
3/28/2014

1

Lecture 08

R and Hadoop

Zoran B. Djordjević

@Zoran B. Djordjević 1

References

• Materials in this set of slides follow

 “Hadoop in Practice” by Alex Holmes, Manning Publishing, 2012

@Zoran B. Djordjević 2

3/28/2014

2

Integration of R and Hadoop

Why Integrate R and Hadoop?

• R is a statistical programming language for performing data analysis and
graphing the results. The capabilities of R let you perform statistical and
predictive analytics, data mining, and visualization functions on your data.
R is applicability across a wide range of fields: finance, life sciences,
manufacturing, retail, and more.

• Data scientists who work with Hadoop likely have an existing arsenal of
homegrown and external R packages that they leverage. Rewriting these
packages in Java (or any other high-level MapReduce language) would be
onerous and would be the antithesis to rapid development.

• We need a way to use R in conjunction with Hadoop and bridge the gap
between Hadoop and the huge database of information that exists in R.

• We will discuss how one could use R with three different approaches:

– R with Streaming,

– Rhipe, and

– RHadoop.

• You should investigate these and other R and Hadoop integrations and
pick the best approach for your environment.

@Zoran B. Djordjević 3

Install R on CentOS 6.5
• Install EPEL packages first. EPEL are high quality packages that have been developed,

tested, and improved in Fedora available for RHEL and compatible derivatives such as
CentOS and Scientific Linux.

• On 64 bit do:
$ sudo rpm -Uvh

http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm

$ sudo yum install R

• On 32 bit do:
$ sudo rpm -Uvh

http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm

$ sudo yum install R.i386

• Test for R:
[cloudera]$ which R

/usr/bin/R

[cloudera] $ R

R version 3.0.2 (2013-09-25) -- "Frisbee Sailing"

Copyright (C) 2013 The R Foundation for Statistical Computing

Type 'q()' to quit R.

.

> 1 + 3

[1] 4

> # That was R on the command line

@Zoran B. Djordjević 4

3/28/2014

3

In the case an older epel-x.x is there

• If installation of epel packages reports a conflict with an earlier version,
find out which epel packages you have:

$ rpm -qa --qf "%{N}-%{V}-%{R}\n" epel-release

epel-release-5-4

• Subsequently, erase the older package
$ rpm -e epel-release-5-4

• Now you will be free to install new version.

• Installation of these packages creates a yum repository information
contained in files:

/etc/yum.repos.d/epel.repo

/etc/yum.repos.d/epel-testing.repo

@Zoran B. Djordjević 5

Install R Studio Server
• You do not need R Studio on all nodes of your Hadoop Cluster. You might find

it convenient to have it on your Master node, especially if you do not enjoy
working with R through the command line interface.

• To download and install RStudio Server, open a terminal window and
execute the commands corresponding to the 32 or 64-bit version, as
appropriate.

• 32-bit Size: 17.5 MB
$ wget http://download2.rstudio.org/rstudio-server-0.97.336-i686.rpm

$ sudo yum install --nogpgcheck rstudio-server-0.97.336-i686.rpm

• 64-bit Size: 17.6 MB
$ wget http://download2.rstudio.org/rstudio-server-0.97.336-x86_64.rpm

$ sudo yum install --nogpgcheck rstudio-server-0.97.336-x86_64.rpm

• Once R Studio Server is installed, you can access it through the port 8787
on your Master node, in our case the localhost.

• (Note: GNU wget (or just wget, formerly Geturl) is a program that retrieves content from web
servers, and is part of the GNU Project. Name is derived from World Wide Web and get. It
supports downloading via HTTP, HTTPS, and FTP. Its features include recursive download,
conversion of links for offline viewing of local HTML, support for proxies, and much more.)

@Zoran B. Djordjević 6

http://en.wikipedia.org/wiki/World_Wide_Web

3/28/2014

4

R Studio Server Console, on port 8787

• On the command prompt of the R Studio Console you could do anything
you are used to doing in R Studio:

@Zoran B. Djordjević 7

Prerequisites for Rhipe

1. A working Hadoop cluster

2. R installed as a shared library

3. Google protocol buffers

4. Environment variables

@Zoran B. Djordjević 8

http://hadoop.apache.org/
http://cran.r-project.org/doc/manuals/R-admin.html
http://code.google.com/p/protobuf

3/28/2014

5

Install Maven
• Go to http://maven.apache.org/download.cgi and download
 apache-maven-3.2.1-bin.tar.gz

• Extract the archive to the desired maven home directory, which can be a common,
/usr/local/

• Move the downloaded archive to /usr/local/ path using mv command
> sudo mv apache-maven-3.2.1-bin.tar.gz /usr/local

> cd /usr/local

> sudo tar -zxvf apache-maven-3.2.1-bin.tar.gz

• This will extract the apache-maven-3.2.1 directory into /usr/local/
• Create symbolic link..
> sudo ln -s apache-maven-3.2.1 maven

• Open your ~/.bash_profile file with vi ~/.bash_profile and add the following
lines to the file:

M2_HOME=/usr/local/apache-maven-3.2.1

export M2_HOME

export PATH=$M2_HOME/bin:$PATH

• AT last execute the environment changes with the command,

> source . ~/.bash_profile

• Check the installation with,
> mvn -version

@Zoran B. Djordjević 9

Prerequisites for rhipe: Protocol Buffers

• Protocol Buffers is Google’s data serialization and Remote Procedure Call (RPC)
library, which is used extensively at Google. We’ll use it in conjunction with
Rhipe, an R related library for Hadoop processing.

• Rhipe only works with Protocol Buffers version 2.4.0 or somewhat newer.

• Useful resources on Protocol Buffers could be found at:

– Project page http://code.google.com/p/protobuf/

– Developer Guide http://bit.ly/JlXlv

– Downloads http://code.google.com/p/protobuf/downloads/list

• You might need a C++ compiler. If you do, you can install it with the following
command:
$ sudo yum install gcc-c++.i386 (32 bit)

$ sudo yum install gcc-c++.x86_64 (64 bit)

• Download 2.4.1 source tarball from:

http://code.google.com/p/protobuf/downloads and extract the content
$ tar -xzf protobuf-2.4.1.tar.gz

(Note: Do not download protobuf-2.5.0.tar.gz. I tried it and
encounter errors when installing Rhipe_0.71 later.)

@Zoran B. Djordjević 10

http://maven.apache.org/download.cgi
http://code.google.com/p/protobuf/downloads/list
http://code.google.com/p/protobuf/downloads/list
http://code.google.com/p/protobuf/downloads/list
http://code.google.com/p/protobuf/downloads

3/28/2014

6

Compile and Install Protocol Buffers

• Build and install the native libraries and binaries:
$ cd protobuf-2.4.1/

$./configure

$ make

$ make check

$ sudo make install

• We need to build the Java library. Inside directory protobuf-2.4.1 move to
folder java

$ cd java

$ sudo mvn package install

• File protobuf-java-2.4.1.jar was create in target directory.

• Copy created Java JAR into Hadoop’s lib directory.

• Check whether your Hadoop resides in /usr/lib/hadoop
$ cd /usr/lib/hadoop

$ echo $HADOOP_HOME

• If $HADOOP_HOME is not set, add it to yours and root’s .bash_profile file
$ export HADOOP_HOME=/usr/lib/hadoop

$ sudo cp target/protobuf-java-2.4.1.jar $HADOOP_HOME/lib

@Zoran B. Djordjević 11

RHIPE

• RHIPE is a library that improves the integration between R and Hadoop.

• Useful information about RHIPE could be found on following URLs:
RHIPE GitHub page https://github.com/saptarshiguha/RHIPE

RHIPE documentation http://saptarshiguha.github.com/RHIPE/

• It appears that Rhipe is not integrated with CRAN.

• Note: to find out which packages are placed on CRAN, go to:
http://cran.r-

project.org/web/packages/available_packages_by_name.html

• The following instructions have been tested on CentOS 6.5.

