loaded in-order from the classpath:

core-default.xml : Read-only defaults for hadoop

core-site.xml: Site-specific configuration for a given hadoop installation.

Applications may add additional resources. On our MRv1 VM, file core-
site.xml resides in the directory /etc/hadoop/conf.pseudo.mr1

@Zoran B. Djordjević 26

../../../../src-html/org/apache/hadoop/conf/Configuration.html
http://download.oracle.com/javase/6/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/6/docs/api/java/lang/Iterable.html?is-external=true
http://download.oracle.com/javase/6/docs/api/java/lang/Iterable.html?is-external=true
http://download.oracle.com/javase/6/docs/api/java/util/Map.Entry.html?is-external=true
http://download.oracle.com/javase/6/docs/api/java/util/Map.Entry.html?is-external=true
http://download.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true
../../../../org/apache/hadoop/io/Writable.html
../../../../org/apache/hadoop/io/Writable.html

3/14/2014

14

org.apache.hadoop.conf.Configuration class
Final Parameters

• On our MRv1 VM, file core-site.xml resides in the directory
/etc/hadoop/conf.pseudo.mr1

• Configuration parameters may be declared final. Once a resource declares
a value final, no subsequently-loaded resource can alter that value.

• For example, one might define a final parameter with:
 <property>

 <name>dfs.hosts.include</name>

 <value>/etc/hadoop/conf/hosts.include</value>

 <final>true</final>

 </property>

@Zoran B. Djordjević 27

org.apache.hadoop.conf.Configuration class
Variable Expansion

• Value strings are first processed for variable expansion.

• The available properties are:

– other properties defined in this configuration file; and,

– if a name is undefined there, properties in System.getProperties()

• For example, if a configuration resource contains the following property
definitions:

 <property>

 <name>basedir</name>

 <value>/user/${user.name}</value>

 </property>

 <property>

 <name>tempdir</name>

 <value>${basedir}/tmp</value>

 </property>

• When conf.get("tempdir") is called, then ${basedir} will be
resolved to another property in this configuration, while ${user.name}
would ordinarily be resolved to the value of the System property with that
name.
 @Zoran B. Djordjević 28

http://download.oracle.com/javase/6/docs/api/java/lang/System.html?is-external=true
http://download.oracle.com/javase/6/docs/api/java/lang/System.html?is-external=true
http://download.oracle.com/javase/6/docs/api/java/lang/System.html?is-external=true
http://download.oracle.com/javase/6/docs/api/java/lang/System.html?is-external=true

3/14/2014

15

GenericOptionsParser, Tool and ToolRunner

• Hadoop comes with a few helper classes for making it easier to run
jobs from the command line.

• GenericOptionsParser is a class that interprets common
Hadoop command-line options and sets them on a
Configuration object for your application to use as desired.

• You don’t usually use GenericOptionsParser directly. It is more
convenient to implement the Tool interface and run your
application with the ToolRunner, which uses
GenericOptionsParser internally:

 public static void main(String[] args) throws Exception {
 int res = ToolRunner.run(

 new Configuration(), new Inverter(), args);

 System.exit(res);

}

@Zoran B. Djordjević 29

org.apache.hadoop.util.GenericOptionsParser

http://hadoop.apache.org/docs/stable/api/org/apache/hadoop/util/GenericOptionsParser.html

• GenericOptionsParser is a utility to parse command line arguments generic
to the Hadoop framework. GenericOptionsParser recognizes several
standard command line arguments, enabling applications to easily specify a
namenode, a jobtracker, and additional configuration resources.

Generic Options
• The supported generic options are:

-conf <configuration file> specify a configuration file
-D <property=value> user value for given property
-fs <local|namenode:port> specify a namenode
-jt <local|jobtracker:port> specify a job tracker
-files <comma separated list of files> specify comma separated files to be copied
to the map reduce cluster
-libjars <comma separated list of jars> specify comma separated jar
files to include in the classpath.
-archives <comma separated list of archives> specify comma separated
archives to be unarchived on the compute machines.

• Generic command line arguments might modify Configuration objects,
given to constructors.

• The functionality is implemented using Commons CLI.

