BLOOMS

Ontology Alignment for Linked Open Data

- Introduction
- Problem definition
- BLOOMS approach
- Evaluation
- Future work

³/30 Introduction

- Linked data
- Ontology alignment

Linked data

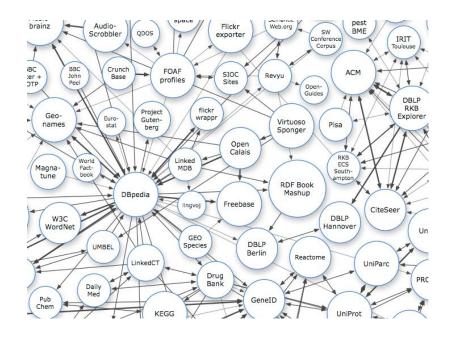
- Increasing need for structured data
 - Amazon ecosystem of affiliates
 - Google and Yahoo! shoping engines
 - TheyWorkForYou
- □ HTML is oriented towards structuring text documents
 - Data is mixed with text
 - Hard for machines to extract structured data
 - Microformats too restricted!

Linked data

- Internet is therefore the web of documents
 - Documents linked with <a href>
 - Search engines use crawlers to create web page index
 - Web publishers register a page with each SE
- Goal is to create the web of data
 - RDF describes concepts and relations between concepts
 - Concepts from different APIs are linked explicitly
 - "myBook forSaleIn thatBookshop locatedIn myCity"

Ontology alignment

- Proc. of finding correspondences between concepts
- Today concepts are very diverse
 - Every system has its own vocabulary
 - Ontologies are developed independently
- Need to integrate heterogenous dbs
- Tools find classes that are semantically equivalent
 Eg. "Truck" and "Lorry"
- These tools are called ontology alignment tools


7/30 Problem definition

- State of the web
- Central issues

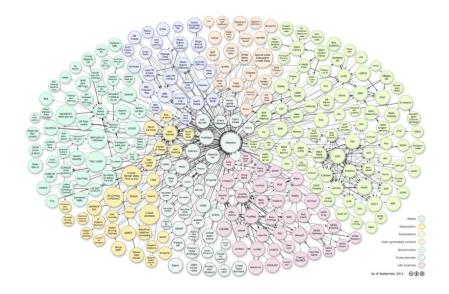
State of the web

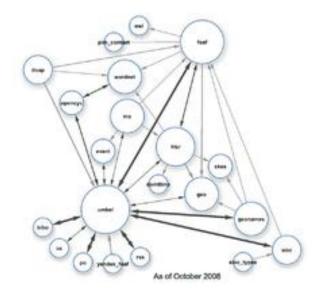
8/30

LOD community effort resulted in "The web of data"
 Contains several billion RDF triples
 Very diverse

Part of the LOD cloud, July, 2009

Central issues


- Interlinks between datasets still relatively scarce
 - Mainly on the instance level
 - Using owl:sameAs
- Schema-level taxonomy info even more scarce
 - rdfs:subClassOf
 - In particular, lack of links between different schemas
- Example:
 - An artist on DBpedia
 - Composer on LinkedMDB


Central issues

10/30

Instance-level linkages

Class linkages

11/30 BLOOMS approach

- 1. Pre-processing of input ontologies
- 2. Construction of BLOOMS forest
- 3. Comparison of BLOOMS forests
- 4. Post-processing

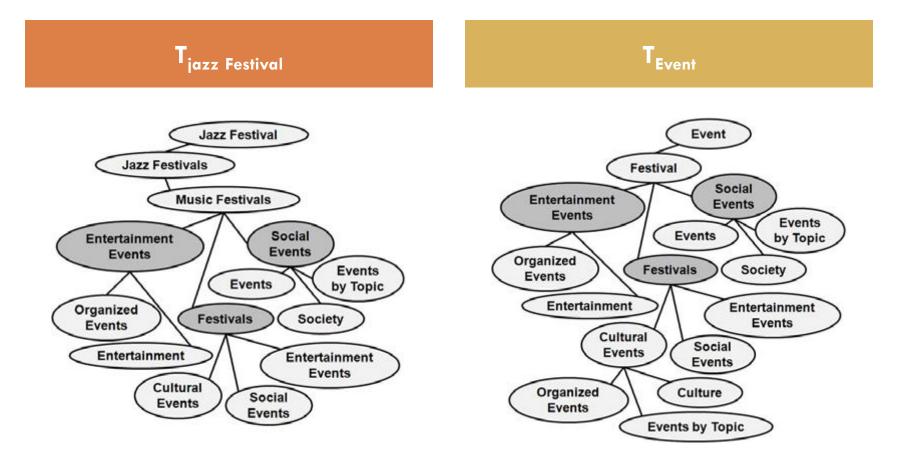
BLOOMS approach

- State-of-art alignment systems fail on LOD datasets
- BLOOMS uses bootstrapping approach
 - Wikipedia category hierarchy
 - Already on the LOD cloud
 - Noisy community-generated data
- Goal is to create taxonomy links between A and B
 - A rdfs:subClassOf B
 - B rdfs:subClassOf A
 - A owl:equivalentClass B
 - none of the above

