
Journal of Systems Architecture 51 (2005) 451–469

www.elsevier.com/locate/sysarc
Exploring the performance of split data cache schemes on
superscalar processors and symmetric multiprocessors q

J. Sahuquillo a,*, S. Petit a, A. Pont a, V. Milutinović b

a Department of Computer Systems, Polytechnic University of Valencia, Cno de Vera s/n, 46022 Valencia, Spain
b Department of Computer Engineering, School of Electrical Engineering, University of Belgrade, PO Box 35-54,

11120 Belgrade, Serbia, Yugoslavia

Received 25 August 2003; received in revised form 26 May 2004; accepted 1 December 2004

Available online 25 February 2005
Abstract

Current technology continues providing smaller and faster transistors, so processor architects can offer more com-

plex and functional ILP processors, because manufacturers can fit more transistors on the same chip area. As a con-

sequence, the fraction of chip area reachable in a single clock cycle is dropping, and at the same time the number of

transistors on the chip is increasing. However, problems related with power consumption and heat dissipation are wor-

rying. This scenario is forcing processor designers to look for new processor organizations that can provide the same or

more performance but using smaller sizes. This fact especially affects the on-chip cache memory design; therefore, stud-

ies proposing new smaller cache organizations while maintaining, or even increasing, the hit ratio are welcome. In this

sense, the cache schemes that propose a better exploitation of data locality (bypassing schemes, prefetching techniques,

victim caches, etc.) are a good example.

This paper presents a data cache scheme called filter cache that splits the first level data cache into two independent

organizations, and its performance is compared with two other proposals appearing in the open literature, as well as

larger classical caches. To check the performance two different scenarios are considered: a superscalar processor and

a symmetric multiprocessor.

The obtained results show that (i) in the superscalar processor the split data caches perform similarly or better than

larger conventional caches, (ii) some splitting schemes work well in multiprocessors while others work less well because

of data localities, (iii) the reuse information that some split schemes incorporate for managing is also useful for design-

ing new competitive protocols to boost performance in multiprocessors, (iv) the filter data cache achieves the best per-

formance in both scenarios.

� 2005 Elsevier B.V. All rights reserved.
1383-7621/$ - see front matter � 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.sysarc.2004.12.002

q This work has been partially supported by the Generalitat Valenciana under Grant GV04B/487.
* Corresponding author. Tel.: +34 96 387 75 79; fax: +34 96 387 70 07.

E-mail address: jsahuqui@disca.upv.es (J. Sahuquillo).

mailto:jsahuqui@disca.upv.es

452 J. Sahuquillo et al. / Journal of Systems Architecture 51 (2005) 451–469
Keywords: ILP; Superscalar processors; Split data cache; Multiprocessors; Competitive coherence protocols; Performance evaluation
1. Introduction

Continuous advances in transistor technology

bring two main consequences: (i) faster transistor

switching time, and (ii) larger scale of integration.

Both consequences have an important impact on
architecture design. With respect to the first one,

technology projections [1] predict that feature sizes

will drop so reducing the fraction of the total chip

area reachable in a single cycle. This fact will

dramatically impact on architectural component

latencies measured in processor cycles. For in-

stance, a 4 KB cache will require three cycles with

a 10 GHz clock [2] so technology constrains the
cache geometry (mainly cache size and number

of ways) in current and future microprocessors.

In this sense, the Pentium 4 microprocessor [4] re-

quires two processor clocks to access to its L1 data

cache, whose 8 KB storage size is half the size of its

predecessor Pentium III [3]. The second conse-

quence permits current microprocessors to include

two or more cache levels on-chip (e.g., the Itanium
2 [5] implements three levels) as the common

adopted solution to reduce the latencies of the

memory hierarchy. Despite these facts, the first

level cache has changed little over the past two

or three decades. This paper focuses on this level

because it has a major impact on processor perfor-

mance, and consequently, it has been the focus of

many research efforts.
An important piece of research on cache perfor-

mance has focused on splitting the first level data

cache in two or more independent organizations

in order to improve performance [7,8,10–12]. By

using several organizations at the first level, data

can be classified according to the behavior shown,

and a given organization can be devoted to storing

a particular data group. By proceeding in this way,
each cache (organization and management) can be

tuned to the data characteristics it stores, in order

to maximize performance. For instance, if one

cache is targeted to store data blocks exhibiting

spatial locality then such a cache could have a

large line size. In addition, these schemes can work
faster because the first-level cache storage is usu-

ally split in smaller organizations.

The idea of using split data caches has been

widely explored in the literature [14]. Because ca-

ches base their efficiency on the exploitation of ref-

erence locality (temporal and spatial) that data
exhibit, a representative subset of proposals split

the cache, and consequently classify data to be

stored, according to this criterion. Unfortunately,

despite the fact that this criterion has had a good

acceptance among the research community, empir-

ical results show that less than half of the data

brought into the cache gets used before eviction

therefore showing no locality [13]. Some of the
proposals to split the first-level cache in the litera-

ture introduced extra hardware to move data

blocks from one cache to the other, but no addi-

tional information about the block behavior is

saved. For instance, the victim cache [15] exploits

temporal behavior but no data is labeled as tempo-

ral. Other proposals classify and label data blocks

at run time according to the observed dynamism in
the data access patterns using additional hardware

to save block behavior related information. These

schemes make latter use of this information, called

then reuse information (discussed in Section 2).

This paper focuses on those schemes managing re-

use information to improve cache performance. In

[17] we introduced the filter data cache scheme and

explore its performance in a simple single-issue
microprocessor. Performance was compared

against two other schemes that split the cache

according to the criterion of the data locality

(the NTS [7] and the SSNS [8]). Since advances

in technology permit much more complex cache

design than in previous cache generations, in [30]

we analyzed the impact on performance of split

data caches on a state-of-the-art superscalar pro-
cessor, where modern cache features were also ta-

ken into account. For instance, non-blocking

caches enable multiple memory references to be

outstanding, and multiple ports enable several

memory references to be satisfied in the same pro-

cessor clock.

J. Sahuquillo et al. / Journal of Systems Architecture 51 (2005) 451–469 453
Nowadays, the use of symmetric multiproces-

sors begins to be familiar in certain scenarios (sci-

entific labs, web servers, database servers, etc.) and

it is quite easy to find computers with 2, 4, or 8

processors. Therefore, it would be worth that a
new cache organization should also be suitable

for this kind of system.

In this paper we extend the work in [30] in sev-

eral ways. We investigate the use of split data

caches in multiprocessor systems and analyze their

impact on performance. Due to the key character-

istic of multiprocessors is the mechanism for

coherence maintenance (that directly impacts on
system performance), we also discuss how the re-

use information can help boost the performance

of coherence protocols. Finally, we use a larger

set of benchmarks (i.e., SPEC2000). Results show

that: (i) in general, split data cache schemes

achieve better performance in both superscalar

processors and multiprocessors than conventional

cache organizations by using less die area, and
(ii) among the analyzed schemes the filter data

cache we propose achieves better performance in

both kinds of systems.

The rest of this paper is organized as follows.

Section 2 discusses the related work. Section 3 de-

scribes the proposed scheme. Section 4 analyzes

the performance results in superscalar processors.