@Zoran B. Djordjević 30

http://hadoop.apache.org/docs/stable/api/org/apache/hadoop/util/GenericOptionsParser.html
http://hadoop.apache.org/docs/stable/api/org/apache/hadoop/util/GenericOptionsParser.html

3/14/2014

16

Example of command line option use

• For example, we would normally execute the Inverter class using a
command line like:

$ hadoop jar inverter.jar edu.hu.bd.Inverter input output

• Had we wanted to run the job only to see the mapper’s output (which
you may want to do for debugging purposes), we could set the number
of reducers to zero with the option -D mapred.reduce.tasks=0.

$ hadoop jar inverter.jar edu.hu.bd.Inverter

 -D mapred.reduce.tasks=0 input output

• This works even though our program doesn’t explicitly understand the
-D option.

• By using ToolRunner, Inverter will automatically support the
options understood by GenericOptionsParser

@Zoran B. Djordjević 31

Mapper and Reducer

• The convention for our template is to call the Mapper class
MapClass and the Reducer class Reduce.

• The naming would seem more symmetric had we called the
Mapper class Map. However, Java already has a class (interface)
named Map.

• Both the Mapper and the Reducer extend MapReduceBase,
which is a small class providing no-op implementations to the
configure()and close()methods required by the two
interfaces.

• The configure() and close() methods are life cycle methods
and one could use them to set up and clean up the map (reduce)
tasks.

• Usually you do not need to override configure() and close()
except for more advanced jobs.

@Zoran B. Djordjević 32

3/14/2014

17

Signature of Mapper and Reducer classes

• The signatures for the Mapper class and the Reducer class are:
public static class MapClass extends MapReduceBase

 implements Mapper<K1, V1, K2, V2> {

 public void map(K1 key, V1 value,

 OutputCollector<K2, V2> output,

 Reporter reporter)

 throws IOException { }

}

public static class Reduce extends MapReduceBase

 implements Reducer<K2, V2, K3, V3> {

 public void reduce(K2 key, Iterator<V2> values,

 OutputCollector<K3, V3> output,

 Reporter reporter)

 throws IOException { }

}

@Zoran B. Djordjević 33

map() and reduce() methods

• The center of action for the Mapper class is the map() method
and for the Reducer class the reduce() method.

• Each invocation of the map() method is given a key/value pair of
types K1 and V1, respectively.

• The key/value pairs generated by the mapper and reducer are sent
out via the collect() method of the OutputCollector object.

• Somewhere in your map() method you need to call
 output.collect((K2) k, (V2) v);

• Each invocation of the reduce() method at the reducer is given a
key of type K2 and a list of values of type V2.

• Note that those are the same K2 and V2 types used in the Mapper.
The reduce() method loops through all the values of type V2.

while (values.hasNext()) { V2 v = values.next(); . . . }

• Somewhere in the reduce() method you’ll call

 output.collect((K3) k, (V3) v); to send results out
@Zoran B. Djordjević 34

3/14/2014

18

org.apache.hadoop.mapred.OutputCollector

@InterfaceAudience.Public

@InterfaceStability.Stable

public interface OutputCollector<K,V>

• Collects the <key, value> pairs output by Mappers and
Reducers.

• OutputCollector is the generalization of the facility provided
by the MapReduce framework to collect data output by either the
Mapper or the Reducer i.e. intermediate outputs or the final
output of the job.

• Method Summary
 void collect(K key, V value) throws IOExceptionAdds

 Adds a key/value pair to the output.

@Zoran B. Djordjević 35

Type matching

• In addition to having consistent K2 and V2 types across Mapper
and Reducer, you’ll also need to ensure that the key and value types
used in Mapper and Reducer are consistent with the input format,
output key class, and output value class set in the driver.

• The use of KeyValueTextInputFormat in the Inverter
means that K1 and V1 must both be type Text.

• The driver must call setOutputKeyClass() and
setOutputValueClass() with the classes of K2 and V2,
respectively.

• All the key and value types must be subtypes of Writable, which
means they are Serializable and serialization interface of
Hadoop could send them around the distributed cluster.

• In fact, the key types implement WritableComparable, a
subinterface of Writable. The key types need to additionally
support the compareTo() method, as keys need to be sorted in
various places in the MapReduce framework.

@Zoran B. Djordjević 36

3/14/2014

19

Counting Citations (Citings)

• Much of what we think of as statistics is counting, and many basic
Hadoop jobs involve counting.

• For the patent citation data, we may want the number of citations a
patent has received. The desired output would look like this:
1000006 1

1000007 3

1000011 7

1000017 1

• In each record, a patent number is associated with the
number of citations it has received. We will write a
MapReduce program for this task.

