Outline

- Introduction
- Problem formulation
- Existing solutions
- Histogram query
- $O(d, k)$ solution
- Performance evaluation
Introduction

• Wireless sensor network
• Outlier phenomenon
• Outlier detection
Wireless sensor networks

- Spatially distributed autonomous sensors
- Goal is to monitor physical or environmental conditions
 - Temperature
 - Sound
 - Presence of chemicals
- Consist of
 1. One or more sensors
 2. Communication radio
 3. Microcontroller
 4. Power supply
Outliers

• Values that are numerically different than the rest
• In our case values are sensor network readings
• Typically low dimension
Outlier detection

- Very high application potential
 - Construction
 - Medicine
 - Seismology
- Purpose is to detect anomalies
 - Wind induced bridge vibrations
 - Patient health condition change
 - Earthquake detection
- Types
 - Local outlier detection
 - Global outlier detection

Stress detecting wireless sensor network
Global vs. Local outlier detection

- **Local**
 - Only a small subset of data is examined
 - Detecting abnormal sensor readings in local proximity
 - Easy to locate by aggregating data
 - Example: surveillance monitoring

- **Global**
 - Whole network readings are examined
 - Very costly due to network-wide transmissions
 - Subject of this presentation
Problem formulation

- Outlier definition is based on K-th nearest neighbor
- \(D_k^k(p) = |p_k - p| \)
- Two most popular outlier definitions:
 1. \(O(d, k) \) outlier if: \(D_k^k(p) > d \)
 2. \(O(n, k) \) outlier if there are no more than \(n-1 \) data points \(q \) such that \(D_k^k(q) > D_k^k(p) \)
- Network consists of \(N \) nodes
- Routing tree rooted at the sink
- Data periodically generated
- Parameters: \(d \) and \(k \) (def. 1), or \(n \) and \(k \) (def. 2)
Assumptions

- Routing tree topology robust
- Communication cost proportional to the packet size
- Each data point is represented by an integer
Existing solutions

- Centralized scheme solution
 - All nodes send all data points to the sink
 - Sink conducts the outlier detection
 - Drawbacks: huge communication cost
- J. Branch et. al. Solution
 - In-network scheme
 - Outcome is revealed to all sensors
 - Drawbacks: revealing outcome to all sensors costly
- S. Subramaniam et. al. solution
 - Keeps sliding window of the historic data
 - Drawbacks: huge memory consumption, may not reveal all
Histogram query

- Histogram: a rough estimate of the probability distribution
- We use equi-width histogram which is easy to aggregate
- Parameters:
 - Bucket width w
 - $max_i - min_i = w$
 - $min_i = max_{i-1}$
 - $f_i =$ number of points in bucket i
Histogram query

- Goal is to calculate value pairs \((l_i, u_i)\) for every bucket \(i\) such that for every point \(p\) in bucket \(i\), \(D^k(p) \in (l_i, u_i]\)

- **Theorem 1**: if \(f_i > k\), then \(l_i = 0\) and \(u_i = w - 1\), are lower and upper bounds for \(D^k(p)\), where \(p\) is any data point in bucket \(i\).

- **Theorem 2**:
 - we define a function: \(F(t,i)= \sum_{j=1}^{i+t} f_j\)
 - If \(f_i \leq k\), we can find an integer \(s \geq 0\) such that \(F(s, i) \leq k\) and \(F(s+1, i) > k\). Then \(l_i = s \cdot w\), and \(u_i = (s+2) \cdot w - 1\)

- We utilize these theorems in our outlier detection schemes
Outlier detection for $O(d, k)$

- Outlier detection scheme for the first outlier definition:
 - $O(d, k)$ is outlier if: $D^k(p) > d$

- Composed of multiple stages
 1. Obtain v_{min} and v_{max} histogram information
 2. Collect histogram
 3. Collect outliers and potential outliers
 4. Diffuse potential outliers and count the number of neighbors within d
Obtain v_{min} and v_{max}

- The first step of the $O(d, k)$ outlier detection scheme
- The sink queries every node for its v_{min} and v_{max}
- At the end the sink has the total value range
- Every node sends at most $\log(v_{\text{min}} \cdot v_{\text{max}})$ bits of information
Collect histogram