Section 5 analyzes the impact on performance of
these proposals when used in multiprocessor sys-

tems, as well as discusses how to design competi-

tive coherence protocols. Finally, conclusions are

summarized in Section 6.
2. Related work

One of the earlier attempts to split the cache,

extensively referenced in the literature, has been

the victim cache proposed by Jouppi in [15]. This

proposal includes a large direct-mapped cache

joined to a small fully associative cache. The goal

is for the smaller cache (buffer) to retain the most

recent conflict lines that do not fit in the largest or

main L1 cache (from now on, the largest cache will
be referred to as the main cache). The goal behind

this working mode is to exploit the temporal local-

ity that data exhibits. Another proposal, imple-
mented in a commercial processor, is the Assist

Cache of Chan et al. [16], where the idea is to have

a large space for a large amount of referenced data

and another smaller cache to help the large one, by

reducing conflict misses.
To avoid introducing pollution into the cache,

some schemes such as the CNA proposed by

Tyson et al. [6], chose bypassing those cache lines

that are infrequently referenced. Other schemes,

like the Memory Address Table (MAT) [9], pro-

posed by Johnson and Whu, propose storing these

lines in a small bypass buffer.

The Allocation by Conflict (ABC) scheme pro-
posed by Tam [29] is a similar solution to the vic-

tim cache but it tries to take replacement decisions

based on the behavior of the conflict block allo-

cated in the main subcache (under the term sub-

cache we refer to a specific organization located

in the first level). For this purpose, it gathers infor-

mation about the block behavior (just one bit) to

be used while the block is in cache (current infor-
mation), but in this scheme this information is re-

set when the block is evicted, so there is no

information about the block behavior when it is

fetched again.

An interesting idea exploited among many pro-

posals appearing in the open literature has been

the use of reuse information to improve perfor-

mance. For this purpose, the current information
attached to a block must be saved when the block

is evicted from the first-level cache. This informa-

tion can be stored in a decoupled hardware struc-

ture or attached to the corresponding L2 cache line

(see Fig. 1). When a block is evicted from the L1

data cache, a later reference to such a block will re-

sult in a miss and the previously stored informa-

tion, i.e., reuse information, is used for
subsequent decisions about where (i.e., in which

subcache) a data block must be placed.

Among the schemes exploiting reuse informa-

tion appearing in the literature, the criterion of

data locality has been widely exploited. Spatial

locality assumes that when a memory location is

referenced, there is a high probability that a neigh-

boring location will be also accessed. Temporal
locality assumes that if a memory location is ref-

erenced, there is a high probability that the

same location will be accessed again. Two earlier

Arrays of Data

Tags
and

Data

Tags
and

Data

Tags Reuse
Info.

Current
Usage
Info.

Current
Usage
Info.

?

L2 cache

L1 cache

Fig. 1. Block diagram of the placement related decision process

in a split data cache.

454 J. Sahuquillo et al. / Journal of Systems Architecture 51 (2005) 451–469
attempts for handling spatial and temporal locali-

ties in separate caches were the dual data cache

(DDC) model introduced in [10] by Gonzalez et
al., and the split temporal spatial model (STS) pro-

posed by Milutinovic et al. in [11].

However, both localities can appear together or

not appear at all. This fact is considered in other

schemes, such as the non-temporal streaming

cache (NTS) proposal of Rivers and Davidson in

[7] where the data cache is split by giving priority

to the temporal locality. In contrast, a scheme giv-
ing priority to the spatial locality called the split

spatial non-spatial cache (SS/NS) is proposed by

Prvulovic et al. in [8]. Another latter option is to

consider three different caches, such as the locality

sensitive module (LSM) scheme of Sanchez and

Gonzalez presented in [12].

As mentioned above, in order to check the per-

formance of our proposal we selected two schemes
managing reuse information and that split the

cache according to the criterion of data locality,

the NTS and the SS/NS. Despite the fact that these

schemes use different criteria to divide data in the

first level of memory hierarchy they are quite sim-

ilar in hardware and organization to our proposal

(see Section 4.4), which make them suitable for

comparison purposes. In order to better under-
stand the performance comparison study below

we detail both schemes.
In the NTS scheme, data is dynamically tagged

as temporal or non-temporal. The model includes

a large temporal cache placed in parallel with a

small non-temporal cache. Each block in the tem-

poral cache has a reference-bit array attached, in
addition to a non-temporal (NT) bit. When a

block is placed in the temporal cache, each bit in

the reference bit array is reset; and the NT bit is

set. Then, if a hit occurs in this cache, the bit asso-

ciated with the accessed word is set. If that bit was

already set (i.e., that the word had already been ac-

cessed), the NT bit is reset to indicate that the

block is showing temporal behavior. When a block
is removed from the first level cache, its NT bit is

flushed to the second level. Then, if the block is

referenced again, this bit is checked to decide

where (i.e., in which subcache) the block must be

placed.

The SS/NS scheme makes a division between

spatial and non-spatial data blocks, giving priority

to those blocks exhibiting spatial locality. The
model introduces a large spatial cache in parallel

with a non-spatial cache that is four times smaller.

The spatial cache exploits both types of spatial

locality (only spatial, or both spatial and tempo-

ral). The block size in the non-spatial cache is just

one word; thus, only temporal locality can be

exploited in this cache. In the spatial cache, the

block size is larger than four words. The spatial
cache uses a prefetch mechanism to assist this type

of locality. A hardware mechanism is introduced

to recompose blocks in the non-spatial cache and

moves them (by a unidirectional data path) to

the spatial cache. This proposal uses a reference

bit array similar to that discussed for the NTS

scheme. Blocks are tagged as spatial if more than

two bits are set; otherwise, they are tagged as
non-spatial.
3. Proposed caching technique: the filter data cache

In the strictest worst case, one can affirm that if

one data item is twice referenced while the block is

in cache, and no other data item in the same block
is referenced, then the block exhibits temporal

locality. Analogously, in the strictest worst case

spatial locality is exhibited if only two words are

(Tags and data)

L2 CACHE
Counters

To the BUS

J. Sahuquillo et al. / Journal of Systems Architecture 51 (2005) 451–469 455
referenced just once. Logically, these two extreme

cases introduce pollution in the cache. The ideal

situation would be that a data block exhibits both

data localities. In such a case, in the strictest worst

case the block must be referenced at least three
times (two for temporal, and once more for spa-

tial). To identify and cache these blocks we talk

about the most referenced ones, labeled as ‘‘High

Frequency’’ in Fig. 2. Notice that these blocks

could be easily detected by using a hardware coun-

ter attached to each block in cache. Although, a

high counter value could mean that the block

exhibits only one locality (e.g. temporal), there is
a high probability that the block exhibits both

localities.

The filter cache (FC) model we propose presents

a very small ‘‘filter’’ cache working in parallel with

a larger classic ‘‘main cache’’. The idea behind this

scheme is to place in a small cache the most heavily

referenced blocks. The scheme tries to identify

these blocks and to cache them together. To this
end, each cache block incorporates an associated

counter.

When the execution of a memory reference

instruction hits any subcache, the correspondent

block counter is increased. If the access results in

a miss in both subcaches, the counter of the refer-

enced block (ctrmissed) is compared with the

counter of the conflict block in the filter cache (ctr-
filter), in order to decide in which subcache the

missed block must be placed. If ctrmissed is greater

or equal to the ctrfilter, then the missed block is

placed in the filter cache; that is because the model
1

Data items referenced in the block

Spatial localityTi
m

es
 R

ef
er

en
ce

d

Te
m

po
ra

l l
oc

al
ity

1 2

2

43

?

0

High Frequency

Fig. 2. Temporal locality, spatial locality, and high frequency.
assumes that the missed block is more likely to be

referenced again than the conflict block in the filter

cache. Otherwise, the missed block is placed in the

main cache.

When a block is placed in the filter cache it is
because it was highly referenced; therefore, it

seems worthwhile keeping it longer in the first level

when it is replaced from the filter subcache. For

this reason, blocks move to the main cache using

a unidirectional datapath instead of leaving the

first level. The counter value (four bits) is the only

information that is saved to be reused later when

blocks are evicted from the first level cache. Fig.
3 shows a block diagram of the scheme.