• These instructions need to be executed on all your Hadoop nodes and
any client-side nodes using Rhipe.

• Save yourself from grief and make your directory structure identical on all
nodes.

@Zoran B. Djordjević 12

http://saptarshiguha.github.com/RHIPE/
http://saptarshiguha.github.com/RHIPE/
http://saptarshiguha.github.com/RHIPE/
http://cran.r-project.org/web/packages/available_packages_by_name.html
http://cran.r-project.org/web/packages/available_packages_by_name.html
http://cran.r-project.org/web/packages/available_packages_by_name.html
http://cran.r-project.org/web/packages/available_packages_by_name.html

3/28/2014

7

Further prerequisites for rhipe
$ sudo -s

$ export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig

$ export HADOOP=/usr/lib/hadoop

$ export HADOOP_LIB=$HADOOP/lib

$ export HADOOP_CONF_DIR=$HADOOP/conf # Hadoop configuration folder
$ export LD_LIBRARY_PATH=/usr/lib64/R/lib

LD_LIBRARY_PATH points to the directory where R’s so files reside.

• ldconfig creates the necessary links and cache (for use by the run-time linker, ld.so) to
the most recent shared libraries found in the directories specified on the command
line, in the file /etc/ld.so.conf, and in the trusted directories (/usr/lib and /lib).

• ldconfig checks the header and file names of the libraries it encounters when
determining which versions should have their links updated.

$ sudo /sbin/ldconfig

$ sudo cat << EOF > /etc/ld.so.conf.d/protobuf-x86.conf

/usr/local/lib

EOF

• Download rhipe
wget http://ml.stat.purdue.edu/rhipebin/Rhipe_0.73.1.tar.gz

@Zoran B. Djordjević 13

Load Rhipe into R
$ R CMD INSTALL Rhipe_0.731.tar.gz # run on every machine

• Test the Rhipe installation:
$ R

> library(Rhipe) # load the library

--

| IMPORTANT: Before using Rhipe call rhinit() |

| Rhipe will not work or most probably crash |

--

Warning message:

In onload.2(libname, pkgname) :

 Rhipe: HADOOP_BIN is missing, using $HADOOP/bin

>

Note: INSTALL is a utility for installing add-on packages. Syntax:
R CMD INSTALL [options] [-l lib] pkgs

pkgs A space-separated list with the path names of the packages to be

installed.

lib the path name of the R library tree to install to.

options a space-separated list of options through which in particular the

 process for building the help files can be controlled.

• If used as R CMD INSTALL pkgs without explicitly specifying lib, packages are installed into the
library tree rooted at the first directory in the library path which would be used by R run in the
current environment.

• To install into the library tree lib, use R CMD INSTALL -l lib pkgs. This prepends lib to R_LIBS for
duration of the install, so required packages in the installation directory will be found (and used in
preference to those in other libraries).

@Zoran B. Djordjević 14

3/28/2014

8

RHadoop

• RHadoop is an open source tool developed by Revolution Analytics for
integrating R with MapReduce.

• Useful resource on Rhadoop could be found on following links:

– RHadoop project page

 https://github.com/RevolutionAnalytics/RHadoop

– Rhadoop Downloads
https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads

– rmr wiki including prerequisites

https://github.com/RevolutionAnalytics/RHadoop/wiki/rmr

– RHadoop wiki

https://github.com/RevolutionAnalytics/RHadoop/wiki

– RHadoop tutorial

https://github.com/RevolutionAnalytics/RHadoop/blob/master/

rmr/pkg/docs/tutorial.md

@Zoran B. Djordjević 15

Dependencies

• Each node in your Hadoop cluster will require the following components:

• R and

• R packages: RJSON (0.95-0 or later), itersols, digest and rJava

> install.packages("RJSONIO") install

(Note: During the installation of these packages you might be asked for a mirror.
 Select one near you and click OK.)

> install.packages("itertools")

> install.packages("digest")

> install.packages("rJava")

• If you get an error installing rJava, you may need to set JAVA_HOME and
reconfigure R prior to running the rJava installation:

$ sudo -s

$ export JAVA_HOME=/usr/java/jdk1.6.0_26 # or JDK you use

$ R CMD javareconf

$ R

> install.packages("rJava")

@Zoran B. Djordjević 16

3/28/2014

9

Installation of rmr2 and rhdfs

• RHadoop comes with three packages. We will install rmr2 and rhdfs
which provide MapReduce and HDFS integration with R.

• The third package, rhbase, serves for HBase integration.

• The installation of rmr2 and rhdfs needs to be executed on all Hadoop
nodes and any client-side node using rmr2/rhdfs.

• rmr2 and rhdfs can be downloaded from

https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads

• The same page contains prerequisites which need to be read. For example,
the prerequisits will tell you that rmr does not support Hadoop mr2 but
rather only mr1.

• Set HADOOP_CMD and HADOOP_STREAMING variables
export HADOOP_CMD=/usr/bin/hadoop

export HADOOP_STREAMING=/usr/lib/hadoop/contrib/streaming/

hadoop-streaming-0.20.2-cdh4u6.jar

@Zoran B. Djordjević 17

Prerequisites for rmr2

• rmr2 could be installed on Hadoop cluster, CDH3 and higher or Apache
1.0.2 and higher but limited to mr1, not mr2.

• R needs to be installed on each node of the cluster (developed and tested
on R 2.14.1). Revolution R Community 4.3 or 5.0 can be used, if you
upgrade to RJSONIO 0.95 and create a symbolic link from
/usr/bin/Revoscript to /usr/bin/Rscript.

• Install the required R packages on each node.

• rmr2 itself needs to be installed on each node.

• Make sure that the packages are installed in the same default location
accessible to all users (R will run on the cluster as a different user from the
one who has started the R interpreter where the mapreduce calls are
executed)

• Make sure that the environment variables HADOOP_CMD and
HADOOP_STREAMING are properly set. For some distributions,
HADOOP_HOME is still sufficient for R to find everything that's needed so if
that works for you, keep it that way.

 @Zoran B. Djordjević 18

https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads
https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads

3/28/2014

10

Prerequisites for rhdfs

• rhdfs package has a dependency on rJava

• Access to HDFS via this R package requires the HADOOP_CMD environment
variable.

• HADOOP_CMD points to the full path for the hadoop binary. If this variable
is not properly set, the package will fail when the init() function is
invoked

@Zoran B. Djordjević 19

Problem with Install of rmr2
• I tried running rmr2 install on R is 2.10. We need a newer version. I tried to

download R-2.15.2.tar.gz from http://r-project.org
• Tried to compile and install, failed. It appears I was missing X system header

files and libraries.
• https://stat.ethz.ch/pipermail/r-announce/2012/000557.html

• Check what X packages are installed
rpm -qa | grep XFree86

• I tried Googling around. Found:
http://rpmfind.net/linux/rpm2html/search.php?query=XFree86-devel

• XFree86-devel includes the libraries, header files and documentation you'll
need to develop programs which run as X clients. XFree86-devel includes
the base Xlib library as well as the Xt and Xaw widget sets. Install
XFree86-devel if you are going to develop programs which will run as X
clients.

• I downloaded thee files:
XFree86-devel-4.3.0-2.90.43.i386.rpm

XFree86-devel-4.3.0-2.90.55.i386.rpm

XFree86-devel-4.3.0-2.i386.rpm

• Numerous dependences missing. I could not install XFree86 on my VM.

@Zoran B. Djordjević 20

http://r-project.org/
http://r-project.org/
http://r-project.org/
https://stat.ethz.ch/pipermail/r-announce/2012/000557.html
https://stat.ethz.ch/pipermail/r-announce/2012/000557.html
https://stat.ethz.ch/pipermail/r-announce/2012/000557.html
https://stat.ethz.ch/pipermail/r-announce/2012/000557.html
http://rpmfind.net/linux/rpm2html/search.php?query=XFree86-devel
http://rpmfind.net/linux/rpm2html/search.php?query=XFree86-devel
http://rpmfind.net/linux/rpm2html/search.php?query=XFree86-devel
http://rpmfind.net/linux/rpm2html/search.php?query=XFree86-devel

3/28/2014

11

Download EPEL Library

• As root (sudo –s) I installed EPEL library
$ sudo -s

$ rpm -ivh http://mirror.chpc.utah.edu/pub/epel/5/x86_64/epel-release-5-

4.noarch.rpm

• Then I ran, again
$ yum install R

.