• We hardly ever write a MapReduce program from scratch. You have

an existing MapReduce program Inverter that processes the
data in a similar way. We copy and rename class Inverter into

InverterCounter and modify it until it does what we want .

@Zoran B. Djordjević 37

InverterCounter, Modify Reducer

• We can modify Inverter to output the count instead of the list of
citing patents. We need the modifications only at the Reducer.

• If we choose to output the count as an IntWritable, we need to
specify IntWritable in three places in the Reducer code. We called
them V3 in our previous notation.

public static class Reduce extends MapReduceBase implements

 Reducer<Text, Text, Text, IntWritable> {

 public void reduce(Text key, Iterator<Text> values,

 OutputCollector<Text, IntWritable> output,

 Reporter reporter) throws IOException {

 int count = 0;

 while (values.hasNext()) {

 values.next(); count++;

 }

 output.collect(key, new IntWritable(count)); } }

• By changing a few lines and matching class types, we created a new
MapReduce program.

@Zoran B. Djordjević 38

3/14/2014

20

Running InverterCounter
• We compile InverterCounter very much like class Inverter.
• We run it using the same input file and send output to a new directory:
$ hadoop jar inverter.jar edu.hu.bigdata.InverterCounter
input outputcount

$ hadoop fs –tail outputcount/part-00000 gives
. . .
999945 2

999949 1

999951 2

999957 1

999961 9

999965 1

999968 1

999971 1

999972 1

999973 2

999974 3

. . .

@Zoran B. Djordjević 39

Build Histogram of Citations

• Now that we know that many patents are cited once, twice and so
forth, we would like to know the exact number of patents cited
once, cited twice, and so forth.

• This type of result we will call the Histogram of the Citation Counts.

• We expect a large number of patents to have been cited once, and
a small number may have been cited hundreds of times.

• Initially we will use the result produced by InverterCounter as
the input into new MapReduce program.

@Zoran B. Djordjević 40

3/14/2014

21

Data Flow

• The first step to writing a new MapReduce program is to figure out the
data flow. We start with the data produced by InverterCounter:
1000006 1

1000007 3

1000011 7

1000017 1

• We want to know how may times a number (citation_count) , for
example 3, appears in the entire file and how many times number 7
appears, and so on.

• Our new mapper will read a record and ignore the patent number or
rather replace it with number 1.

• The Mapper will output an intermediate key/value pair of
<citation_count, 1> .

• The Reducer will sum up the number of 1s for each citation_count
and output the total.

@Zoran B. Djordjević 41

Data Types

• After figuring out the data flow, we need to decide on the types for
the key/value pairs—K1, V1, K2, V2, K3, and V3 for the
input, intermediate, and output key/value pairs.

• We will keep using the KeyValueTextInputFormat, which
automatically breaks each input record into key/value pairs based
on a separator character.

• The input format produces K1 and V1 as Text . We choose to use
IntWritable for K2, V2, K3, and V3 because we know those
data must be integers and it’s more efficient to use IntWritable
than Text.

• We will call our new program CitationHistogram. Its complete
listing is given on the following slides.

• We do not plan to generate a graphical representation of that
histogram using Map Reduce techniques. 

@Zoran B. Djordjević 42

3/14/2014

22

CitationHistogram.java

package edu.hu.bgd;

import java.io.IOException;

import java.util.Iterator;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.conf.Configured;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.FileInputFormat;

import org.apache.hadoop.mapred.FileOutputFormat;

import org.apache.hadoop.mapred.JobClient;

import org.apache.hadoop.mapred.JobConf;

import org.apache.hadoop.mapred.KeyValueTextInputFormat;

import org.apache.hadoop.mapred.MapReduceBase;

import org.apache.hadoop.mapred.Mapper;

import org.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapred.Reducer;

import org.apache.hadoop.mapred.Reporter;

import org.apache.hadoop.mapred.TextOutputFormat;

import org.apache.hadoop.util.Tool;

import org.apache.hadoop.util.ToolRunner;