Data blocks can dynamically change their local-

ities along the program execution. The block coun-

ter values must be decremented from time to time,

to avoid blocks showing good locality during just

an interval of its execution remain in the filter

cache. For instance, if a block shows good locality

during a certain period of time it will saturate its
counter. If that counter is not decremented, the

block will always be placed in the filter cache, even

if it shows poor or no locality during the remain-

der of the execution.
Main Cache
(tags and data) (Tags and data)

Filter Cache

CPU

Counters
Counters

Fig. 3. The filter data cache scheme.

456 J. Sahuquillo et al. / Journal of Systems Architecture 51 (2005) 451–469
4. The use of split data caches in superscalar

processors

As the detailed schemes are a particular kind of

cache memory organization, they could be imple-
mented in all systems incorporating caches, which

are practically all the systems manufactured nowa-

days, such as superscalar processors, multi-

threaded processors, SMP systems, etc.

Data localities vary among the kind of work-

load executed in the different systems, e.g., the

localities presented by parallel workloads running

in SMP systems are not the same as those pre-
sented by sequential workloads running in a super-

scalar processor.

This feature means that the effectiveness of data

cache schemes will not remain homogeneous

among the different systems but depend both on

the system architecture and the data localities of

the running workload. In this section we check

the performance of the selected data cache schemes
on a superscalar state-of-the art processor.

4.1. Experimental framework and workload

To run our experiments we use both the Simple-

scalar [20] and the mlcache [19] simulators. The

Simplescalar tool set provides an execution-driven

simulator that models an out-of-order superscalar
processor. Its source code simulates a classical six

stage pipeline processor: fetch, decode, issue, exe-

cute, writeback and commit. This code can be
Table 1

Workload characteristics

Suite Benchmark Input data

SPEC95 099.go 9 9

126.gcc training

129.compress training

130.li training

132.ijpeg training

134.perl jumble

134.perl primes

134.perl scrabbl

SPEC 2000 164.gzip combined

176.gcc cp-decl

197.parser train.in

255.vortex lendian.raw
modified to check the behavior of new microarchi-

tectural proposals. The simulator includes specific

modules to deal with the memory subsystem (ca-

che.c and cache.h) which are linked to other mod-

ules to run the selected benchmarks. The mlcache
cache simulator focuses on cache organizations

so that cache schemes can be implemented avoid-

ing other micro architecture details. Once cache

proposals are implemented, this simulator can be

integrated with the out-of-order module provided

by the Simplescalar by simply replacing the cache

modules. Proceeding in this way, we check the per-

formance of different cache proposals on supersca-
lar processors.

Experiments have been carried out by using the

SPEC95 and SPEC2000 benchmark suites. Table 1

shows the selected benchmarks for this study, the

number of instructions issued, and the number of

loads and stores committed, as well as their per-

centage over the total instructions.

4.2. Superscalar processor architecture model

Simulation parameters must be chosen accord-

ing to the technology under study. To select the

most important characteristics of the modeled pro-

cessor, we have considered the features of some

current processors [21,23,3]. As we are interested

in learning how these schemes impact on a hypo-
thetical future microprocessor, the selected para-

meters have been inflated. Table 2 shows the

characteristics of the modeled processor.
Instructions # Loads and stores (%)

1,500,000,001 18.19

252,987,341 37.06

35,683,369 37.43

183,708,317 42.43

24,506,886 29.19

1,500,000,001 44.44

10,510,668 44.73

40,482,647 45.71

1,500,000,000 34.60

1,500,000,000 41.05

1,500,000,001 35.74

1,500,000,000 54.17

Table 2

Parameters of the processor and memory hierarchy model

Machine unit Component Parameter value

Processor Functional units 6 ALUs, 4 FPUs

Issue width 8 instructions per cycle

Issue mechanism Out-of-order

Instructions latencies Same as those of MIPS R10000

Register update unit size 256

Branch prediction scheme Perfect

Cache hierarchy L1 main cache 8 KB, direct mapped, write-back, write-allocate, non-blocking,

4 ports, 32-byte line, 1 cycle hit

L1 assistant 1 KB, fully associate, write-back, write-allocate, non-blocking,

4 ports, 32-byte line,1 cycle hit

L2 cache Infinite cache, 22 cycles

TRI 128 entries

Table 3

Hit ratio obtained using 1 KB cache organized according to the

specifications of the NTS, the SSNS and the filter cache schemes

Suite Benchmark NTS SSNS Filter

SPEC95 099.go 0.47 49.97 50.50

126.gcc 18.99 14.18 45.00

129.compress 23.25 19.58 62.07

130.li 11.16 17.00 33.46

132.ijpeg 16.50 17.65 64.78

134.perl jumble 15.56 13.64 30.84

134.perl primes 29.22 15.97 53.06

134.perl scrabbl 18.95 17.17 32.48

SPEC 2000 164.gzip 23.46 30.09 50.24

176.gcc 19.26 14.32 37.65

197.parser 19.15 18.85 36.92

255.vortex 28.64 27.20 48.16

Average 18.72 21.30 45.43

J. Sahuquillo et al. / Journal of Systems Architecture 51 (2005) 451–469 457
Due to the small working set of the chosen

benchmarks, the selected cache sizes do not match

current sizes. However, they are adequate for com-

parison purposes [18,12].

4.3. Simulation results

In this section we compare the performance of
the three schemes that split the first level cache.

In addition, we include the results of two conven-

tional caches; the first one is as large as the main

subcache (8 KB), and the second one is twice as

large (16 KB) as the main subcache.

To evaluate the effectiveness of the small assist

cache in the three schemes we measure the hit ratio

in these small caches. Table 3 shows the results.
The NTS and SSNS schemes show a hit ratio of

about 20% while the filter scheme doubles this ra-

tio (about 45%).

Accesses to a non-blocking cache in ILP proces-

sors may result in one of the following: a hit, a

miss, or a delayed hit. A delayed hit is ‘‘virtual

hit’’ if a returning miss is on its way back to the

cache. That means that the hit ratio in non-block-
ing caches is not as decisive as it is in blocking ca-

ches, where its value indicates which scheme

performs better. Thus, it is necessary to use other

complementary performance indexes. In the re-

sults shown in Table 3 the virtual hits have been

omitted.

Table 4 shows the hit ratio in L1 in the split

schemes and two conventional organizations when
using 8 and 16 KB caches. The NTS and filter

schemes with only 9 KB data storage capacity in

L1 achieves hit ratios higher than a conventional

scheme with 16 KB of cache (almost double size).
The SS/NS is the splitting scheme that works

worst, but it performs better than the conventional

organization.

Table 5 shows the IPC of all modeled schemes.

On the average, the filter and NTS schemes

achieve the best IPC, even better than the 16 KB

conventional cache.

Fig. 4 shows the speedup obtained by the three
splitting schemes and the conventional 16 KB

cache with respect to a 8 KB conventional cache.

