The Split Temporal/Spatial Cache: �A Complexity Analysis

V. Milutinovic, B. Markovic1, M. Tomasevic, and M. Tremblay2

Department of Computer Engineering
School of Electrical Engineering
University of Belgrade
POB 816
11000 Belgrade
Serbia, Yugoslavia
Phone: (381) 11-762-214; Fax: (381) 11-762-215;
E-Mail: emilutiv@etf.bg.ac.yu
�1 Department of Electrical Engineering
University of Montenegro
Cetinjski put bb.
81000 Podgorica
Montenegro, Yugoslavia

2 Sun Microsystems Computer Corporation
2550 Garcia Avenue
Mountain View, CA 94043, USA
��

�Abstract A new cache architecture concept - the STS (Split Temporal/Spatial) cache - implies separation of data into two different cache subsystems, according to their predominant type of locality. The temporal and spatial parts employ different internal organizations, for better utilization of data characteristics. A set of algorithms for determination of data locality was also proposed. A previous paper focused on performance analysis of the STS concept has shown its potentials for performance improvement. This paper concentrates on the problem of complexity evaluation of the STS cache memory and its comparison to the conventional cache hierarchy. For this purpose, an implementation analysis is performed. The space occupied by the design is adopted as the main complexity indicator, and Equivalent Area Model is used for area calculations. The results indicate a complexity reduction of the STS cache mainly due to the lower capacity of the spatial part, and also an improved performance/complexity ratio.

1. INTRODUCTION

In order to bridge an evident gap between processor speed and main memory speed, computer architects introduced cache memories to reduce the effective latency of memory references [1]. Since this gap has been increasing as the technology advances, multiple level hierarchy has become a usual solution. In a conventional multilevel cache hierarchy, the problem of speed is solved with fast and small lower level caches, while the problems of capacity and hit ratio are solved with slower and much larger higher level caches.
Proceedings of the SCIzzL-6, Santa Clara, California, USA, September, 1996.
This work was partially supported by FNRS, FTRRS, FNRCG, FTRRCG, FNSRY, and FTRSRY.

The efficiency of cache subsystems is based on the locality property of typical memory reference patterns. This means that
the accesses to the same address in the near future are probable (temporal locality), as well as the accesses to nearby addresses (spatial locality). Usual cache organization does not differentiate between data with different types of locality using same architectural constructs. However, since this is not optimal, we have proposed to split the cache into temporal and spatial parts with organization and mechanisms especially suited for handling data with specific type of locality. This is the main rationale behind the STS (Split Temporal/Spatial) cache concept. The idea was initially introduced in a 1995 technical report of the University of Belgrade [2] and further elaborated in a previous paper [3].

The initial expectation was that STS would bring complexity reduction with about the same performance (or higher performance for the same complexity) because of a better utilization of the cache space in the temporal part. Anyway, the ultimate goal was to achieve a better performance/complexity ratio.

The first step in proving the usefulness of the STS concept was its performance evaluation using real address traces. The results presented in the previous study [4] have shown potentials for performance improvement compared to the conventional cache (up to 30%) dependent on specific design parameters along with a promising complexity reduction.

2. PROBLEM STATEMENT

However, no analysis of some proposal is complete without considering its complexity., especially when the performance/complexity is the primary intention, as it is in this case. Therefore, the subject of this paper is an estimation of the complexity reduction of the STS concept compared to the classical cache design. After that, viability of the concept has to be discussed using some metrics which encompasses both performance and complexity metrics.

In a modern processor design, cache unit occupies the major portion of the chip VLSI area. The saving in the number of transistors for this part would enable designers to incorporate some other resources on the same chip. This is especially important for the sooner achievement of the ultimate goal - the small-scale shared memory multiprocessor on the chip. In these conditions, the importance of a less area-demanding cache design like the STS is particularly emphasized. On the other hand, the STS concept is applied here in a uniprocessor cache memory environment, although the concept under consideration is fully applicable to the multiprocessor cache memories, as well [5].

3. DETAILS OF THE STS APPROACH

The basis of the STS cache approach is splitting the cache into two parts dedicated for data exhibiting temporal and spatial locality (Figure 1). Each part has a different organization and data handling.
A) STS cache organization
"Spatial" part is a relatively small and fast one-level cache with a usual block size. Despite its lower capacity, high hit ratio for data with spatial locality is expected because of the hardware-implemented prefetch mechanism incorporated in this part. This mechanism always initiates loading of the block adjacent to one currently accessed (if not already present in the spatial part). Consequently, the cost of memory referencing is most frequently hidden and overlapped with ongoing accesses. Some sophisticated variant could dynamically choose direction and stride of prefetching.