Dependency Installed:

 texinfo-tex.i386 0:4.8-14.el5

Updated:

 R.i386 0:2.15.2-1.el5

Dependency Updated:

 R-core.i386 0:2.15.2-1.el5 R-devel.i386 0:2.15.2-

1.el5 libRmath.i386 0:2.15.2-1.el5

 libRmath-devel.i386 0:2.15.2-1.el5

Complete!

$ yum clean all

• Apparently, the process raised the release level of R to R-2.15.2

@Zoran B. Djordjević 21

Run R CMD INSTALL rmr2-…tar.gz

• Now, I could try installing rmr again:
[root@localhost ~]# R CMD INSTALL rmr2_2.2.0.tar.gz

* installing to library ‘/usr/lib/R/library’

ERROR: dependencies ‘Rcpp’, ‘functional’, ‘stringr’, ‘plyr’,

‘reshape2’ are not available for package ‘rmr2’

* removing ‘/usr/lib/R/library/rmr2’

[root@localhost ~]#

• From http://cran.r-project.org/web/packages/Rcpp/, download
Rcpp_0.10.3.tar.gz and run:

$ sudo R CMD INSTALL Rcpp_0.10.3.tar.gz

• From http://cran.r-project.org/web/packages/functional/index.html

$ sudo R CMD INSTALL functional_0.4.tar.gz

• Similarly download and R CMD INSTALL: plyr_1.8.tar.gz,
reshape2_1.2.2.tar.gz and stringr_0.6.2.tar.gz. Open R as the
user root and run:

> install.packages(“Rcpp”)

> install.packages(“functional”)

> install.packages(“strignr”)

> install.packages(“plyr”)

@Zoran B. Djordjević 22

http://mirror.chpc.utah.edu/pub/epel/5/x86_64/epel-release-5-4.noarch.rpm
http://mirror.chpc.utah.edu/pub/epel/5/x86_64/epel-release-5-4.noarch.rpm
http://mirror.chpc.utah.edu/pub/epel/5/x86_64/epel-release-5-4.noarch.rpm
http://mirror.chpc.utah.edu/pub/epel/5/x86_64/epel-release-5-4.noarch.rpm
http://mirror.chpc.utah.edu/pub/epel/5/x86_64/epel-release-5-4.noarch.rpm
http://mirror.chpc.utah.edu/pub/epel/5/x86_64/epel-release-5-4.noarch.rpm
http://mirror.chpc.utah.edu/pub/epel/5/x86_64/epel-release-5-4.noarch.rpm
http://mirror.chpc.utah.edu/pub/epel/5/x86_64/epel-release-5-4.noarch.rpm
http://cran.r-project.org/web/packages/Rcpp/
http://cran.r-project.org/web/packages/Rcpp/
http://cran.r-project.org/web/packages/Rcpp/
http://cran.r-project.org/web/packages/Rcpp/
http://cran.r-project.org/web/packages/functional/index.html
http://cran.r-project.org/web/packages/functional/index.html
http://cran.r-project.org/web/packages/functional/index.html
http://cran.r-project.org/web/packages/functional/index.html
http://cran.r-project.org/web/packages/functional/index.html

3/28/2014

12

rmr2
$ source .bash_profile

[root@localhost ~]# echo $JAVA_HOME

/usr/java/jdk1.6.0_26

$ [root@localhost ~]# R CMD javareconf

$ sudo R CMD INSTALL rmr2_2.2.0.tar.gz >

install.packages("rJava")

$ R

> library(rmr)

Error in library(rmr) : there is no package called ‘rmr’

> library(rmr2)

Loading required package: Rcpp

Loading required package: RJSONIO

Loading required package: digest

Loading required package: functional

Loading required package: stringr

Loading required package: plyr

Loading required package: reshape2

>

 @Zoran B. Djordjević 23

rhdfs
[root@localhost library]# cd ~cloudera

[root@localhost ~]# echo $HADOOP_CMD

/usr/bin/hadoop

[root@localhost ~]# R CMD INSTALL rhdfs_1.0.5.tar.gz

* installing to library ‘/usr/lib/R/library’

* installing *source* package ‘rhdfs’ ...

** R

** inst

** preparing package for lazy loading

** help

*** installing help indices

 converting help for package ‘rhdfs’

 finding HTML links ... done

 hdfs-file-access html

 hdfs-file-manip html

 hdfs.defaults html

 hdfs.file-level html

 initialization html

 rhdfs html

 text.files html

** building package indices

** testing if installed package can be loaded

* DONE (rhdfs)

Making packages.html ... Done

R

> library(rhdfs)

Loading required package: rJava

HADOOP_CMD=/usr/bin/hadoop

Be sure to run hdfs.init()

>

@Zoran B. Djordjević 24

3/28/2014

13

Comparing R & Hadoop Integrations

1. R + Streaming — With this approach, you use MapReduce to execute R
scripts in the map and reduce phases.

2. Rhipe —Rhipe is an open source project which allows MapReduce to be
closely integrated with R on the client side.

3. RHadoop—Like Rhipe, RHadoop also provides an R wrapper around Map-
Reduce so that R and Hadoop could be seamlessly integrated on the
client side.

@Zoran B. Djordjević 25

Comparing R & Hadoop Integrations

Criteria R + Streaming Rhipe RHadoop

License R is a combination of GPL-2
and GPL-3. Streaming is
integrated into Hadoop,
Apache 2.0.

Apache 2.0 Apache 2.0

Installation
complexity

Easy. The R package needs to
be installed on each Data
Node, but packages are
available on publicly available
Yum repositories for easy
installation.

High. R must be installed on each
DataNode, in conjunction with Protocol
Buffers, and Rhipe itself. To do so requires
building Protocol Buffers, and the Rhipe
installation isn’t seamless and can require
some hacking to get it to work.

Moderate. R must be installed
on each DataNode, and RHadoop
has dependencies on other R
packages. But these packages can
be installed with CRAN, and the
RHadoop installation, while not
via CRAN, is straight-forward.

Client-side
integration
with R

None. You need to use
the Hadoop command-line
to launch a Streaming job,
and specify as arguments
the map-side and reduce-side
R scripts.

High. Rhipe is an R library which handles
running a MapReduce job when the
appropriate function is called. Users
simply write native R map and reduce
functions in R, and Rhipe takes care of the
logistics of transporting them and invoking
them from the map and reduce tasks.

High. RHadoop is also an R
library, where users define their
map and reduce functions in R.

Underlying
technology

Streaming Rather than using Streaming, Rhipe
instead uses its own map and reduce Java
functions, which stream the map and
reduce inputs in Protocol Buffers encoded
form to a Rhipe C executable, which uses
embedded R to invoke the user’s map and
reduce R functions.

RHadoop is a simple, thin
wrapper on top of Hadoop and
Streaming. Therefore, it has no
proprietary MapReduce code,
and has a simple wrapper R script
which is called from Streaming
and in turn calls the user’s map
and reduce R functions.

@Zoran B. Djordjević 26

3/28/2014

14

Areas where R and MapReduce work well

Approach Work well Things to be aware

R and Streaming You want advanced control
over your MapReduce
functions such as partitioning
and sorting.

Hard to invoke directly from
existing R scripts, as opposed
to the other approaches.

Rhipe Use when you need access to R
and MapReduce without
leaving R

Requires proprietary Input and
Output Formats to work with
the Protocol Buffers encoded
data.

RHadoop You want access to R and
MapReduce without leaving R.
You also want to work with
existing MapReduce Input and
Output Format classes.

There needs to be sufficient
memory to store all the
reducer values for a unique key
in memory; values aren’t
streamed to the reducer
function.