Table 4

L1 hit ratio for the three split schemes (8 KB + 1 KB) and two 8 KB and 16 KB conventional organizations

Suite Benchmark 8 KB NTS SSNS Filter 16 KB

SPEC95 099.go 93.355 93.49 93.73 93.73 93.51

126.gcc 79.868 87.41 84.69 88.80 87.06

129.compress 73.605 75.97 75.97 76.72 75.90

130.li 83.992 86.88 86.72 87.49 87.88

132.ijpeg 87.315 89.19 88.89 91.86 91.79

134.perl jumble 88.875 92.57 92.36 94.37 91.81

134.perl primes 85.524 96.78 94.04 97.53 90.52

134.perl scrabbl 84.310 90.90 89.96 91.61 91.32

SPEC 2000 164.gzip 75.064 76.27 76.42 76.79 76.71

176.gcc 69.057 74.63 74.24 75.53 74.75

197.parser 82.070 87.183 86.61 87.89 86.16

255.vortex 75.128 89.08 88.05 89.35 88.38

Average 81.51 86.70 85.97 87.64 86.32

Table 5

IPC achieved in the three split schemes in comparison with two traditional caches of 8 KB and 16 KB each

Suite Benchmark 8 KB NTS SSNS Filter 16 KB

SPEC95 099.go 3.31 3.33 3.32 3.32 3.31

126.gcc 3.85 4.02 4.00 4.04 4.12

129.compress 3.94 4.07 4.06 4.11 4.14

130.li 4.17 4.24 4.24 4.26 4.31

132.ijpeg 5.02 5.08 5.07 5.11 5.12

134.perl jumble 4.22 4.44 4.45 4.63 4.41

134.perl primes 4.23 4.85 4.59 5.00 4.61

134.perl scrabbl 3.68 4.18 4.07 4.22 4.17

SPEC 2000 164.gzip 3.18 3.22 3.23 3.23 3.25

176.gcc 3.17 3.29 3.29 3.31 3.37

197.parser 2.86 3.02 3.01 3.03 3.06

255.vortex 3.61 4.20 4.16 4.15 4.21

Average 3.77 4.00 3.96 4.03 4.01

458 J. Sahuquillo et al. / Journal of Systems Architecture 51 (2005) 451–469
Notice that all the splitting schemes perform closer

and sometimes better than a conventional cache

with almost double capacity. This happens be-

cause movements of blocks prolong the stance of

the block in the first level cache where accesses

are quicker. On the other hand, some slow speed-

ups, like those achieved when using the benchmark
go, cannot be stored in only 9 KB because of their

working set.

From the total simulation time (measured in

processor cycles) used to calculate the speedups,

we estimated the theoretical capacity of a conven-

tional cache that would obtain the same perfor-

mance as the splitting cache schemes. To do this,
we assumed a linear relation between performance

and capacity. In other words, using the 8 and

16 KB caches, we have estimated where the perfor-

mance of the splitting data cache schemes would

be on the line. Table 6 shows the results. The filter

data cache achieves the best performance, obtain-

ing with just 9 KB similar performance to a hypo-
thetical 18 KB data cache.

4.4. Hardware cost

In this section we estimate the extra hard-

ware cost needed to implement the split schemes

with respect to a conventional cache. We assume

1,
04

1,
03

1,
01

1,
01

1,
06

1,
15

1,
13

1,
01

1,
04

1,
06

1,
17

1,
06

1,
00

1,
04

1,
03

1,
02

1,
01

1,
05

1,
09

1,
11

1,
01

1,
04

1,
05

1,
15

1,
05

1,
00

1,
05

1,
04

1,
02

1,
02

1,
10

1,
18

1,
15

1,
01

1,
05

1,
06

1,
15

1,
07

1,
00

1,
07

1,
05

1,
03

1,
02

1,
05

1,
09

1,
13

1,
02

1,
06 1,

07

1,
17

1,
06

1,
01

1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18
1.20

09
9.g

o

12
6.g

cc

12
9.c

om
pre

ss
13

0.l
i

13
2.i

jpe
g

13
4.p

erl
 ju

mble

13
4.p

erl
 pr

im
es

13
4.p

erl
 sc

rab
bl

16
4.g

zip

17
6.g

cc

19
7.p

ars
er

25
5.v

ort
ex

av
era

ge

Sp
ee

du
p

NTS
SSNS
Filter
16KB

Fig. 4. Speedups achieved by the three split data cache schemes with respect to the conventional 16 KB cache.

Table 6

Theoretically equivalent conventional cache capacities

Suite Benchmark NTS SSNS Filter

SPEC95 099.go 49 27 27

126.gcc 13 12 14

129.compress 13 13 15

130.li 12 12 13

132.ijpeg 12 12 15

134.perl jumble 17 15 22

134.perl primes 21 16 23

134.perl scrabbl 16 15 17

SPEC 2000 164.gzip 24 27 34

176.gcc 13 14 14

197.parser 13 13 14

255.vortex 14 14 15

Average 17 15 18

Each value means the theoretical capacity of the conventional

cache needed to achieve the same performance as the corre-

sponding split data cache scheme.

Table 7

Data and tag hardware cost for a direct mapped conventional

16 KB cache

Data cost

(bytes)

Tags

(bits)

Total tags

(bytes)

Total cost

(bytes)

16 K 18 1.125 K 17.125 K

J. Sahuquillo et al. / Journal of Systems Architecture 51 (2005) 451–469 459
a simplified model ignoring the hardwired control

costs so that our results only concentrate on data

storage, reuse information, and tags.

Assuming a 32 bits address bus, a 16 KB con-

ventional direct mapped conventional cache that

uses a 32 bytes block size (eight words), the cost in-

curred by tags are 18 bits per block and that sup-
poses a total of 1.125 KB. These values are shown

in Table 7.

For the split schemes, we consider a 8 KB direct

mapped main cache, therefore we need 19 bits to

tag each of the 256 blocks and that supposes a to-

tal tag cost of 608 bytes. The hardware costs of the

splitting schemes differ slightly. This is the reason
why we only show one of them. For illustrative

purposes we select the cost of the filter cache. To

estimate the counter cost we assume a 4-bit coun-

ter size attached to each cache block, and that sup-

poses a total of 128 bytes. For the 1 KB fully

associative filter cache we need 27 bits for a tag-

ging its 32 blocks, that means a total of 108 bytes

plus 16 bytes used to implement the associated
counters. In both memories the cost incurred by

the hardwired control and replacement algorithms

have been omitted. Table 8 shows these values.

Therefore, the splitting scheme, i.e. the filter in

this case, requires much less cost, by about 57%,

than the conventional larger cache (which practi-

cally doubles its data storage capacity) while

achieving similar performance. Of course, in a
more precise study it would be necessary to con-

sider the cost incurred by the control logic, con-

nections, data paths, etc.
5. The use of split data caches in multiprocessor

systems

Advances in technology have meant that high

performance microprocessors can be easily used

Table 8

Data, tags, and counter hardware cost for the filter scheme

Cache Data cost (KB) Tag (bits) Total tags (bytes) Counters cost (bytes) Total approx. cost (KB)

Filter 1 27 108 16 1.12

Main 8 19 608 128 8.72

Total 9.84

460 J. Sahuquillo et al. / Journal of Systems Architecture 51 (2005) 451–469
in symmetric multiprocessors (SMPs). Examples

can be found in commercial products like the

AMD Athlon and Intel Xeon for multiprocessor

servers, which include two and four processors,

respectively. This trend continues with the AMD

Opteron processor for multiprocessor servers,

which incorporate up to eight processors con-

nected through an irregular network topology
[22].

As a consequence of this current trend, SMP

systems represent a large segment of commercial

products; therefore, it would be worthwhile check-

ing the impact on performance of the split data

cache schemes in SMPs. In these systems, perfor-

mance can change because of given conditions

such as coherence problems and false sharing. In
this section we explore the impact on performance

of the filter and NTS schemes with respect to con-

ventional caches.
MAIN MEMO

. . .

CPU

Filter
Cache
(FC)

Main Cache
(MC)

Snoop
Tags

128

128

ctr

ctrctr

Fig. 5. Multiprocessor system block diag
In addition to the filter cache, we selected just

the NTS—because as shown in Section 4.3 the

NTS scheme performs better than the SSNS.

Fig. 5 shows a block diagram for a symmetric

multiprocessor using a split data cache in the first

level. A common second level cache connected to

the memory bus takes care of coherence

maintenance.