"Temporal" part is organized as a usual two�level hierarchy but with one significant difference - one�word block size since there is no spatial locality. In this way, temporal cache is not "polluted" with data with low access probability in near future, and better utilization of cache space could be achieved. One-word block length also decreases miss latency.

Therefore, splitting the cache according to the STS principle makes the overall cache memory smaller for approximately the same performance. Since instructions exhibit predominantly spatial locality, we consider only the splitting of the data cache.
B) Locality resolving
For determination of data locality (spatial or temporal), each memory word is augmented with one bit tag. Those tags can be initially set at compile time when, with some estimation probability, the data can be classified as predominantly temporal or spatial. Different compile-time algorithms for the initial allocation are possible. The most straightforward one labels the simple variables and constants as temporal and the complex and structured data types as spatial.

Initial memory tagging can be optionally performed with a profile time mechanism. All data blocks are initially regarded as spatial. Then, a profile time algorithm is used for detecting and retagging to temporal those blocks that are found to exhibit temporal locality. For this purpose, two counters (Xcount and Ycount) are associated with each data block. The Xcount value for a particular data block (initially zero) is incremented on each access to the upper half of the block, decremented on the access to the lower half of the block, and reset on the replacement of the block. When the Xcount value reaches upper (x) or lower limit (-x), further counting is disabled. The Xcount value is checked periodically (because the density of accesses in a unit of time determines the degree of temporal locality). Period of Xcount checking is controlled by Ycount which counts the overall number of accesses to this block. When this counter reaches some prespecified value (y), the value of the corresponding Xcount is checked. If either limit (x or -x) is reached, the block is tagged as "temporal"; otherwise, it is tagged as "spatial". The block once tagged as temporal, can not later be retagged to spatial. This mechanism can be implemented in either hardware or software.

Finally, the run time mechanism can be easily implemented in hardware for run time tagging/retagging of data according to the dynamically observed changing access pattern. It works very similarly to the profile time algorithm, and differs only in the possibility for retagging the temporal block again to spatial.
C) Related work
The same problem was independently recognized and attacked in [6]. Authors of [6] also propose a dual data cache - two parts of cache (temporal and spatial) with different block sizes and prefetching possibility in the spatial part. However, their temporal part is one-level and they propose only a run time mechanism for detection of data locality which is quite different from ours. This mechanism is based on the locality prediction table, which is a history table with information about the most recently executed load/store instruction used to predict the type of locality of referenced data.

An attempt to differentiate between array and scalar data was also made in [7]. Tagging is performed statically by the compiler, depending on the size of allocation on the SPEC benchmarks to get the traces, which are then run with two separate caches. No profile and run time mechanisms are employed. Authors of [7] claim to get an average improvement of 30% over a unified cache.

4. THE EQUIVALENT AREA MODEL

Since the proposed idea was not yet realized inside a processor chip, an implementation analysis is performed for its complexity estimation, and comparison with the complexity of a conventional cache design. Various criteria can be used as a complexity measure of some product; however, for the VLSI technology, the area occupied by the design is regarded as the most relevant one [8]. Consequently, the equivalent area model is employed in this analysis [9]. This model uses RBE (RAM Bit Equivalent) as an area unit. In this way, calculated area is technology-independent. According to the model, one RBE is equal to the area needed for a six-transistor static RAM cell with high bandwidth (approximately as the MIPS X register cell).

The area ca occupied by a cache subsystem consists of several components and can be expressed as
	ca = cl + data + tag + status
where cl is the area for the control logic, data is the area for data storage bits, tag includes space for address tags and comparators, and status represents the area for valid and dirty bits. This count also includes an additional area for drivers and amplifiers, but not the space for address and data buses.

Implementation of the tag section varies for different cache mapping mechanisms, which implies different area models. Here, we assume the set associative organization. In this case, occupied area depends on the cache capacity (size), the block size (block), the size of a transfer unit (transfer), the number of transfer units per block (tu), the total number of address tags (tags), the total amount of tag and status bits (tsbits), and the degree of associativity. Then, we have
	tu= block / transfer
	tags = size / block
	tsbits = (2 x tu + log (2**32 x assoc) / tags) x tags.
It was also assumed that cache uses memory cells with a lower bandwidth which occupies a smaller area (0.6 rbe). Finally, for a four-way set associative cache we have
	cl = 1600 + 0.65 x size + 60 x tu + 0.65 x tsbits (rbe)
as a basic formula for calculating the cache area.