@Zoran B. Djordjević 27

• For all of the above approaches, care should be taken to install R in the same
directory on all the nodes.

• You should also make sure that all nodes are running the same version of R.

R and Streaming

• With Hadoop Streaming, we can write map and reduce functions in any
programming or scripting language that supports reading data from
standard input and writing to standard output.

• We will look at how one can get Streaming to work directly with R.

• First we will examine one map-only job, and then in a full MapReduce job.
We will work with stock data and perform simple calculations.

• The objective is to show how to integrate R with Hadoop Streaming.

Streaming and map-only R

• Just like with regular MapReduce, we can have a map-only job in
Streaming and R.

• Map-only jobs make sense in situations where we don’t care to join, sort
or group our data together in the reducer.

@Zoran B. Djordjević 28

3/28/2014

15

Calculate the daily average for stocks

• We are using R and Hadoop Streaming to process data in a map-only job.

• We will work on the stocks.txt CSV file, which contains the following
elements for each stock:

Symbol, Date, Open, High, Low, Close, Volume, Adj Close

• A subset of the contents of the file can be obtained by running the
command:

$ head -4 stocks.txt

AAPL,2009-01-02,85.88,91.04,85.16,90.75,26643400,90.75

AAPL,2008-01-02,199.27,200.26,192.55,194.84,38542100,194.84

AAPL,2007-01-03,86.29,86.58,81.90,83.80,44225700,83.80

AAPL,2006-01-03,72.38,74.75,72.25,74.75,28829800,74.75

• We will pretend that we are calculating the daily average for each stock by finding the mean
of the open and close prices.

@Zoran B. Djordjević 29

stock_day_avg.R Script

• The R script (stock_day_avg.R) to perform the task is shown below:
#!/usr/bin/Rscript # Identifies the process (Rscript) to run the script

options(warn=-1) # disable warnings to avoid interference

 # sink() function controls destination of the output

sink("/dev/null") # /dev/null is Linux black hole, nothing comes back

input <- file("stdin", "r") # open a handle to process standard input for read

Read a line from standard input. n is the number of lines that should be read. You set the warn to FALSE
because you don’t receive an EOF when reading from standard input. If you hit an empty line, you take that to
mean you’ve hit the end of the input.

while(length(currentLine <- readLines(input,n=1,warn=FALSE)) > 0) {

Split the string using a comma as the separator, and flatten the resulting list into a vector

 fields <- unlist(strsplit(currentLine,","))

Create vector lowHigh and add to it the stock open and close prices in numeric form.

 lowHigh <- c(as.double(fields[3]),as.double(fields[6]))

Calculate the mean of the open and close prices.

 stock_mean <- mean(lowHigh)

Calling sink()with no arguments restores the output destination so we can write data to standard output.

 sink()

Concatenate the stock symbol, date, and mean prices for the day and write them to standard output.

 cat(fields[1], fields[2],stock_mean,"\n", sep="\t")

 sink("/dev/null")

}

close(input)

@Zoran B. Djordjević 30

3/28/2014

16

Test the script on the Linux command line

• First of all test whether your user (cloudera?) knows where the executable
Rscript resides:

$which Rscript

/usr/bin/Rscript

• If not there, find the installation directory of your R (e.g. /usr/lib/R)
and set the enclosed bin directory in your PATH in your .bash_profile.
Whatever you get goes to the first line of you stock_day_avg.R script.

• Make sure your R script is executable
$ chmod +x stock_day_avg.R

• Now you can test the script by feeding it with data in stocks.txt file
$ cat stocks.txt | stock_day_avg.R

. . . .

MSFT 2001-01-02 43.755

MSFT 2000-01-03 116.965

YHOO 2009-01-02 12.51

YHOO 2008-01-02 23.76

.

• This looks right so we can now run a Hadoop Streaming job.

@Zoran B. Djordjević 31

Hadoop Streaming, Map only job

• Make sure we have hadoop in the PATH
$ which hadoop

/usr/bin/hadoop

• Remove HDFS directory output, if one exists, and move data file stocks.txt
to HDFS.

$ hadoop fs –rmr output/

$ hadoop fs –put stocks.txt stocks.txt

• Let us write a small script to run Hadoop Streaming command
$ vi run_streaming.sh

../contrib/hadoop-streaming-*.jar specifies that we are running a streaming job

hadoop jar $HADOOP_HOME/contrib/streaming/hadoop-streaming-0.20.2-cdh3u6.jar \

number of reducers is 0 (zero)

-D mapreduce.job.reduces=0 \

specify the input format for the job

-inputformat org.apache.hadoop.mapred.TextInputFormat \

-input stocks.txt \

-output output \

tell streaming job the location of the mapper for the Map phase

-mapper `pwd`/stock_day_avg.R \

R executable should be copied into the distributed cache and made available to the map tasks.

-file `pwd`/stock_day_avg.R

@Zoran B. Djordjević 32

3/28/2014

17

Run and Examine
$ chmod +x run_streaming.sh

$ run_streaming.sh

packageJobJar: [/home/cloudera/stocks/stock_day_avg.R, /var/lib/hadoop-
0.20/cache/cloudera/hadoop-unjar5674593937834742222/] [] /tmp/streamjob6594441133288731053.jar
tmpDir=null

13/04/21 14:17:41 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your
platform... using builtin-java classes where applicable

13/04/21 14:17:41 WARN snappy.LoadSnappy: Snappy native library not loaded

.

13/04/21 14:17:43 INFO streaming.StreamJob: map 0% reduce 0%

13/04/21 14:18:04 INFO streaming.StreamJob: map 50% reduce 0%

13/04/21 14:18:06 INFO streaming.StreamJob: map 100% reduce 0%

13/04/21 14:18:16 INFO streaming.StreamJob: map 100% reduce 100%

13/04/21 14:18:19 INFO streaming.StreamJob: Job complete: job_201304211142_0001

13/04/21 14:18:19 INFO streaming.StreamJob: Output: output

[cloudera@localhost stocks]$ hadoop fs -ls output

Found 3 items

-rw-r--r-- 1 cloudera supergroup 0 2013-04-21 14:18 /user/cloudera/output/_SUCCESS

drwxr-xr-x - cloudera supergroup 0 2013-04-21 14:17 /user/cloudera/output/_logs

-rw-r--r-- 1 cloudera supergroup 1066 2013-04-21 14:18 /user/cloudera/output/part-00000

[cloudera@localhost stocks]$ hadoop fs -cat output/part-00000

.

AAPL 2005-01-03 64.035

AAPL 2004-01-02 21.415

AAPL 2003-01-02 14.58

AAPL 2002-01-02 22.675

AAPL 2001-01-02 14.88

AAPL 2000-01-03 108.405

CSCO 2008-01-02 26.77

CSCO 2009-01-02 16.685

CSCO 2007-01-03 27.595

. . . .

• The result appears the same as the one obtained on the Linux command line.

@Zoran B. Djordjević 33

TextInputFormat

• We used TextInputFormat for the input format, which emits a
key/value tuple where the key is the byte offset in the file, and the value
contains the contents of a line.

• However, in our R script we only supplied the value part of the tuple. This
is an optimization in Hadoop Streaming, where if it detects we are using
TextInputFormat it ignores the key from the TextInputFormat.

• If we want the key supplied to our script, we can set the Hadoop
configuration parameter stream.map.input.ignoreKey to true.

@Zoran B. Djordjević 34

3/28/2014

18

Configuring map task of a Streaming job

• By default the input keys and values are separated by the tab character. To
override this value, use the following configuration key. In this example
you're telling Streaming to use the comma as the separator string.