5.1. Experimental framework and workload

Performance results have been obtained using

the LIMES [24] execution-driven simulator using

five SPLASH-2 [25] benchmarks (FFT, Radix,

FMM, LU and Barnes). The problem size of the

selected benchmarks always exceeds 60 million
memory operations.

We compile the running benchmarks with a

modified version of GCC v2.6.3, applying the O2
RY

BUS

CPU

Filter
Cache
(FC)

Main Cache
(MC)

Snoop
Tags

128

128

ctr

ctrctr

ram with a split data cache in L1.

Table 9

Number of tours when using a conventional cache memory of

16 KB

Benchmark 1 Processor 2 Processors 4 Processors

Barnes 2,015,920 2,011,519 2,156,089

FMM 887,092 876,865 887,142

LU 2,353,847 2,360,376 2,345,583

FFT 1,433,600 1,434,839 1,431,357

RADIX 1,028,906 1,036,306 1,043,864

J. Sahuquillo et al. / Journal of Systems Architecture 51 (2005) 451–469 461
optimization flag. LIMES modifies the compiler in

order to instrument memory accesses by adding

augmentation code that calls the memory simula-

tor after each memory reference. The synchroniza-

tion operations can also be trapped by redefining
the ANL macros (used by the SPLASH applica-

tions) to memory simulator calls.

5.2. SMP system model

All the cache memories in the hierarchy are

two-way set associative with 32 bytes (eight words)

block size. The first level includes a 16 KB main
cache and an assistant or filter cache of only

2 KB, which means 18 KB memory data storage.

In this study we consider two conventional

caches in L1 of 16 KB and 32 KB data storage,

which are used to estimate the theoretically equiv-

alent caches as in Section 4.3. Therefore, we pres-

ent also results for two conventional schemes using

caches in L1 of 16 and 32 KB, respectively. When
a miss occurs in the first level cache the cache con-

troller applies the non-write allocate policy.

We assume a 256 KB L2 cache connected to L1

through a 256 bits bandwidth bus. A hit in any L1

cache takes 1 cycle and 10 cycles in L2. Data trans-

ferences between L1 take 4 cycles for the first word

if it comes from L2 and 16 cycles if it comes from

main memory, the remaining words can be trans-
ferred in 1 cycle each one. For coherence purposes,

the system implements the Berkeley write-invali-

date protocol [26].

5.3. Simulation results

To compare the performance obtained by the

different schemes, the performance index used is
Table 10

Percentage of reduction in tours offered by the splitting schemes and

Benchmark FILTER NTS

1 p. 2 p. 4 p. 1 p.

Barnes 31.93 31.87 30.43 23.01

FMM 20.46 19.89 19.50 10.17

LU 7.74 11.62 19.12 3.48

FFT 2.13 2.20 2.00 2.34

RADIX 0.22 0.28 0.18 0.20

Average 15.27 13.60 14.27 19.29
the Tour of a Line. The tour of a line or block is

defined in [18] as the interval of time from when

the line or block is placed in the first-level cache

until it is evicted from that level. The tour length

is measured as the mean number of accesses that
result in hits per tour. This parameter and the

number of tours are used to evaluate the effective-

ness of data cache management. A good cache

management will offer a low number of tours

and a high tour length.

Table 9 shows the number of tours in a system

with 1, 2, and 4 processors when using a conven-

tional cache of 16 KB. Notice that the number of
tours is quite similar independently of the number

of processors in the system.

Table 10 shows the percentage of reduction in

tours offered by the filter and NTS schemes and

the conventional 32 KB cache, with respect to

the 16 KB conventional cache. A negative value

means that the scheme increases the number of

tours with respect to the baseline scheme.
Results show that both schemes splitting the

cache present a significant reduction in the number

of tours. The 18 KB storage of the filter cache of-

fers significant improvements in three of the six

benchmarks used (Barnes, FMM and LU). In
the 32 KB cache with respect to the 16 KB conventional cache

32 KB

2 p. 4 p. 1 p. 2 p. 4 p.

22.98 27.68 59.46 54.68 61.85

�7.65 �11.33 35.28 36.27 36.49

3.68 4.19 3.75 3.85 4.27

2.52 2.47 12.27 12.24 11.56

0.19 0.17 0.26 0.27 0.27

6.23 6.00 18.53 17.91 19.07

462 J. Sahuquillo et al. / Journal of Systems Architecture 51 (2005) 451–469
the FMM and LU benchmarks, the reduction that

the filter achieves doubles that offered by the NTS

scheme. Furthermore, in the case of LU, the re-

sults surpass those presented by a conventional

scheme with almost double capacity.
Results show that the NTS scheme is very sen-

sitive to the number of processors in the system.

This is because this scheme is quite sensitive to

data locality, which tends to vary notably with

the number of processors in the system. The results

offered by the filter cache are more homogeneous

because it manages the information according with

the frequency of data and this criterion is more
uniform than locality and less dependent on the

number of processors.

Table 11 presents the estimation of the theoret-

ical memory capacity that would offer the same

performance (tour reduction) as the split schemes.

The filter cache (with only 18 KB capacity)

achieves, on average, a tour reduction similar to
0

70

140

210

ba
rne

s1
P

ba
rne

s2
P

ba
rne

s4
P

fm
m1P

fm
m2P

fm
m4P lu1

P
lu

A
ve

ra
ge

 T
ou

r L
en

gt
h

Fig. 6. Average tour length measured in load inst

Table 11

Theoretically equivalent capacities for the split data cache

schemes

Benchmark FILTER NTS

1 p. 2 p. 4 p. 1 p. 2 p. 4 p.

Barnes 25 25 24 23 23 23

FMM 25 25 25 24 13 11

LU 49 64 88 35 31 32

FFT 19 19 19 16 19 19

RADIX 30 33 27 16 27 26

Average 25 33 36 20 22 21
that obtained by 25 KB, 33 KB, and 36 KB con-

ventional caches when working with 1, 2, and 4

processor, respectively.

Fig. 6 shows the tour length measured in num-

ber of load instructions handled while the block is
in cache. Results are presented for 1, 2, and 4 pro-

cessors. In FFT and Radix, the performance of

both the splitting schemes and the larger 32 KB

cache are on par. In Barnes, FMM, and LU, the

filter scheme achieves better performance than

the NTS, and even in LU surpasses the perfor-

mance achieved by the larger 32 KB conventional

cache. Notice that in FMM, the NTS scheme de-
creases its performance in comparison with the

16 KB organization as the number of processors

increases, showing once more that this scheme is

less adequate for SMP systems, because of its high

sensitivity to data localities.

5.4. Designing competitive coherence protocols

The experiments discussed in the previous sec-

tion show that tour behaviour (length and

amount) depend on the number of processors. In

the write-invalidate protocols (like that used in

the previous section) when a given processor writes

in a block, the protocol invalidates all the copies of

the same block loaded in the caches of the remain-

ing processors, independently of the use of such
processors. In contrast, the write-update protocols

update the data in the remaining caches containing

the block—even though such a block was not to be

referenced again. Write-update protocols usually
2P lu4
P

fft1
P

fft2
P

fft4
P

rad
ix1

P

rad
ix2

P

rad
ix4

P

16 KB

Filter

NTS

32 KB

ructions handled while the block is on tour.

J. Sahuquillo et al. / Journal of Systems Architecture 51 (2005) 451–469 463
increase the hit ratio but at the expense of increas-

ing the bus traffic. Therefore, the relative perfor-

mance of write-invalidate versus write-update

protocols strongly depends on the sharing patterns

exhibited by the workload. In [27], Eggers and
Katz compare the performance of write-invalidate

and write-update policies. They conclude that nei-

ther protocol is better than the other. A third kind

of protocols are the competitive or adaptive, which

invalidate or update data according to the work-

load behaviour. For instance, it is possible to use

a selective write invalidate policy when there is a

high number of write operations on a given block,
moving to a write update policy for those blocks

showing fewer write operations.