@Zoran B. Djordjević 43

CitationHistogram.java
public class CitationHistogram extends Configured implements Tool {

 public static class MapClass extends MapReduceBase

 implements Mapper<Text, Text, IntWritable, IntWritable> {

 private final static IntWritable uno = new IntWritable(1);

 private IntWritable citationCount = new IntWritable();

 public void map(Text key, Text value,

 OutputCollector<IntWritable, IntWritable> output,

 Reporter reporter) throws IOException {

 citationCount.set(Integer.parseInt(value.toString()));

 output.collect(citationCount, uno);

 }

 }

 public static class Reduce extends MapReduceBase

 implements Reducer<IntWritable,IntWritable,IntWritable,IntWritable> {

 public void reduce(IntWritable key, Iterator<IntWritable> values,

 OutputCollector<IntWritable, IntWritable>output,

 Reporter reporter) throws IOException {

 int count = 0;

 while (values.hasNext()) {

 count += values.next().get();

 }

 output.collect(key, new IntWritable(count));

 }

 }

@Zoran B. Djordjević 44

3/14/2014

23

CitationHistogram.java
 public int run(String[] args) throws Exception {

 Configuration conf = getConf();

 JobConf job = new JobConf(conf, CitationHistogram.class);

 Path in = new Path(args[0]);

 Path out = new Path(args[1]);

 FileInputFormat.setInputPaths(job, in);

 FileOutputFormat.setOutputPath(job, out);

 job.setJobName("CitationHistogram");

 job.setMapperClass(MapClass.class);

 job.setReducerClass(Reduce.class);

 job.setInputFormat(KeyValueTextInputFormat.class);

 job.setOutputFormat(TextOutputFormat.class);

 job.setOutputKeyClass(IntWritable.class);

 job.setOutputValueClass(IntWritable.class);

 JobClient.runJob(job);

 return 0;

 }

 public static void main(String[] args) throws Exception {

 int res = ToolRunner.run(new Configuration(),

 new CitationHistogram(), args);

 System.exit(res);

 }

}

@Zoran B. Djordjević 45

CitationHistogram

• The class name is now CitationHistogram; all references to
InverterCounter were changed to reflect the new name.

• The main()method is almost always the same. The driver is mostly intact.

• The input format and output format are still
KeyValueTextInputFormat and TextOutputFormat,
respectively.

• The main change is that the output key class and the output value class
are now IntWritable, to reflect the new type for K2 and V2.

• We’ve also removed this line:
job.set("key.value.separator.in.input.line", ",");

• It was setting the separator character used by
KeyValueTextInputFormat on which it was break each input line into a
key/value pair.

• In classes Inverter and InverterCounter we needed a comma for
processing the original citation data. If not set, this property defaults to
the tab character, which is appropriate for the citation count data.

@Zoran B. Djordjević 46

3/14/2014

24

Mapper in CitationHistogram

• The data flow for the mapper is similar to that of the previous
mappers, only here we’ve chosen to define and use two new class
variables: citationCount and uno.

• The map() method has one extra line for setting citationCount,
which is for type casting.

• The reason for defining citationCount and uno in the class
rather than inside the method is purely one of efficiency. The
map() method will be called as many times as there are records
processed at every machine.

• Reducing the number of objects created inside the map() method
can increase performance and reduce garbage collection .

• We pass citationCount and uno to output.collect()

@Zoran B. Djordjević 47

Reducer in CitationHistogram

• The reducer sums up the values for each key. It seems inefficient
because we know all values are 1-s (uno, to be exact).

• Unlike in MapClass, the call to output.collect() in Reduce
instantiates a new IntWritable rather than reuse an existing one.

 output.collect(key, new IntWritable(count));

• This is bad programming. We could improve the performance of our
program by using an IntWritable class variable.

• The number of times reduce() is called in this particular program
is small, probably no more than a few thousand times. So we don’t
have much need to optimize this particular code, but should not be
so cavalier in the future.

• We compile CitationHistogram using the same Build Path as
previously, and export the class to histogram.jar

@Zoran B. Djordjević 48

3/14/2014

25

Running CitationHistogram

• Before we run CitationHistogram let us clean the directory
outputcount where we deposited the result of InverterCounter job.

$ hadoop fs –rm –R outputcount/_*

• The above leaves only file part-00000 in the directory. Next we type:

$ hadoop jar histogram.jar

edu.hu.bigdata.CitationHistogram outputcount outputhis

• As input we use outputcount which contains the result of
InverterCounter job . We send results to HDFS directory outputhis.