1. The sink sets the global histogram parameters: \(v_{\text{min}}, v_{\text{max}}, w \)
 - Good value for bucket width \(w \) is \(d \).
2. The sink sends a histogram query to all nodes
 - The query includes: \(w, v_{\text{min}}, v_{\text{max}}, \) and \(k \)
 - All non-leaf nodes send \(\log(k \cdot d \cdot v_{\text{min}} \cdot v_{\text{max}}) \) bits
3. Sensors divide histogram according to \(v_{\text{min}}, v_{\text{max}} \) and \(d \)
4. Sensors put all data points into one of the buckets
5. Histogram is sent back to the sink
 - Histogram is aggregated every time it is sent upstream
 - Optimisation: if in each bucket we get more then \(k + 1 \) points we fix the counter for that bucket to \(k + 1 \)
 - Communication cost per node: \((l / d) \cdot \log(k + 1) \)
Collect outliers and potential outliers

1. The sink applies Theorem 1 and Theorem 2
2. The sink analyses results for each bucket i
 - Case 1: $u_i < d$, all data points are non-outliers, they can be ignored
 - Case 2: $l_i \geq d$, all data points are outliers
 - Case 3: otherwise, all data points are potential outliers
3. The sink sends a bit-vector query to collect all outliers and potential outliers
 - Query = $\{q_1, q_2, q_3 \ldots q_{l/d}\}$
 - Cost of points collection = $\left(N_o + N_{po} \right) \cdot \log(v_{max}) \cdot \text{avgDist}$
Diffuse potential outliers and count the number of Neighbors within d

1. Identifying some data points as outliers or non-outliers
2. For the rest, the sink sends queries comprised of list of potential outliers \(\{p_1, p_2, p_3, \ldots\}\)
3. Every sensor returns a list of summaries \(\{f_1, f_2, f_3, \ldots\}\)
 - The value of \(f_i\) is a number of points within distance \(d\) from \(p_i\)
 - Results are aggregated from children nodes to parent nodes
 - “k + 1” optimisation
4. The sink simply iterates over the result set and picks out every \(f_i \leq k + 1\)
Total communication cost

- Total communication cost:
 - Each row represents one stage of the algorithm

 \[
 C_{basic} = N \cdot \log(v_{min} \cdot v_{max}) + \\
 + N_{nl} \cdot \log(k \cdot d \cdot v_{min} \cdot v_{max}) + N \left\lfloor \frac{l}{d} \right\rfloor \cdot \log(k + 1) + \\
 + N_{nl} \cdot \left\lfloor \frac{l}{d} \right\rfloor + (N_o + N_{po}) \cdot \log(v_{max}) \cdot \text{avgDist} + \\
 + N_{nl} \cdot N_{po} \cdot \log(v_{max}) + N \cdot N_{po} \cdot \log(k + 1)
 \]

- Where \(N_l \) is the number of non-leaf nodes
- Drawbacks: if \(N_{po} \) is very large, collecting and difusing outliers will incur heavy cost
- Solution: enhanced scheme
Enhanced scheme

- More rounds of refined histogram queries can prune out additional data points
- Width of histogram bucket is now $w = d' < d$
- Each histogram query incurs additional communication cost
- Thus, the bucket width has to be carefully chosen
Performance evaluation

- Used real datasets from Intel Lab
- Data collected from 54 sensors during one month period
- 100 x 100 network, sensors randomly scattered
- Measurements for 1000 random topologies
- Two datasets of temperature measurements

<table>
<thead>
<tr>
<th>Table 1: Network Setup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Sensors (N)</td>
</tr>
<tr>
<td>Number of Non-leaf Nodes (N_{nl})</td>
</tr>
<tr>
<td>Radio Range</td>
</tr>
<tr>
<td>Avg. Hop Distance ($avgDist$)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2: Data Characteristics</th>
<th>03/01 Dataset</th>
<th>03/20 Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Data Points</td>
<td>91468</td>
<td>76871</td>
</tr>
<tr>
<td>Maximum Value</td>
<td>3424</td>
<td>5008</td>
</tr>
<tr>
<td>Minimum Value</td>
<td>1499</td>
<td>363</td>
</tr>
<tr>
<td>Value Range</td>
<td>1926</td>
<td>4646</td>
</tr>
</tbody>
</table>
Performance evaluation

- 03/20 data has lot more outliers
- Evaluation in terms of total communication cost
- Comparing to the centralized scheme

Conclusion: in worst case basic scheme consumes less than 5.5% of the cost of centralized scheme
References

- Outlier Detection in Sensor Networks (Bo Sheng, Qun Li, Weizhen Mao)
- Maimon O. and Rockach L. (Eds.) Data Mining and Knowledge Discovery Handbook
- Online Outlier Detection in Sensor Data Using Non-Parametric Models
Thank you for your attention

Bogdan Azarić, 11/3035
bogdan.azaric@gmail.com