As mentioned earlier, all the split data cache

schemes managing reuse information can store

such information in the L2 caches. Therefore,

when designing coherence protocols for SMPs,

the system can make use of this information to

boost the protocol performance. For illustrative
purposes in this section we explore the potential

of this idea using the filter scheme and we present

two new competitive protocols, called Competi-

tive_1 and Competitive_2. Both protocols slightly

differ with respect to the baseline write-invalidate

Berkeley protocol, although the idea can be easily

exported to many other protocols. Details of the

block transition diagram between the different
states in the Berkeley protocol can be found in

[26].

5.4.1. Competitive_1 protocol

In the filter scheme, the reuse information main-

tained is just a counter attached to each block. A

high value of the counter means that such block

was highly referenced (as many times as its counter
value) by the corresponding processor, while a
Table 12

Number and percentage of invalidated blocks classified according to

Bench ctr = 0 0 < ctr <= 7 7 < ctr

inv % inv # inv % inv # inv

Barnes 93,791 48.90 24,884 12.97 17,194

FMM 119,209 62.98 23,033 12.17 11,681

LU 65,217 95.86 329 0.48 1334

FFT 84,987 54.71 2306 1.48 32,133
zero value means that the block was referenced

only once by the processor.

When a snoopy cache controller invalidates a

block the processor may be heavily referencing

that block (e.g., the block has a high counter
value); therefore, the invalidation of the block is

not the most appropriate action. It is very useful

to know if a block is heavily referenced before

invalidating it, and this can be discovered by test-

ing the corresponding counter. But, a crucial as-

pect is to decide when is the counter value high

enough to update the block; and when it is enough

low to invalidate it.
A previous test study was made in order to

check the appropriate counter size and the value

that marks the threshold. When the cache control-

ler detects that a load instruction is issued in a

remote processor, the block counter values are

checked. This experiment was performed for a sys-

tem with 32 processors, and 512 KB L2 caches.

Table 12 classifies the invalidated blocks according
to their counter value. Results show that a high

number of blocks were invalidated with a counter

value equal to zero—from 48.9% in the Barnes

application to 95.86 in the LU kernel. This last

value indicates the poor data locality exhibited in

the LU kernel. As zero is the minimum counter

value, the protocol assumes that these blocks are

unlikely to be referenced again; thus, in an initial
run of a competitive protocol, we decided to inval-

idate them.

An infinite counter was assumed to carry out

the experiment. Looking at the last column in

Table 12, it is possible to observe that close to

21% of the blocks in Barnes and 14% of the blocks

in FMM are invalidated with counter values great-

er than 31. This shows the high data locality of
these kernels when their blocks are invalidated.
different intervals of their counter value

<= 15 15 < ctr <= 31 ctr > 31

% inv # inv % inv # inv % inv

9.01 16,899 8.81 39,334 20.515

6.53 10,661 5.63 25,724 13.599

1.98 1241 1.82 3 0.00

20.15 33,623 21.65 793 0.51

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

BARNES FMM LU FFT

ctr>31
15<ctr<=31
7<ctr<=15
0<ctr<=7
ctr=0

Fig. 7. Cumulative invalidated lines classified by counter

values.

464 J. Sahuquillo et al. / Journal of Systems Architecture 51 (2005) 451–469
Thus, when designing competitive protocols, these

blocks will not be invalidated in order to benefit

from their excellent data localities. In general, a

five bit counter size would capture almost the

80% of the invalidate requests in each application

used.

Fig. 7 plots these percentages cumulatively to
make visual analysis easier.

Using the local counter one can see which

blocks are the least referenced. Of course, the

invalidated blocks with a count equal to zero have

poorer locality that those invalidated with a higher

value. On the other hand, the number of invali-

dated blocks with a count equal to zero always ex-

ceeds 48% of the total invalidated blocks. This is a
considerable percentage, and must be taken into

account when a protocol is designed. In accor-

dance with this observation, the Competitive1 pro-

tocol invalidates a block when its counter value is

zero, otherwise, it updates the word.

The base idea of this protocol can be easily gen-

eralized by replacing the zero with a constant

value, and this leads towards a more conservative
Table 13

Number of invalidate blocks and their percentage classified according

Bench ctrl = ctrr = 0 ctrr = ctrl > 0

inv % inv # inv % inv

Barnes 67,943 34.89 5987 3.07

FMM 90,002 48.29 6982 3.75

LU 57,330 85.82 646 0.97

FFT 51,591 42.28 474 0.39
protocol. Logically, the higher the constant is, the

fewer the number of updates the algorithm will

perform; thus, it will work using an invalidation

policy.

5.4.2. Competitive_2 protocol

This protocol proposes that the requesting

cache also sends on the bus the counter value

(Counterlocal) of the block. Of course, if the opera-

tion is a local miss then this value will be zero. The

snoopy cache controllers of the remote L2 caches

will compare the counter value of the block (Coun-

terremote), meaning the candidate block to be inval-
idated, with the counter value of the local cache

(read from the bus). The update condition is

shown by the equation: Counterremote >= Fac-

tor · Counterlocal where Factor is a number for

weighting the value of Counterlocal. This value

has been set to one in this study.

In this manner, a relative comparison is made.

A higher counter in a local block generally indi-
cates that the probability of being referenced again

in this cache is higher than in the requesting cache.

Table 13 shows the total amount and percent-

age of invalidated blocks, according to the results

of a counter comparison (Counterlocal versus the

Counterremote). The results show that the percent-

age of invalidated blocks when both values are

equal to zero is a little higher than 34%—which
supposes about a third of the total cases. The

LU kernel shows the other side; because the per-

centage exceeds the 85%. This is because the

blocks have poor locality and there is no benefit

if an update policy is taken. Statistically, the great-

est advantage from updating a block is obtained

when the Counterremote value is greater or equal

to the Counterlocal value; but not zero. FMM and
Barnes kernels exhibit the highest values—up to
their counter values

ctrr > ctrl ctrr < ctrl

inv % inv # inv % inv

53,413 27.43 67,369 34.60

36522 19.60 52,870 28.37

861 1.29 7962 11.92

19,709 16.15 50244 41.18

J. Sahuquillo et al. / Journal of Systems Architecture 51 (2005) 451–469 465
23%. These two applications benefit most from

this protocol.

It can be observed that by making slight modi-

fications to the competitive update condition, a

large variety of competitive update policies can
be obtained. By choosing the condition, the proto-

col can work like an invalidation policy; or like to

an update policy. For instance, if a factor of 3 is

used, the resultant protocol will work in a similar

way to a write-invalidate protocol—as discussed

above. On the other hand, by setting Factor to

zero, the protocol works like an update protocol.

Details of the state transition diagram for both
competitive protocols can be found in [28].

5.4.3. Experimental results

To check the performance of both protocols

there must be both enough traffic on the bus and

enough reuse information on the second level ca-

ches. Therefore, we selected two small first-level

caches (1 KB direct-mapped filter cache and
4 KB two-way set-associative main cache) and

two four-way set-associative L2 cache sizes (256

and 512 KB). Cache block sizes are 16 bytes wide

and each has a 4-bit counter attached.