@Zoran B. Djordjević 49

• Command
$ hadoop fs –tail

 outputhis/part-00000 gives:
. . .

631 1

633 1

654 1

658 1

678 1

716 1 The most cited patent is
779 1 cited 779 times

• Command
$ hadoop fs –cat

 outputhis/part-00000 | head -5

gives:
1 921128

2 552246

3 380319

4 278438

5 210814

900K patents were cited only once

Histogram
• There are apparently only 258 lines in part-00000
$ hadoop fs -get outputhis/part-00000 .

$ cat part-00000 | wc -l

258

• While it might be less than convenient to generate a graph of these
data using Hadoop, Excel could do it for us.

• Data are somewhat easier to understand if presented on log-log
graph

@Zoran B. Djordjević 50

3/14/2014

26

Chaining MapReduce jobs
• We can execute the two MapReduce jobs manually one after the other, it

would be more convenient to automate the execution sequence.
• We could chain two or more MapReduce jobs to run sequentially, with the

output of one MapReduce job being the input to the next.
• Chaining MapReduce jobs is analogous to Unix pipes .
 mapreduce-1 | mapreduce-2 | mapreduce-3 | ...

• Chaining is actually quite trivial. We could rename Mapper inner classes in
InverterCounter and CitationHistogram classes to MapClass1 and
MapClass2 respectively.

• Similarly we could rename to Reduce classes to Reduce1 and Reduce2.
• All four inner classes could now reside inside a single class that we could call

ChainedHistogram.
• Inside new class we will configure two jobs: job1 and job2.
• job1 will receive its input from HDFS directory input, and write its output to

new HDFS directory called temp. job2 will take its input from the temp
directory and write its output to HDFS directory output.

• We will need two createJob methods: createJob1 and createJob2. The
content of those methods is identical to the content in classes
InverterCounter and CitationHistogram, respectively.

• Once both jobs are done, we will delete the temp directory.

@Zoran B. Djordjević 51

ChainedHistogram,createJob1,cleanup, main

private JobConf createJob1(Configuration conf, Path in, Path out) {

 JobConf job = new JobConf(conf, ChainedHistogram.class);

 job.setJobName("job1");

 FileInputFormat.setInputPaths(job, in);

 FileOutputFormat.setOutputPath(job, out);

 job.setMapperClass(MapClass1.class); job.setReducerClass(Reduce1.class);

 job.setInputFormat(KeyValueTextInputFormat.class);

 job.setOutputFormat(TextOutputFormat.class);

 job.set("key.value.separator.in.input.line", ",");

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(IntWritable.class); return job;

}

private void cleanup(Path temp, Configuration conf)

 throws IOException {

 FileSystem fs = temp.getFileSystem(conf);

 fs.delete(temp, true);

}

public static void main(String[] args) throws Exception {

 int res = ToolRunner.run(new Configuration(), new ChainedHistogram(), args);

 System.exit(res);

}

@Zoran B. Djordjević 52

3/14/2014

27

Class ChainedHistogram, createJob2, run
private JobConf createJob2(Configuration conf, Path in, Path out) {

 JobConf job = new JobConf(conf, ChainedHistogram.class);

 job.setJobName("job2");

 FileInputFormat.setInputPaths(job, in);

 FileOutputFormat.setOutputPath(job, out);

 job.setMapperClass(MapClass2.class); job.setReducerClass(Reduce2.class);

 job.setInputFormat(KeyValueTextInputFormat.class);

 job.setOutputFormat(TextOutputFormat.class);

 job.setOutputKeyClass(IntWritable.class);

 job.setOutputValueClass(IntWritable.class); return job;

}

public int run(String[] args) throws Exception {

 Configuration conf = getConf();

 Path in = new Path(args[0]);

 Path out = new Path(args[1]);

 Path temp = new Path("chain-temp");

 JobConf job1 = createJob1(conf, in, temp);

 JobClient.runJob(job1);

 JobConf job2 = createJob2(conf, temp, out);

 JobClient.runJob(job2);

 cleanup(temp, conf); return 0;

}
@Zoran B. Djordjević 53

Migrating Code to New API

• One of the main design goals driving toward Hadoop’s major 1.0
release was a stable and extensible MapReduce API.

• At the time version 0.20 was planned to be the latest release with
old API and is considered a bridge between the older API (that we
used in last three example) and the upcoming stable API.