-D stream.map.input.field.separator=","

• To extract the key/value pair from a line of output from a script, Streaming
will split the output line using the tab character. This can be overridden
with the following configuration key:

-D stream.map.output.field.separator=",“

• Streaming will split the output line based on the first occurrence of
stream.map.output.field.separator to determine which part is the key
and which the value. If instead you want to split on the third instance of
the separator character you would specify the above setting in your job:

-D stream.num.map.output.key.fields=3

@Zoran B. Djordjević 35

Streaming, R and full MapReduce job

• We calculated the daily mean for each stock symbol. Now we will use the
MapReduce framework to group together all of the daily means for each
stock symbol across multiple days, and then calculate a cumulative moving
average (CMA) over that data.

• In our map-side calculation, the map R script emitted tab-separated output
with the following fields:
Symbol Date Mean

• MapReduce will sort and group together the output keys of our map script,
which is the stock symbol. For each unique stock symbol MapReduce will
feed the reduce R script with all the map output values for that stock
symbol.

• Reduce script will sum the means together and emit a single output
containing the CMA.

@Zoran B. Djordjević 36

3/28/2014

19

Reduce Script: stock_cma.R
#!/usr/bin/Rscript

options(warn=-1)

sink("/dev/null")

A simple R function that takes as input the stock symbol and a vector of means. It calculates
the CMA and writes the symbol and CMA to standard output.

outputMean <- function(stock, means) {

 stock_mean <- mean(means)

 sink()

 cat(stock, stock_mean, "\n", sep="\t")

 sink("/dev/null")

}

input <- file("stdin", "r")

prevKey <- ""

means <- numeric(0)

while(length(currentLine <-readLines(input,n=1,warn=FALSE)) > 0) {

 fields <- unlist(strsplit(currentLine, "\t"))

Read the key, which is the stock symbol.

 key <- fields[1]

Read the mean from the input
 mean <- as.double(fields[3])

@Zoran B. Djordjević 37

Reduce Script: stock_cma.R
if(identical(prevKey, "") || identical(prevKey, key)) {

 prevKey <- key

 means <- c(means, mean)

 } else {

When you find a new key it means you’ve hit a new map output key. This means it’s time to call
the function to calculate the CMA and write the output to standard out.

 outputMean(prevKey, means)

 prevKey <- key

 means <- c(means, mean)

 }

}

if(!identical(prevKey, "")) {

 outputMean(prevKey, means)

}

close(input)

@Zoran B. Djordjević 38

3/28/2014

20

R and Streaming MapReduce Data Flow

@Zoran B. Djordjević 39

This follows the same pattern that we
saw in the previous “map-only" R
Streaming job. The only difference is
that the output isn't written to the
OutputFormat, and instead is
collected and spilled to disk, awaiting
fetch commands from reducer tasks.
Just like on the map side, the R
script should write its output as
lines on standard output..
By default the tab character
separates the output key from
the output value.

These are two separate scripts, one for the
map side, and the other for the reduce side.
The reduce script is supplied each map output
record on a separate line. The map output
key and value are separated by tab by default.
Map output keys are grouped together, so
our code needs to read the input line by line,
and when we see a change in the input key
we can process all the values for
that key.

Testing Data Flow on Command Line

• Type on a single line:
$ cat test-data/stocks.txt | stock_day_avg.R | \

sort --key 1,1 | stock_cma.R

AAPL 68.997

CSCO 49.94775

GOOG 123.9468

MSFT 101.297

YHOO 94.55789

• That output looks good, so we are ready to run this in a Hadoop job.

@Zoran B. Djordjević 40

3/28/2014

21

Streaming MapReduce Job
$ export HADOOP_HOME=/usr/lib/hadoop

$ ${HADOOP_HOME}/bin/hadoop fs -rmr output

$ ${HADOOP_HOME}/bin/hadoop fs -put test-data/stocks.txt stocks.txt

$ hadoop jar ${HADOOP_HOME}/contrib/streaming/*.jar \

-inputformat org.apache.hadoop.mapred.TextInputFormat \

-input stocks.txt -output output \

Specify the map R script (the same script we ran in the previous map-only technique).

-mapper `pwd`/stock_day_avg.R \

-reducer `pwd`/stock_cma.R \ # Set the reduce R script.

-file `pwd`/stock_day_avg.R \

-file `pwd`/stock_cma.R

• We can perform a simple cat that shows you that the output is identical to what we
produced when calling the R script directly:

$ hadoop fs -cat output/part*

AAPL 68.997

CSCO 49.94775

GOOG 123.9468

MSFT 101.297

YHOO 94.55789

@Zoran B. Djordjević 41

Streaming Configuration Settings

• Streaming configuration settings, which can be used to customize reduce inputs
and outputs.

• To set a custom input key/value separator string, use the following configuration
key. The default is the tab character:

 -D stream.reduce.input.field.separator=",“

• To set a custom output key/value separator string, use the following configuration
key. The default is the tab character:

 -D stream.reduce.output.field.separator=",“

• Set the number of stream.reduce.output.field.separator separators, which delimit
the output key form the output value. The default is 1:

-D stream.num.reduce.output.key.fields=3

@Zoran B. Djordjević 42

3/28/2014

22

Additional Sorting and Partitioning

• If the map output values need to be supplied to the reducer in a specific
order for each map output key (called secondary sort)?

• Secondary sort in Streaming can be achieved by using the
KeyFieldBasedPartitioner, as shown here:

$ hadoop fs -put test-data/stocks.txt stocks.txt

$ ${HADOOP_HOME}/bin/hadoop \

jar ${HADOOP_HOME}/contrib/streaming/*.jar \

• Specify that Streaming should consider both the stock symbol and date to be part of the map output key.

-D stream.num.map.output.key.fields=2 \

• Specify that MapReduce should partition output based on the first token in the map output
key, which is the stock symbol.

-D mapred.text.key.partitioner.options=-k1,1\

-inputformat org.apache.hadoop.mapred.TextInputFormat \

-input stocks.txt -output output \

-mapper `pwd`/stock_day_avg.R \

-reducer `pwd`/stock_cma.R \

• Specify the partitioner for the job, KeyFieldBasedPartitioner, which will parse the
mapred.text.key.partitioner.options to determine what to partition.

-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner \

-file `pwd`/stock_day_avg.R

@Zoran B. Djordjević 43

Issues with Streaming

• We’ve looked at how you can use R in combination with Streaming to
calculate the means over our stock data.

• One of the disadvantages of this approach is that this can’t be easily
integrated into client-side R scripts. This is the problem that Rhipe and
RHadoop solve.

@Zoran B. Djordjević 44

3/28/2014

23

Rhipe

• Rhipe, short for R and Hadoop Integrated Processing Environment, is an
open source project that, as the name suggests, provides a closer
integration of R and Hadoop than what you saw with R and Streaming.

• In R and Streaming we used the command line to launch a Hadoop job,
whereas with Rhipe we can actually work with MapReduce directly in R.

• Rhipe enables invocation of Hadoop’s MapReduce jobs directly from R
client.

• Using Rhipe we will again implement the Continuous Moving Average of
each stock symbol, just like we did with R and Streaming.

• With Rhipe we will achieve tighter integration of R and Hadoop.

• Rhipe allows you to write client-side R code that can launch a MapReduce
job.

• We will take a look at how Rhipe R callbacks are used in the scope of Rhipe
MapReduce jobs.

@Zoran B. Djordjević 45

Test you Installation of Rhipe
$ echo $HADOOP_BIN

/usr/lib/hadoop/bin

$ R

> library(Rhipe)

--

| IMPORTANT: Before using Rhipe call rhinit() |

| Rhipe will not work or most probably crash |

--

> rhinit(TRUE, TRUE)

Rhipe initialization complete

Rhipe first run complete

[1] TRUE

> rhwrite(list(1,2,3),"/tmp/x") # write a list with 3 numbers to hdfs directory /tmp/x
Wrote 3 pairs occupying 57 bytes

[1] TRUE

$ hadoop fs -get /tmp/x .