Since the presented model is quite simple, its inaccuracy is up to 10%. However, since this analysis is aimed to get the ratio of complexities between the two compared designs, this can't hurt the validity of its results.

4. CONDITIONS AND ASSUMPTIONS

Just like the previous performance evaluation, the complexity estimation considers conventional cache and four variants of the STS cache with different sizes or access times. Table 1 defines the capacity of the particular components of the STS variants (STS1, STS2, STS4a, and STS4b) compared to the corresponding parts of the conventional two-level hierarchy - CH. Since the intention is to achieve lower transistor count, all STS variants have the same size hierarchy in the temporal part - a half of capacity of the conventional cache on each level. The size of the spatial part is varied to examine its impact on performance: however, the complexity of this part is not significant. Spatial part, in the STS1 variant, is of the same capacity as the first level in the temporal part, two times larger in the STS2, and four times larger in the STS4a and STS4b. The prefetch mechanism for automatic prefetching (from memory) of the block which is next to the one being currently accessed is provided in the spatial part.

�SC�T1C�T2C��CH �N/A�C1�C2��STS1 �C1/2�C1/2�C2/2��STS2�C1�C1/2�C2/2��STS4a�2C1�C1/2�C2/2��STS4b�2C1�C1/2�C2/2��
Table 1: Size ratios between conventional cache and four STS variants. Legend: SC - spatial part with prefetch mechanism; T1C and T2C - the first and the second level in the temporal part of the STS. CH - conventional hierarchy, STS1, STS2, STS4a, and STS4b - four variants of the STS cache; C1 and C2 - sizes of the first and the second level of the conventional hierarchy. Description: This table presents the size of each cache part, for different variant analyzed in this paper. The overall capacity of the conventional cache hierarchy was tuned to be about 10% of working sets of applications used in the performance evaluation study. The STS4a and STS4b have the same capacities but different access times.
All caches in the cache subsystem employ write-back policy. The block size length is four 32-bit words for the conventional hierarchy and the spatial part in the STS variants, and one word for the temporal hierarchy in the STS. Aspect ratio in the cache hierarchy is 1:8. Organizational parameters of all caches are: 4-way set associativity, and LRU replacement algorithm. Inclusion property is maintained in the hierarchy. Address bus is 32-bits wide. In the STS, limit counter values for Xcount and Ycount are set to 15 and 31, respectively.

In performance analysis, all time-related parameters are chosen for a typical state-of-the-art CMOS VLSI. The difference in speed between two hierarchy levels has been chosen to be four times. The access times for the conventional hierarchy and hierarhies of the temporal parts in the STS1, STS2, and STS4a variants are two cycles for the first level cache and four cycles for the second level cache. In order to evaluate a faster cache design closer to the processor, the access times for the temporal hierarchy in the STS4b are one cycle for the first level and two cycles for the second level cache. In all STS variants, access time in the spatial part is two cycles. The main memory access time is 16 cycles.

The analysis assumes that both the first and the second level caches are on the same chip as the CPU, and their transistors are of the same cost. Calculations do not include internal buses and connections. The technology of [8] was assumed for implementation. It was adopted that the number of transistors per logic gate is equal to the number of inputs plus one. Since one RBE equals to 6 transistors, a tristate buffer is estimated to 0.33 RBE, and a latch to 0.6 RBE.