• The 0.20 release supports the future API while maintaining
backward-compatibility with the old API while marking it as
deprecated.

• Future releases after 0.20 are supposed to stop supporting the
older API.

• Almost all the changes affect only the basic MapReduce template.
We will rewrite our last class CitationHistogram under the new
API to demonstrate the changes you need to implement.

@Zoran B. Djordjević 54

3/14/2014

28

Differences between API-s

• The most noticeable change in the new API is that many classes in
org.apache.hadoop.mapred package have been moved
elsewhere.

• Many of org.apache.hadoop.mapred classes are now in
org.apache.hadoop.mapreduce package.

• Some classes are now under one of the packages in
org.apache.hadoop.mapreduce.lib.

• After you move your code to the new API, you should not have any
import statements (or full references) to any classes under
org.apache.hadoop.mapred. All of mapred classes are to be
deprecated.

@Zoran B. Djordjević 55

Introduction of Context objects

• Another noticeable change in the new API is the introduction of
Context objects.

• The most immediate impact is the replacement of
OutputCollector and Reporter objects used in the map()
and reduce() methods.

• In new API we output key/value pairs by calling Context.write()
instead of OutputCollector.collect().

• The long-term consequences are to unify communication between
your code and the MapReduce framework, and to stabilize the
Mapper and Reducer API such that the basic method signatures will
not change when new functionalities are added. New
functionalities will only be additional methods on the context
objects. Programs written before the introduction of those
functionalities will be unaware of the new methods, and they will
continue to compile and run against the newer releases.

@Zoran B. Djordjević 56

3/14/2014

29

org.apache.hadoop.mapreduce.Mapper.Context

• Both

org.apache.hadoop.mapreduce.Mapper and

org.apache.hadoop.mapreduce.Reducer

 classes have an object of type Context, i.e.

org.apache.hadoop.mapreduce.Mapper.Context and
org.apache.hadoop.mapreduce.Reducer.Context

For some reason those classes are poorly documented.
• http://hadoop.apache.org/docs/stable/api/org/apache/hado

op/mapreduce/class-use/Mapper.Context.html

• http://hadoop.apache.org/docs/stable/api/org/apache/hado

op/mapreduce/class-use/Reducer.Context.html

@Zoran B. Djordjević 57

New abstract classes Mapper and Reducer

• The new map() and reduce() methods are contained in new
abstract classes Mapper and Reducer, respectively.

• New classes replace the Mapper and Reducer interfaces
(org.apache.hadoop.mapred.Mapper

andorg.apache.hadoop.mapred.Reducer) in the original
API.

• The new abstract classes also replace the MapReduceBase class,
which has been deprecated.

• The new map() and reduce() methods have a couple more
changes.

– They can throw InterruptedException instead of only
IOException.

– In addition, the reduce() method no longer accepts the list of values
as an Iterator but as an Iterable, which is easier to iterate
through using Java’s foreach syntax.

@Zoran B. Djordjević 58

3/14/2014

30

Signatures of old and new map() and reduce()

public static class MapClass //OLD

 extends MapReduceBase implements Mapper<K1, V1, K2, V2> {

 public void map(K1 key, V1 value,

 OutputCollector<K2, V2> output, Reporter reporter)

throws IOException { } }

public static class Reduce // OLD

 extends MapReduceBase implements Reducer<K2, V2, K3, V3> {

 public void reduce(K2 key, Iterator<V2> values,

OutputCollector<K3, V3> output, Reporter reporter)

throws IOException { } }

• The new API simplifies map() and reduce() somewhat:
public static class MapClass extends Mapper<K1, V1, K2, V2> {

 public void map(K1 key, V1 value, Context context)

 throws IOException, InterruptedException { }

}

public static class Reduce extends Reducer<K2, V2, K3, V3> {

 public void reduce(K2 key, Iterable<V2> values, Context context)

 throws IOException, InterruptedException { }

}

@Zoran B. Djordjević 59

Driver Changes

• We also need to change the driver to support the new API.

• JobConf and JobClient classes have been replaced. Their functionalities
have been pushed to the Configuration class (which was originally the
parent class of JobConf) and a new class Job.

• The Configuration class purely configures a job, whereas the Job class
defines and controls the execution of a job.

• Methods such as setOutputKeyClass()and setOutputValueClass()
have moved from JobConf to Job. A job’s construction and submission for
execution are now under Job.