The effectiveness of the proposed protocols in

comparison with the write-invalidate and write-

update protocols is evaluated. Bus utilization and

speedup have been chosen as performance indexes
to test the system behavior. Bus utilization is often
Barnes

0

50000

100000

150000

200000

250000

16p256KB 16p512KB 32p256KB 32p512KB

N
um

be
r o

f T
ou

rs

INVAL
COMP-1
COMP-2
UPD

N
um

be
r o

f T
ou

rs

LU

0
20000
40000
60000
80000

100000
120000
140000

16p256KB 16p512KB 32p256KB 32p512KB

N
um

be
r o

f T
ou

rs

INVAL
COMP-1
COMP-2
UPD

1

N
um

be
r o

f T
ou

rs

Fig. 8. Total tours of blo
used to carry out performance comparison studies

in shared memory systems, because performance

drops when the bus reaches a high utilization. In

this paper, results for 16 and 32 processors are pre-

sented, while keeping the problem size constant.
First, the number of tours of blocks in the L2

caches has been measured in order to test the influ-

ence of the protocols updating the words. Fig. 8

shows the results. As expected, the update proto-

col generates fewer tours while the write-invalidate

policy presents more. The Competitive protocols

fall in between. Competitive_1 works more simi-

larly to the write invalidate protocol and Compet-
itive_2 more similarly to the update protocol. In

FFT kernel, any protocol presents advantages

over the others. This figure does not plot the effec-

tiveness of the tours, only the total number.

Fig. 9 plots the bus utilization for the selected

benchmarks. In Barnes and FMM, the update pro-

tocol reduces the amount of time the bus is used in

the four studied cases, (16 and 32 processors with
256 and 512 KB cache sizes). In these cases, the

write-invalidate protocol shows the worst perfor-

mance; and the proposed schemes fall in between.

In the LU kernel, the update protocol drops in

performance compared to the write-invalidate pro-

tocol; while the proposed schemes have a quite

good performance. This significant drop in the

LU protocol performance is due to the large
amount of ‘‘zero counter value cases’’. In other
FMM

0

50000

100000

150000

200000

250000

16p256KB 16p512KB 32p256KB 32p512KB

INVAL
COMP-1
COMP-2
UPD

FFT

0

200000

400000

600000

800000

000000

16p256KB 16p512KB 32p256KB 32p512KB

INVAL
COMP-1
COMP-2
UPD

cks in the L2 cache.

0

20

40

60

80

100

16p256KB 16p512KB 32p256KB 32p512KB

Barnes

B
us

 U
til

iz
at

io
n

INVAL
COMP-1
COMP-2
UPD

0

20

40

60

80

100

16p256KB 16p512KB 32p256KB 32p512KB

FMM

B
us

 U
til

iz
at

io
n INVAL.

COMP-1
COMP-2
UPD

0

20

40

60

80

100

16p256KB 16p512KB 32p256KB 32p512KB

LU

B
us

 U
til

iz
at

io
n INVAL.

COMP-1
COMP-2
UPD

0

20

40

60

80

100

16p256KB 16p512KB 32p256KB 32p512KB

FFT
B

us
 U

til
iz

at
io

n INVAL.
COMP-1
COMP-2
UPD

Fig. 9. Bus utilization in the four evaluated protocols.

466 J. Sahuquillo et al. / Journal of Systems Architecture 51 (2005) 451–469
words, there are many blocks that are updated and

have a low probability of being referenced again.

Also notice that the Competitive_2 performs

better than the write-invalidate in three of the four

cases. Finally, in the FFT kernel, all the protocols

obtain a similar performance, except in the last
case (32p512 KB), where the write-invalidate per-

forms slightly better.

Fig. 10 shows the relative execution times with

respect to the write-invalidate protocol as unit
0.5

0.6

0.7

0.8

0.9

1

16p256KB 16p512KB 32p256KB 32p512KB

BARNES

R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

e

COMP-1
COMP-2
UPD

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

16p256KB 16p512KB 32p256KB 32p512KB

LU

R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

e

COMP-1
COMP-2
UPD

Fig. 10. Relative execution times, taking the executio
time. Notice that Competitive2 protocol only

exceeds the value of 1 three times; once in FFT

and twice in LU kernel. On the other hand, one

can see that Competitive_1 works closer to the

write-update protocol than the Competitive_2.

In general, the proposed competitive protocols
perform better, or similarly, than those using an

invalidate policy; and their performance never

drops dramatically—unlike the write-update

protocol.
0.5

0.6

0.7

0.8

0.9

1

16p256KB 16p512KB 32p256KB 32p512KB

FMM

R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

e

COMP-1
COMP-2
UPD

0.5
0.75

1
1.25

1.5

1.75

2

16p256KB 16p512KB 32p256KB 32p512KB

FFT

R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

e

COMP-1
COMP-2
UPD

n time employed by the write-invalidate as unit.

J. Sahuquillo et al. / Journal of Systems Architecture 51 (2005) 451–469 467
6. Conclusions

In this paper we have discussed the essence of

the split data cache schemes, we have analyzed

what each scheme pursues and the different steps
of the design process. The paper has exhaustively

evaluated the performance results of some split

data cache schemes by considering different sce-

narios: superscalar processors using the SPEC95

and SPEC2000 benchmarks, and bus-based multi-

processors using the SPLASH2 benchmark suite.

To run simulations on multiprocessors we consid-

ered the nodes (processor plus caches) connected
to the system bus by means of a classical write-

invalidate protocol.

Experimental results have shown that during

the different scenarios, in general, the split data

cache schemes perform better than conventional

caches with almost double the data storage capac-

ity. Moreover, these schemes use much less die

area and this can be used to improve the perfor-
mance of other processor features issues.

Among the split data cache schemes, results

show that the filter data cache—using the fre-

quency of use as the criterion to select the data—

achieves better performance than other schemes

that split the cache according to the criterion of

data localities. These differences grow when work-

ing in SMPs, because localities tend to vary with
the number of processors so that schemes splitting

the cache according to the criterion of data locali-

ties become inadequate.

Finally, we explore how the reuse information

that some split schemes include to manage the

information according to the past pattern block

behaviour can help the design of coherence proto-

cols. Results show that schemes handling reuse
information are especially useful to help the design

of new coherence protocols in order to boost the

performance and increase the scalability of the

system.
References

[1] V. Agarwal, M.S. Hrishekesh, S.W. Keckler, D. Burguer,

Clock Rate versus IPC: the end of the road for conven-

tional microarchitectures, in: Proceedings of the 27th
International Symposium on Computer Architecture, June

2000, pp. 248–259.

[2] V. Agarwal, S.W. Keckler, D. Burguer, The effect of

technology scaling on microarchitectural structures, Tech-

nical Report TR2000-02, Department of Computer Sci-

ences, The University of Texas at Austin, April 2000.

[3] J. Keshava, V. Pentkovski, Pentium III Processor Imple-

mentation Tradeoffs, Intel Technology Journal Q 2 (1999).

[4] G. Hinton, D. Sager, M. Upton, D. Upton, D. Boggs, D.

Carmean, A. Kyker, P. Rousell, The michroarchitecture of

the Pentium 4 processor, Intel Technology Journal Q 1

(2001).

[5] C. McNairy, D. Soltis, Itanium 2 processor microarchitec-

ture, IEEE Micro 23 (2) (2003) 44–55.

[6] G. Tyson, M. Farrens, J. Matthews, A.R. Pleszkun, A

modified approach to data cache management, in: Pro-

ceedings of Micro-28, December 1995, pp. 93–103.

[7] A. Rivers, E.S. Davidson, Reducing conflicts in direct-

mapped caches with a temporality-based design, in:

Proceedings of the 1996 ICPP, August 1996, pp. 151–

160.

[8] M. Prvulovic, D. Marinov, Z. Dimitrijevic, V. Milutinovic,

The split spatial/non-spatial cache: a performance and

complexity analysis, IEEE TCCA Newsletter (July) (1999)

8–17.

[9] T. Johnson, W.W. Whu, Run-time adaptative cache

hierarchy management via reference analysis, in: Proceed-

ings of the ISCA-24, June 1997, pp. 315–326.