$ cd x

$ ls

0

$ cat 0

SEQ!org.godhuli.rhipe.RHBytesWritable!org.godhuli.rhipe.RHBytesWritable�hf�-���*�

1

 �*
2

 *

3 # You cannot complain, you see 1, 2 and 3.
> rhread("/tmp/x")

• should return a list of length 3 each element a list of 2 objects

@Zoran B. Djordjević 46

3/28/2014

24

Keep on Testing
• Run a small MapReduce job:
> map <- expression({

+ lapply(seq_along(map.values),function(r){

+ x <- runif(map.values[[r]])

+
rhcollect(map.keys[[r]],c(n=map.values[[r]],mean=mean(x),sd=sd(x)))

+ })

+ })

> ## Create a job object

> z <- rhmr(map, ofolder="/tmp/test", inout=c('lapply','sequence'),

+ N=10,mapred=list(mapred.reduce.tasks=0),jobname='test')

> ## Submit the job

> rhex(z)

--

Running: /usr/lib/hadoop/bin/hadoop jar
/usr/lib/R/library/Rhipe/java/Rhipe.jar org.godhuli.rhipe.RHMR
/tmp/RtmpmcilvV/rhipe3f6c5999cd82

--

result:256

[[1]]

.

@Zoran B. Djordjević 47

Read the Results

res <- rhread('/tmp/test')

colres <- do.call('rbind', lapply(res,"[[",2))

colres

 n mean sd

 [1,] 1 0.4983786 NA

 [2,] 2 0.7683017 0.2937688

 [3,] 3 0.5936899 0.3425441

 [4,] 4 0.3699087 0.2666379

 [5,] 5 0.5179839 0.4060244

 [6,] 6 0.6278925 0.2952608

 [7,] 7 0.4920088 0.2785893

 [8,] 8 0.4592598 0.2674592

 [9,] 9 0.5734197 0.1928496

[10,] 10 0.4942676 0.2989538

@Zoran B. Djordjević 48

3/28/2014

25

Continuous Moving Average, stock_cma_rhipe.R

• The Rhipe script to calculates the stock CMA
#!/usr/bin/Rscript # Shebang tells which executable will run the script
library(Rhipe) # Load the Rhipe library into memory.
rhinit(TRUE,TRUE) # Initiate Rhipe
map <- expression({ # Define the map expression that is executed in the map task.
 process_line <- function(currentLine) {

 fields <- unlist(strsplit(currentLine, ","))

 lowHigh <- c(as.double(fields[3]), as.double(fields[6]))

The Rhipe function rhcollect is called to emit key/value tuples from the map phase
 rhcollect(fields[1], toString(mean(lowHigh)))

 }

 lapply(map.values, process_line)

})

The reduce block is called containing a vector of values in reduce.values. This is called
multiple times if the number of values for a key is greater than 10,000.
reduce <- expression(

 pre = { means <- numeric(0) },

 reduce = { means <- c(means, as.numeric(unlist(reduce.values))) },

 post = {

Like in the map expression, rhcollect() is called to emit the output key and value pair.
 rhcollect(reduce.key, toString(mean(means)))

 }

)

@Zoran B. Djordjević 49

Continuous Moving Average, stock_cma_rhipe.R

input_file <- “/tmp/stocks.txt“ # Input file or directory

output_dir <- “/tmp/output“ # Output directory

job <- rhmr(# The rhmr function is used to set up the job.
 jobname = "Rhipe CMA",

 map = map,

 reduce = reduce,

 ifolder = input_file,

 ofolder = output_dir,

 inout = c("text", "sequence")

)

rhex(job) # Launch the MapReduce job.

• As opposed to your R with Streaming technique, with Rhipe you can
execute the R script directly, which in turn will launch the MapReduce job:

$ hadoop fs -put stocks.txt /tmp/stocks.txt

$ chmod +x stock_cma_rhipe.R

$ export HADOOP_BIN=/usr/lib/hadoop/bin

$ stock_cma_rhipe.R

@Zoran B. Djordjević 50

3/28/2014

26

Result of Rhipe job
$ hadoop fs -ls /tmp/output

Found 3 items

-rw-r--r-- 1 cloudera supergroup 0 2013-04-23 17:15 /tmp/output/_SUCCESS

drwxr-xr-x - cloudera supergroup 0 2013-04-23 17:15 /tmp/output/_logs

-rw-r--r-- 1 cloudera supergroup 257 2013-04-23 17:15 /tmp/output/part-r-00000

$ hadoop fs –copyToLocal /tmp/output/part-r-00000 part-r-00000

$ vi part-r-00000

SEQ^F!org.godhuli.rhipe.RHBytesWritable!org.godhuli.rhipe.RHBytesWritable^@^@^
@^@^@^@ñKb_¦]ÓÃïßû^@æ<9d>^CÅ^@^@^@^X^@^@^@^K

^H^@*^F

^DAAPL^L^H^@*^H

^F68.997^@^@^@^Y^@^@^@^K

^H^@*^F

^DCSCO^M^H^@*

^G30.8985^@^@^@^Y^@^@^@^K

^H^@*^F

.

• We do see results. They are not quite in a simple textual form but rather
serialized as the Protocol Buffers. If you need result in a textual form, bring them
back into R using rhread() function and then do with them whatever …

• Rhipe doesn’t use Streaming and instead uses its own map and reduce functions
and its own Input/Output Format classes. As a result, it can’t use other
Input/Output Format classes, which you may already have in place to work with
your data formats.

@Zoran B. Djordjević 51

Anatomy of R Script using Rhipe

@Zoran B. Djordjević 52

The map expression

The reduce expression,
with three callbacks
called at the start,
during and end of each
unique map output key.

Set the configuration
settings for the job.

Launch the MapReduce
job

Executing the R
script results in
Rhipe kicking-off a
MapReduce job.

Launch a
MapReduce
job.

3/28/2014

27

Anatomy of the Map task

@Zoran B. Djordjević 53

Only text and Rhipe-specific
SequenceFile supported. Protocol Buffers

Encoded Binary
content

Protocol Buffers
Encoded Binary

content

Buffer of input
keys and values.

Once the buffer exceeds a threshold, it is
written into an R vector called map.values
and R is told to execute the user function.

The callback converts from R types
into the Protocol Buffers form, and
pushes it onto standard output.

When the user function calls rhcollect, this

results in a callback into Rhipe's C code.

Anatomy of Reduce Task

@Zoran B. Djordjević 54

Only text, Protocol Buffers,
and Rhipe-specific
SequenceFile outputs are
supported. Protocol Buffers

Encoded Binary
content

Protocol Buffers
Encoded Binary

content

Buffer of input
keys and values.

Once the buffer exceeds a threshold,
it is written into an R vector called
reduce.values and R is told to execute
the user function.

The callback converts from R types
into the Protocol Buffers form, and

pushes it onto standard output.

When the user function calls rhcollect, this

results in a callback into Rhipe's C code.

R reduce expression

3/28/2014

28

Reduce Expression

• Reduce expression includes three standard callbacks:
reduce <- expression(

 pre = { … },

 reduce = { … },

 post = { … },

)

• pre = {…} is called at the start of each unique key.

• reduce= { … } is called with a batch of values for the identified in pre.

• If the number of values ofr a key is greater that 10,000, then this will be
called ceil(N/10,000) time where N is the total number of values for
the key.

• post = { … } is called once all the values have been supplied to reduce

@Zoran B. Djordjević 55

Reduce Expression

• Each Reduce task acts on a partition of the intermediate keys produced as
the output of the Map phase. The above code is run for every Reduce task.

• RHIPE implements the above algorithm by calling the R expression
reduce$pre . In this expression, the user will have the new key present
in reduce.key.

• After this step, RHIPE will call reduce$reduce several times until the
condition inside reduce { …} is false. Each time reduce$reduce is
called, the vector reduce.values will contain a subset of the
intermediate map values associated with reduce.key. The length of this
vector is 10,000 by default, but can be changed by setting
the rhipe_reduce_bufsize option.

• Finally when all values have been processed, RHIPE calls reduce$post.
At this stage, all intermediate values have been sent and the user is
expected to write out the final results. Variables created
in reduce$pre will be visible in the subsequent expressions.