• Originally you would construct a job using JobConf:
JobConf job = new JobConf(conf, MyJob.class); job.setJobName("MyJob");

• Now we do it through Job object:
Job job = new Job(conf, "MyJob"); job.setJarByClass(MyJob.class);

• Previously JobClient submitted a job for execution:
JobClient.runJob(job);

• Now it’s also done through Job :
System.exit(job.waitForCompletion(true)?0:1);

@Zoran B. Djordjević 60

3/14/2014

31

CitationHistogramNewApi.java, new vs. old

package edu.hu.bgd; import java.io.IOException; //import java.util.Iterator;

import java.lang.InterruptedException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.conf.Configured;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

//import org.apache.hadoop.mapred.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

//import org.apache.hadoop.mapred.FileOutputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

//import org.apache.hadoop.mapred.JobClient; //import org.apache.hadoop.mapred.JobConf;

import org.apache.hadoop.mapreduce.Job;

//import org.apache.hadoop.mapred.KeyValueTextInputFormat;

import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat;

import org.apache.hadoop.mapreduce.Mapper; //import org.apache.hadoop.mapred.Mapper;

//import org.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapreduce.Reducer; // import org.apache.hadoop.mapred.Reducer;

//import org.apache.hadoop.mapred.Reporter; //import org.apache.hadoop.mapred.MapReduceBase

//import org.apache.hadoop.mapred.TextOutputFormat;

import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

import org.apache.hadoop.util.Tool;

import org.apache.hadoop.util.ToolRunner;

 @Zoran B. Djordjević 61

CitationHistogramNewApi.java, new vs. old

public class CitationHistogramNewApi extends Configured

implements Tool {

 public static class MapClass extends

 Mapper<Text, Text, IntWritable, IntWritable> {

 private final static IntWritable uno = new IntWritable(1);

 private IntWritable citationCount = new IntWritable();

 public void map(Text key, Text value, Context context)

 throws IOException, InterruptedException {

 citationCount.set(Integer.parseInt(value.toString()));

 context.write(citationCount, uno);

 }

 }

@Zoran B. Djordjević 62

3/14/2014

32

CitationHistogramNewApi.java, new vs. old

public static class Reduce extends Reducer

 <IntWritable,IntWritable,IntWritable,IntWritable> {

//public void reduce(IntWritable key,Iterator<IntWritable>values,

// OutputCollector collector, Reporter reporter)

 public void reduce(IntWritable key, Iterable<IntWritable>

 values, Context context)

 throws IOException, InterruptedException {

 int count = 0;

 // while (values.hasNext()) {

 // count += values.next().get();

 for (IntWritable val:values){ // Iterable allows

 count += val.get(); // for looping

 }

 context.write(key, new IntWritable(count));

 }

 }

@Zoran B. Djordjević 63

CitationHistogramNewApi.java, new vs. old

 public int run(String[] args) throws Exception {

 Configuration conf = getConf();

 //JobConf job = new JobConf(conf, CitationHistogram);

 //job.setJobName("CitationHistogram");

 Job job = new Job(conf, "CitationHistogram");

 job.setJarByClass(CitationHistogramNewApi.class);

 Path in = new Path(args[0]);

 Path out = new Path(args[1]);

 FileInputFormat.setInputPaths(job, in);

 FileOutputFormat.setOutputPath(job, out);

 job.setJobName("CitationHistogramNewApi");

 job.setMapperClass(MapClass.class);

 job.setReducerClass(Reduce.class);

 //job.setInputFormat(KeyValueTextInputFormat.class);

 job.setInputFormatClass(KeyValueTextInputFormat.class);

 //job.setOutputFormat(TextOutputFormat.class);

 job.setOutputFormatClass(TextOutputFormat.class);

 job.setOutputKeyClass(IntWritable.class);

 job.setOutputValueClass(IntWritable.class);

 //JobClient.runJob(job);

 System.exit(job.waitForCompletion(true)?0:1);

 return 0;

 }

@Zoran B. Djordjević 64

3/14/2014

33

CitationHistogramNewApi.java, new vs. old

public static void main(String[] args) throws Exception {

 int res = ToolRunner.run(new Configuration(),

 new CitationHistogramNewApi(), args);

 System.exit(res);

 }

}

• New class CitationHistogramNewApi performs identically as
CitationHistogram class.

@Zoran B. Djordjević 65