[10] A. Gonzalez, C. Aliaga, M. Valero, A data cache with

multiple caching strategies tuned to different types of

locality, in: Proceedings of the ACM International Con-

ference on Supercomputing, Barcelona, Spain 1995, pp.

338–347.

[11] V. Milutinovic, B. Markovic, M. Tomasevic, M. Tremblay,

The split temporal/spatial cache: initial performance anal-

ysis, in: Proceedings of the SCIzzL-5, Santa Clara, CA,

USA, March 1996, pp. 63–69.

[12] J. Sanchez, A. Gonzalez, A locality sensitive multi-module

cache with explicit management, in: Proceedings of the

ACM International Conference on Supercomputing,

Rhodes, Greece, June 1999.

[13] S. Kumar, C. Wilkerson, Exploiting spatial locality in data

caches using spatial footprints, in: Proceedings of the 25th

ISCA, June 1998.

[14] J. Sahuquillo, A. Pont, Splitting the data cache: a survey,

IEEE Concurrency (September) (2000).

[15] N. Jouppi, Improving direct-mapped cache performance

by the addition of a small fully-associative cache and

prefetch buffers, in: Proceedings of the ISCA-17, June

1990, pp. 364–373.

[16] K.K. Chan, C.C. Hay, J.R. Keller, G.P. Kurpanek, F.X.

Schumacher, J. Zheng, Design of the HP PA 7200 CPU,

Hewlett-Packard Journal (February) (1996) 1–12.

[17] J. Sahuquillo, A. Pont, V. Milutinovic, The filter data

cache: a comparison study with splitting L1 data cache

schemes sensitive to data localities, in: Proceedings of

the 3rd International Symposium on High Performance

468 J. Sahuquillo et al. / Journal of Systems Architecture 51 (2005) 451–469
Computing (ISHPC2K), Tokyo, Japan, October 2000, pp.

319–327.

[18] E.S. Tam, J.A. Rivers, V. Srinivasan, G.S. Tyson, E.S.

Davidson, Active management of data caches by exploiting

reuse information, IEEE Transactions on Computers 48

(11) (1999) 1244–1259.

[19] E.S. Tam, J.A. Rivers, G.S. Tyson, E.S. Davidson,

mlcache: A flexible multilateral cache simulator, in: Pro-

ceedings of MASCOTS�98, pp. 19–26, 1998.
[20] D.C. Burger, T.M. Austin, The SimplesSalar Tool Set,

Version 2.0, Computer Architecture News 25 (3) (1997) 13–

25.

[21] http://www.sun.com/processors/UltraSPARC-II/.

[22] C.N. Keltcher, K.J. McGrath, A. Ahmed, P. Conway, The

AMD opteron processor for multiprocessor servers, IEEE

Micro 23 (2) (2003) 66–76.

[23] R.E. Kessler, The Alpha 21264 microprocessor, IEEE

Micro 19 (2) (1999) 24–26.

[24] D. Magdic, LIMES: a multiprocessor simulation environ-

ment, IEEE TCCA Newsletter (March) (1997).

[25] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, A. Gupta, The

SPLASH-2 programs: characterization and methodologi-

cal considerations, in: Proceedings of the 22nd ISCA, pp.

24–36, June 1995.

[26] R.H. Katz, S.J. Eggers, D.A. Wood, C.L. Perkings, R.J.

Sheldon, Implementing a cache consistency protocol, in:

Proceedings of the ISCA-12, 1985, pp. 276–283.

[27] S.J. Eggers, R.H. Katz, A characterization of sharing in

parallel programs and its application to coherency protocol

evaluation, in: Proceedings of the ISCA-15, Honolulu,

May 1988.

[28] J. Sahuquillo, A. Pont, Designing competitive coherence

protocols taking advantage of reuse information, in:

Proceedings of the 26th IEEE Euromicro Conference,

September 2000.

[29] E.S. Tam, Improving cache performance via active man-

agement, Ph.D. Dissertation, University of Michigan, June

1999.

[30] J. Sahuquillo, S. Petit, S. Petit, A. Pont, V. Milutinovic,

Performance study of the filter data cache on a superscalar

processor architecture, IEEE Computer Society Technical

Committee on Computer Architecture Newsletter (TCCA)

News (January) (2001).

Julio Sahuquillo received his BS, MS,

and Ph.D. degrees in Computer Engi-

neering from the Polytechnic Univer-

sity of Valencia (UPV), in Valencia,

Spain. Since 2002 he is an associate

professor at the Computer Engineering

Department at the Polytechnic Uni-

versity of Valencia. His research topics

have included clustered microarchitec-

tures, multiprocessor systems, cache

architecture design, distributed shared

memory, multithreading microarchitectures, and power dissi-
pation. Recently, a part of his research has also concentrated on

the web performance field.

Salvador Petit received his Ph.D.

degree in Computer Engineering from

the Polytechnic University of Valencia,

Spain. Currently he is an assistant

professor at the Computer Engineering

Department at the Polytechnic Uni-

versity of Valencia. His main research

topics are distributed memory systems

and cache architecture design.

Recently, he performed a research stay

as invited scholar in the Electrical and
Computer Engineering department in Northeastern University,

Boston, USA.

Professor Ana Pont-Sanjuán received

her MS degree in Computer Science in

1987 and a PhD in Computer Engi-

neering in 1995, both from Polytechnic

University of Valencia. She joints the

Computer Engineering Department in

the UPV in 1987 where currently she is

full professor of Computer Architec-

ture. Since 1998 until 2004 she was the

head of the Computer Science High

School in the UPV. Her research

interest include multiprocessor architecture, memory hierarchy
design and performance evaluation, web and internet archi-

tecture, proxy caching techniques, CDN�s, communication

networks. She also has participated in a high number of

research projects financed by Spanish Government and Local

Valencian Government. Since January 2005 she is the Chair-

person of the IFIP TC6 Working Group: Communication

Systems for Developing Countries.

Professor Veljko Milutinović received

his Ph.D. in Computer Engineering in

1982 from the University of Belgrade,

Serbia. From 1982 till 1990 he was on

the faculty of Purdue University. He

was coarchitect of the World�s first

200MHz RISC microprocessor, for

DARPA. Member of the advisory

board and active consultant in a num-

ber of high-tech companies (Techno-

logyConnect, BioPop, IBM, AT&T,

NCR, RCA, Honeywell, Fairchild, etc.). Since 1990 he is a full
professor in the University of Belgrade. In 90s he was respon-

sible for the silicon-compiler based design of a clone of Intel

i860 (the first 64-bit microprocessor). He has coauthored about

50 IEEE journal papers, plus in about 50 papers in other

journals or book chapters. He has presented over 300 invited

http://www.sun.com/processors/UltraSPARC-II/

J. Sahuquillo et al. / Journal of Systems Architecture 51 (2005) 451–469 469
talks at all major universities in the World, in both computer

engineering and business administration. He also has served as

guest editor for a number of special issues in various IEEE

journals: Proceedings of the IEEE, IEEE Transactions on
Computers, IEEE Concurrency, IEEE Computer, etc. More

recently he is active in infrastructure for e-business on the

Internet. Professor Milutinovic is a Fellow of the IEEE since

2003.

	Exploring the performance of split data cache schemes on superscalar processors and symmetric multiprocessors
	Introduction
	Related work
	Proposed caching technique: the filter data cache
	The use of split data caches in superscalar processors
	Experimental framework and workload
	Superscalar processor architecture model
	Simulation results
	Hardware cost

	The use of split data caches in multiprocessor systems
	Experimental framework and workload
	SMP system model
	Simulation results
	Designing competitive coherence protocols
	Competitive_1 protocol
	Competitive_2 protocol
	Experimental results

	Conclusions
	References