@Zoran B. Djordjević 56

3/28/2014

29

Rhipe Functions

RHIPE has functions that access the HDFS from R, that are used inside MapReduce
jobs and functions for managing MapReduce jobs.

• Before calling any of the functions described below, call rhinit(). If you
call rhinit(TRUE,TRUE,buglevel=2000)` a slew of messages are
displayed - useful if Rhipe does not load.

HDFS Related

rhdel(folders) # File Deletion

• This function deletes the folders contained in the character vector folders
which are located on the HDFS. The deletion is recursive, so all subfolders will
be deleted too. Nothing is returned.

rhls(path, recurse=FALSE) # Listing Files

• Returns a data frame of filesystem information for the files located at path.
If recurse is TRUE, rhls will recursively travel the directory tree rooted at path.
The returned object is a data frame consisting of the columns: permission,
owner, group, size (which is numeric), modification time, and the file
name. path may optionally end in ‘*’ which is the wildcard and will match any
character(s).

@Zoran B. Djordjević 57

Rhipe Functions

rhget(src,dest) # Copying from the HDFS

• Copies the files (or folder) at src, located on the HDFS to the destination
dest located on the local filesystem. If a file or folder of the same name
as dest exists on the local filesystem, it will be deleted.

rhput(src,dest) # Copying to the HDF

• Copies the local file called src (not a folder) to the destination dest on HDFS.

rhcp(src,dest) # Copying on the HDFS

• Copies the file (or folder) src on the HDFS to the destination dest also on the
HDFS.

rhwrite(list,dest,N=NULL) # Writing R data to the HDFS

• Takes a list of objects, found in list and writes them to the folder pointed to
by dest which will be located on the HDFS. The file dest will be in a format
interpretable by RHIPE, i.e it can be used as input to a MapReduce job. The
values of the list of are written as key-value pairs in a SequenceFileFormat
format. N specifies the number of files to write the values to

@Zoran B. Djordjević 58

3/28/2014

30

Rhipe Functions

• rhread - Reading data from HDFS into R
rhread(files,type="sequence",max=-1,mc=FALSE,buffsize=2*1024*1024)

• Reads the key,value pairs from the files pointed to by files. The
source files can end in a wildcard (*) e.g. /path/input/p* will read all the
key,value pairs contained in files starting with p in the folder /path/input/.
The parameter type specifies the format of files. This can be one
of text, map or sequence which imply a Text file, MapFile or a
SequenceFile respectively. For text files, RHIPE returns a matrix of lines,
each row a line from the text files. Specifying max for text files, limits the
number of bytes read and is currently alpha quality.

rhgetkeys - rhgetkey(keys, path) # Reading Values from Map Files

• Returns the values from the map files contained in path corresponding to
the keys in keys. path will contain folders which is MapFiles are stored.
Thus the path must have been created as the output of a RHIPE job
with inout[2] (the output format) set to map. Also, the saved keys must be
in sorted order.

@Zoran B. Djordjević 59

Rhipe Documentation and Summary

• RHIPE 0.65.2 documentation
http://www.stat.purdue.edu/~sguha/rhipe/doc/html/index.html

• RHIPE consist of several functions that interact with the HDFS e.g. save data
sets, read data created by RHIPE MapReduce, delete files.

• We compose and launch MapReduce jobs from R using the commands rhmr
and rhex, and monitor the status of th ejob using rhstatus which returns
an R object. We stop jobs using rhkill.

• The output of Rhipe may include the creation of PDF files, R data sets, CVS files
etc. These will be copied by RHIPE to a location on the HDFS. User does not
need to copy them from the nodes or set up a network file system.

• Data sets that are created by RHIPE can be read using other languages such as
Java, Perl, Python and C. The serialization format used by RHIPE (converting R
objects to binary data) uses Googles Protocol Buffers which is very fast and
creates compact representations for R objects. Ideal for massive data sets.

• Data sets created using RHIPE are key-value pairs. A key is mapped to a value. A
MapReduce computations iterates over the key,value pairs in parallel. If the
output of a RHIPE job creates unique keys the output can be treated as a
external-memory associative dictionary. RHIPE can thus be used as a medium
scale (millions of keys) disk based dictionary, which is useful for loading R
objects into R.

@Zoran B. Djordjević 60

http://www.stat.purdue.edu/~sguha/rhipe/doc/html/index.html
http://www.stat.purdue.edu/~sguha/rhipe/doc/html/index.html
http://code.google.com/p/protobuf/

3/28/2014

31

RHadoop

• RHadoop is an open source project created by Revolution Analytics, which
provides another approach to integrating R and Hadoop.

• Like Rhipe, RHadoop allows MapReduce interactions directly from within
your R code.

• RHadoop consists of three components:

– rmr2 —The integration of R and MapReduce

– rhdfs —An R interface to HDFS

– rhbase —An interface in R to Hbase

• We’ll focus on using rmr2 because we are mostly interested in R and
MapReduce integration, but rdfs and rhbase are worth a look for a
completely integrated R and Hadoop.

• Conceptually, RHadoop works in a way similar to Rhipe, where you define
your map and reduce operations, which RHadoop invokes as part of the
MapReduce job.

@Zoran B. Djordjević 61

Environment Variables

• rmr2 package is looking for variable HADOOP_HOME and HADOOP_CONF

• You might find it convenient to set those in your .bash_profile file and
source that file when you need the variables.

• You might, as well, find it convenient to set those variables within R, or R
scripts, like in the following:

$ R

set HADOOP_HOME to the location of HADOOP installation,

set HADOOP_CONF to the location of Hadoop config files, and

make sure that the Hadoop bin directory is on your path

sys.setenv(HADOOP_HOME="/usr/lib/hadoop")

sys.setenv(HADOOP_CONF="/usr/lib/hadoop/conf")

sys.setenv(PATH=paste(Sys.getenv("PATH"), ":",

+ sys.getenv("HADOOP_HOME"),"/bin",sep=""))

>

@Zoran B. Djordjević 62

3/28/2014

32

sapply Example

• Conceptually, MapReduce is not very different than a combination
of sapply and a tapply.

• R function sapply() returns a list of the same length as X, each element
of which is the result of applying FUN to the corresponding element of X.

• R function tapply() applies a function to each cell of a ragged array, that
is to each (non-empty) group of values given by a unique combination of
the levels of certain factors.

• MapReduce transform elements of a list, compute an index — key in
mapreduce jargon — and process the groups defined by that index (keys).
Let's start with a simple sapply example:

@Zoran B. Djordjević 63

sapply vs. mapreduce

• Let's start with a simple sapply example:
$R

> small.ints = 1:10

> sapply(small.ints, function(x) x^2)

> sapply(small.ints, function(x) x^2)

[1] 1 4 9 16 25 36 49 64 81 100

• Now let us do the same in MapReduce
> library(rmr2)

Loading required package: Rcpp

Loading required package: RJSONIO

Loading required package: digest

Loading required package: functional

Loading required package: stringr

Loading required package: plyr

Loading required package: reshape2

> small.ints = to.dfs(1:10)

> mapreduce(

 input = small.ints,

 map = function(k, v) cbind(v, v^2))

@Zoran B. Djordjević 64

3/28/2014

33

Description of mapreduce

• The first line puts the data into HDFS, where the bulk of the data has to
reside for mapreduce to operate on. to.dfs is not in a scalable way to
insert big data into HDFS. to.dfs is nonetheless very useful for a variety of
uses like writing test cases, learning and debugging. to.dfs can put the
data in a file. If you don't specify one it will create temp files and clean
them up when done.

• The return value is something we call a big data object. You can assign it to
variables, pass it to other rmr2 functions, mapreduce jobs or read it back
in. It is a stub, that is the data is not in memory, only some information
that helps finding and managing the data. This way you can refer to very
large data sets whose size exceeds memory limits.

• The second line mapreduce replaces sapply. The input is the variable
small.ints which contains the output of to.dfs, that is a stub for our
small number data set in its HDFS version, but it could be a file path or a
list containing a mix of both.