BLOOMS approach

- Centered around constructing a forest for class C
 - For class C, Tc is "BLOOMS forest for C"
 - Represents a selection of Wikipedia supercategories
 - Comparison of forests T_C and T_B yields results
- Running example are class names
 - 1. Event (DBpedia dataset)
 - 2. JazzFestival (Music Ontology dataset)

Pre-processing


- Normalization of Class names C
 - Replacing underscores and hyphens by spaces
 - Splitting by capital letters
 - Stop word removal
- The result is a normalized string C'
- In our running example
 - 1. C = JazzFestival, C' = Jazz Festival
 - 2. D = Event, D' = Event

Construction of the BLOOMS forest

- We invoke Wikipedia Web Service for C'
 - The results is the Wc Wikipedia set of pages
 - If only one page is returned then Tc is a tree
 - If we get disambig. page then all pages are added
- □ The result set Wc is called senses for C
- \Box For each sense $s \in Wc$ we create $Ts \in Tc$:
 - Root is s
 - Children of s are all categories for that page
 - Children of category C are super-categories of C
 - Tree is cut at level 4

Construction of the BLOOMS forest

16/30

Comparison of BLOOMS forests

17/30

- We do comparison of concept names C and D
- □ We compare each Ts \in T_C and Tt \in T_D
- Function o(Ts, Tt) is a real number overlap measure
 - Remove from Ts nodes that have parent in Tt
 - Removed nodes do not reveal any new info
 - Calculate overlap info with the formula:

$$o(Ts, Tt) = \frac{n}{k-1}$$

n is number of nodes in Ts' that appear in Tt and k is the total number of nodes in Ts'

Comparison of BLOOMS forests

18/30

Alignment is calculated as follows:

C owl:equivalentClass D if: $T_s = T_t | T_s \in T_C, T_t \in T_D$

■ For some pre-defined threshold x if: $\min\{o(T_s, T_t), o(T_t, T_s)\} \ge x$

C rdfs:subClassOf D if: $o(Ts, Tt) \ge o(Tt, Ts)$

D rdfs:subClassOf C if: $o(Ts, Tt) \le o(Tt, Ts)$

For our running example we have

o(T_{Event}, T_{Jazz Festival}) > o(T_{Jazz Festival}, T_{Event})
 The result is: Jazz Festival rdfs:subClassOf Event

Post-processing

- Invoke Alignment API
 - Find alignments between original input ontologies
 - Keep only the ones with confidence value at least 0.95
 - Add them to the results previously obtained
- Invoke a reasoner
 - Find inferred alignments
 - In our case Jena
- Output alignments in Alignment API format

20/30 Evaluation

- General purpose ontology matching
- LOD schema integration
- Related Work

General purpose ontology matching

- Run on OAEI benchmarks
- Compared to other state of the art systems
- BLOOMS input parameters:
 - x = 0.8 for same domain ontologies
 - $\mathbf{x} = 0.6$ where one was an abstract (Dbpedia) ontology
- Two tracks
 - Benchmark: test equivalence
 - Oriented matching: subclass relationships

General purpose ontology matching

22/30

Ontology Alignment Initiative—Benchmark Track												
	S-Match OMViaUO Alignment API BLOOMS AROMA RiMoM										MoM	
Test	Prec	Rec	Prec	Rec	Prec	Rec	Prec	Rec	Prec	Recal	l Prec	Rec
1XX	0.11	1	0.26	0.37	0.59	0.96	0.71	1	1	1	1	1
2XX	0.1	0.2	0.21	0.31	0.3	0.54	0.38	0.49	0.88	0.65	0.93	0.81
3XX	0.1	0.2	0.28	0.28	0.45	0.77	0.62	0.84	0.80	0.76	0.81	0.82
Avg.	0.1	0.46	0.25	0.33	0.45	0.76	0.57	0.78	0.88	0.81	0.91	0.88

Ontology	Alignment	Initiative-	—Oriented	Matching	Track

	A-	API	0	MV	S-N	A atch	AR	OMA	Ril	MoM	BLC	OOMS
Test	Prec	Rec	Prec	Rec	Prec	Rec	Prec	Rec	Prec	Rec	Prec	Rec
1XX	0	0	0.02	0.06	0.01	0.71	NaN	0	1	1	1	1
2XX	0	0	0.01	0.03	0.05	0.30	0.84	0.08	0.67	0.85	0.52	0.51
3XX	0.01	0.03	0.02	0.047	0.01	0.14	0.72	0.11	0.59	0.81	1	0.84
Avg.	0.00	0.01	0.02	0.04	0.03	0.38	0.63	0.07	0.75	0.88	0.84	0.78