• The function to apply, which is called a map function as opposed to the
reduce function, which is not used here, is a regular R function with
constraints: it has two arguments, a collection of keys and one of values.

@Zoran B. Djordjević 65

Description of mapreduce

• map function returns key value pairs using the function keyval, which
can have vectors, lists, matrices or data.frames as arguments; you can also
return NULL.

• We can avoid calling keyval explicitly but the return value x will be
converted with a call tokeyval(NULL,x). This is not allowed in the
map function when the reduce function is specified and under no
circumstance in the combine function, since specifying the key is
necessary for the shuffle phase.

• In this example, we are not using the keys at all, only the values, but we
still need both to support the general mapreduce case. The return value is
big data object, and you can pass it as input to other jobs or read it into
memory (watch out, it will fail for big data!) with from.dfs.

• from.dfs is complementary to to.dfs and returns a key-value pair
collection. from.dfs is useful in defining map reduce algorithms whenever
a mapreduce job produces something of reasonable size, like a summary,
that can fit in memory and needs to be inspected to decide on the next
steps, or to visualize it. It is much more important than to.dfs in
production work.

 @Zoran B. Djordjević 66

3/28/2014

34

An Example with tapply vs. reduce
> groups = rbinom(32, n = 50, prob = 0.4)

> tapply(groups, groups, length)

 7 8 9 10 11 12 13 14 15 16 17 18

 1 2 4 10 8 7 5 3 4 3 2 1

• This created a sample from the binomial distribution with 32 observations,
probability of success 0.4 and 50 trials and counts how many times each
outcome occurs. Function tapply performed the aggregation, counting of
trials which had the same number of positive results. In a way tapply
does what reduce functions do in MapReduce.

@Zoran B. Djordjević 67

MapReduce equivalent
> groups = to.dfs(groups)
13/04/25 13:01:55 WARN util.NativeCodeLoader: Unable to load native-
hadoop library for your platform... using builtin-java classes where
applicable

13/04/25 13:01:55 INFO compress.CodecPool: Got brand-new compressor

Warning message:

In to.dfs(groups) : Converting to.dfs argument to keyval with a NULL
key

> from.dfs(

+ mapreduce(

+ input = groups,

+ map = function(., v) keyval(v, 1),

+ reduce =

+ function(k, vv)

+ keyval(k, length(vv))))
13/04/25 13:02:47 INFO streaming.StreamJob: map 100% reduce 100%

13/04/25 13:02:50 INFO streaming.StreamJob: Job complete: 13/04/25
13:02:50 INFO streaming.StreamJob: Output:
/tmp/RtmpgtgXis/file16fe5a02ecdc

Deleted hdfs://localhost:8020/tmp/RtmpgtgXis/file16fe4376ee58

$key

 [1] 5 7 8 9 10 11 12 13 14 15 16 17

$val

 [1] 1 3 2 1 4 7 4 11 5 6 4 2

@Zoran B. Djordjević 68

3/28/2014

35

MapReduce equivalent of tapply

• First we move the data into HDFS with to.dfs(). This is not the normal
way in which big data will enter HDFS; it is normally the responsibility of
scalable data collection systems such as Flume or Sqoop.

• In normal case we would just specify the HDFS path to the data as input
to mapreduce. In our case the input is the variable groups which contains
a big data object, which keeps track of where the data is and does the
clean up when the data is no longer needed.

• Since a map function is not specified it is set to the default, which is like an
identity but consistent with the map requirements, that is

function (k,v) keyval(k,v)

@Zoran B. Djordjević 69

MapReduce equivalent of tapply

• The reduce function takes two arguments, one is a key and the other is a
collection of all the values associated with that key.

• Value could be one of vector, list, data frame or matrix depending on what
was returned by the map function. The idea is that if the user returned
values of one class, we should preserve that through the shuffle phase.
Like in the map case, the reduce function can return NULL, a key-value
pair as generated by the function keyval or any other object x which is
equivalent to keyval(NULL, x). The default is no reduce, that is the output
of the map is the output of mapreduce. In this case the keys are
realizations of the binomial and the values are all 1(please note recycling
in action) and the only important thing is how many there are,
so length gets the job done. Looking back at this example, there are some
small differences with tapply but the overall complexity is very similar.

@Zoran B. Djordjević 70

3/28/2014

36

Calculating CMA with RHadoop
#!/usr/bin/Rscript

library(rmr2) # Load the rmr library.
Define a map function, which takes a key/value pair as input.
The keyval function is called for each key/value output tuple that the map emits.
map <- function(k,v) {

 fields <- unlist(strsplit(v, ","))

 keyval(fields[1], mean(as.double(c(fields[3], fields[6]))))

}

The reduce function, which is called once for each unique map key,
where k is the key, and v is a list of values.
reduce <- function(k,vv) {

 keyval(k, mean(as.numeric(unlist(vv))))

}

kvtextoutputformat = function(k,v) {

You define your own reduce output key/value separator.
paste(c(k,v, "\n"), collapse = "\t")

mapreduce(# Run a MapReduce job.
 input = "stocks.txt",

 output = "output",

 textinputformat = rawtextinputformat,

 textoutputformat = kvtextoutputformat,

 map = map,

 reduce = reduce)

@Zoran B. Djordjević 71

Running the code

• To execute the code in this technique, you’d run the following commands:
$ HADOOP_HOME=/usr/lib/hadoop

$ export HADOOP_HOME

$ hadoop fs -put stocks.txt stocks.txt

$ chmod +x stock_cma_rmr2.R

$ stock_cma_rmr2.R

$ hadoop fs -cat output/part*

CSCO 30.8985

MSFT 44.6725

AAPL 68.997

GOOG 419.943

YHOO 70.971

• rmr2 is different from Rhipe in that it uses Hadoop Streaming

• One of the interesting features of rmr2 is that it makes the R client-side
environment available to the map and reduce R functions executed in
MapReduce.

• This means is that the map and reduce functions can reference variables
outside of the scope of their respective functions, which is a huge boon for
R developers.

@Zoran B. Djordjević 72

3/28/2014

37

Anatomy of rmr2 job

@Zoran B. Djordjević 73

The map function

The reduce function
Takes a key and list of values

Run the
MapReduce job

keyval is a rmr2 function
used to emit Map and
Reduce outputs.

The rmr2 mapreduce function is a
trigger to launch a MapReduce job.

rmr2 kicks off a streaming
MapReduce job via the hadoop CLI.

Launch a
MapRedu
ce job.

Features of rmr
• rmr2 works seamlessly with MapReduce inputs and outputs. The input to our jobs

is by rule in HDFS, and we do not interact with the output of our job in R.
• rmr2 has support for writing R variables directly to HDFS, using them as inputs to

the MapReduce job and, after the job has completed, loading them back into an R
data structure.

• This approach will not work with large volumes of data, but is great for
prototyping and testing with smaller datasets.

$ R

> library(rmr2)

> small.ints = to.dfs(1:10)

> out = mapreduce(

input = small.ints,

map = function(k,v) keyval(v, v^2))

...

> result = from.dfs(out)

> print(result)

[[1]]

[[1]]$key

[1] 10

[[1]]$val

[1] 100

attr(,"rmr.keyval")

[1] TRUE

• ...

@Zoran B. Djordjević 74

3/28/2014

38

Additional Materials

• RHadoop wiki has an excellent tutorial containing examples of logical
regression, K-means and more at

https://github.com/RevolutionAnalytics/RHadoop/blob/master/rmr/pkg/docs/tutoria

l.md.

@Zoran B. Djordjević 75

Summary

• The fusion of R and Hadoop allows for large-scale statistical computation,
which becomes all the more compelling as both your data sizes and
analysis needs grow.

• You should have enough information to choose the right level of R and
Hadoop integration appropriate for your project.

@Zoran B. Djordjević 76

https://github.com/RevolutionAnalytics/RHadoop/blob/master/rmr/pkg/docs/tutorial.md
https://github.com/RevolutionAnalytics/RHadoop/blob/master/rmr/pkg/docs/tutorial.md