LOD Schema Alignment

- No established benchmarks
- Human experts created reference alignments
 - Subclass relations
 - Equivalence relations
- Chosen datasets cover significant LOD portion
- Using only publicly available schemas
 - In order to avoid unfair advantage
 - LinkedMDB for instance did not make schema available

LOD datasets

24/30

Table 3. LOD datasets=LOD datasets utilizing this schema, D=taxonomic depth, # C=number of classes, Linked datasets=LOD datasets they are linked to at the instance level

Schema	LOD datasets	D	# C	Linked datasets
DBpedia ¹⁷	DBpedia	4	204	Geonames, US Census, Freebase
Geonames ¹⁸	Geonames,	2	11	DBpedia, Jamendo, FOAF Profiles
_	Geospecies			
Music Ontology ¹⁹	Jamendo, Music	4	136	GovTrack, DBpedia, Geonames
	Brainz, DBTunes			
BBC Program ²⁰	BBC Programs,	4	100	BBC Music, BBC Playcount Data
_	BBC Music			
FOAF Profiles ²¹	FOAF, Music	3	16	Crunch Base, QDOS, SIOC Sites
_	Brainz			
SIOC ²²	DBpedia,	2	14	Virtuoso Sponger, FOAF Profiles,
	LinkedMDB			SemanticWeb.org
AKT Reference Ontology ²³	ACM, DBLP	5	17	Pisa, IEEE, eprints
Semantic Web Conference	SW Conference	5	177	SemanticWeb.org, Revyu
Ontology ²⁴	Corpus			

LOD results

25/30

Table 4. Results of various systems for LOD Schema Alignment. Legends: Prec=Precision, Rec=Recall, M=Music Ontology, B=BBC Program Ontology, F=FOAF Ontology, D=DBpedia Ontology, G=Geonames Ontology, S=SIOC Ontology, W=Semantic Web Conference Ontology, A=AKT Portal Ontology, err=System Error, NA=Not Available.

	Linked Open Data Schema Ontology Alignment											
Alignment API OMViaUO				RiMoM		S-Match		AROMA		BLOOMS		
Test	Prec	Rec	Prec	Rec	Prec	Rec	Prec	Rec	Prec	Rec	Prec	Rec
M,B	0.4	0	1	0	err	err	0.04	0.28	0	0	0.63	0.78
M,D	0	0	0	0	err	err	0.08	0.30	0.45	0.01	0.39	0.62
F,D	0	0	0	0	err	err	0.11	0.40	0.33	0.04	0.67	0.73
G,D	0	0	0	0	err	err	0.23	1	0	0	0	0
S,F	0	0	0	0	0.3	0.2	0.52	0.11	0.30	0.20	0.55	0.64
W,A	0.12	0.05	0.16	0.03	err	err	0.06	0.4	0.38	0.03	0.42	0.59
W,D	0	0	0	0	err	err	0.15	0.50	0.27	0.01	0.70	0.40
Avg.	0.07	0.01	0.17	0	NA	NA	0.17	0.43	0.25	0.04	0.48	0.54

Related work

□ First work using noisy categorization for matching

Previously, it was used for taxonomy restructuring

□ Gen. algorithm for DB schema matching done in [4]

UMBEL is a notable reference point for LOD schema

Future work

- Intention to identify other kinds of relationships
 - Partonomical relationships
 - Disjointness
- Release upper level ontology for LOD
 - Based on SUMO or DOLCE
 - Added input of BLOOMS
- Test on other platforms
 - OWL-API
 - Other reasoner then Jena

References

- Ontology Alignment for Linked Open Data, Jain et.al. Kno.e.sis Center, Wright State University
- 2. Linked Data: Evolving the Web into a Global Data Space, Tom Heath, Christian Bizer, ISBN: ISBN: 9781608454310 (ebook ISBN)
- 3. Linked Data The Story So Far, Bizer et.al.
- Nikolov, A., Uren, V.S., Motta, E., Roeck, A.N.D.: Overcoming schema heterogeneity between linked semantic repositories to improve coreference resolution. In: G´omez-P´erez, A.,Yu, Y., Ding, Y. (eds.) ASWC 2009. LNCS, vol. 5926, pp. 332–346. Springer, Heidelberg (2009)
- 5. Semantic Web, Vujovic, Neuhold, Fankhauser, Niederee, Milutinovic)

^{30/30} Thank you for your attention!

BLOOMS, The Ontology Alignment for LOD

Azarić Bogdan 11/3035, bogdan.azaric@gmail.com