4. COMPLEXITY ANALYSIS

The implementation analysis was performed as follows. Firstly, complexity of standard caches is calculated using this model and expressed in RBEs. After that, additional resources needed for conventional hierarchy and the STS cache are designed (e.g., write buffers, prefetch logic, run-time tagging logic, etc.) and their transistor counts calculated. Then, transistor counts are converted to RBEs and added to the corresponding values from the first step. Finally, the ratio of complexities of the conventional cache hierarchy and the STS variants is calculated.
A) Estimation of the conventional hierarchy complexity
The area consumed for write buffers in the C1 and C2 is estimated as follows. Write buffers assume 28-bit address (the lowest four bits are zero) and four 32-bit data (for block eviction on replacement), where each bit requires one latch and one tristate buffer. This sums up to 156 latches and tristate buffers for one write buffer which gives the area of
	WB = 156 x 0.6 (rbe) + 156 x 2/6 (rbe) = 145.6 (rbe).
Overall area needed for conventional cache is calculated as
	C(CH) = 2 WB + C1 +C2 =
	 = 291.2 +
	 1600 + 0.65 x size(C1) + 60 x tu + 0.65 x tsbits +
	 1600 + 0.65 x size(C2)+ 60 x tu + 0.65 x tsbits (rbe)
B) Estimation of the STS complexity
The STS cache memory subsystem consists of the three memory modules (T1C, T2C, and SC), write buffers, prefetching mechanism, retagging logic with associated tag and status bits in the spatial part, and some additional logic.

Write buffers (for T1C or T2C) consist of 32 address and 32 data latches (and the same number of tristate buffers). Write buffer (for SC) is built of 28 address and 4 x 32 data latches and tristate buffers. Therefore, the area for write buffers is calculated as
	WB(T1C/T2C)= 64 x (0.6 + 2/6) = 59.73 (rbe)
	WB(SC) = 156 x (0.6 + 2/6) = 145.6 (rbe)
	WB(T1C + T2C + SC) = 265.06 (rbe).
Prefetch mechanism requires 28 address latches connected to a simple incrementer, and necessary tristate buffers, which consumes
	LTarea (PFM)= 28 x (0.6+2/6) (rbe),
Optimization of a full adder to an incrementer gives a needed area for this component as
	INCarea (PFM)= 28 x (3/6 + 3/6) = 28 (rbe).
Therefore, the total area occupied by prefetch logic is
	PFM = 54.13 (rbe).

Retagging logic in the spatial part contributes with about 25 rbes (one 5-bit incrementer, 5 one-bit adders, and a number of gates). Each block in the spatial part also needs 11 bits (5 for Xcount, 5 for Ycount, and 1 for S/T tag), but these bits are included in this estimation as the status bits. The remaining logic can be realized by simple changes of the control logic of existing modules of the conventional design, and it is assumed that this does not increase the area.

Therefore, the overall STS area is
	C = WB + PFM + RL + T1C + T2C + SC =
 344.19+
	 1600 + 0.65 x size(T1C) + 60 x tu + 0.65 x tsbits +
	 1600 + 0.65 x size(T2C) + 60 x tu + 0.65 x tsbits +
	 1600 + 0.65 x size(SC) + 60 x tu + 0.65 x (tsbits + 11)
 (rbe)
C) Comparison
The above area estimation for conventional cache and the STS is used for form a ratio of their complexities. The above calculations include the complexity of cache control logic. As the technology improves, on-chip caches with very large capacities would be possible. In this case, constant complexity of the control logic and additional resources in the STS can be neglected. Therefore, estimation and comparison was also performed excluding the cache control area (data and tag sections only), which would be a relevant indicator in the years to come. Results of the comparison and the corresponding discussion are presented in Table 2.

In a real design, the occupied area is somewhat larger since the ideal space utilization is not possible. In that sense, the STS is also beneficial since its smaller modules reduces problem of space fragmentation.
7. PERFORMANCE/COMPLEXITY ANALYSIS

It is difficult to establish one concise and clear metrics which combines both performance and complexity aspects of some solution and can readily show its efficiency and applicability. At least, we are not aware of some widely known indicator for the performance/complexity measure. Generally, it should be represented as a function which includes weighted contributions of both elements.

Feeling the need to demonstrate an aggregate comparison between the conventional cache and the STS concept in a formally exact and obvious manner, we have approached this problem in an intuitive and most straightforward way. Since only the relative measure is of interest for us, the performance/complexity aspect between two solutions was obtained as a simple product of ratios between performances and complexities calculated separately, i.e.:
�EMBED Equation ���
This expression obviously assumes equal contributions of performance and complexity in this overall comparison indicator.
Using the adopted PC indicator, four STS variants have been compared with the conventional cache. Table 3 presents the comparison for the case of STS with profile-time initial tagging only. Numbers given in the tables represent the ratios of indicators for the conventional cache and the corresponding STS variant. Therefore, a particular number greater then one indicates better performance of the corresponding STS variant. Likewise, appropriate complexity number greater than one implies the lower complexity of the STS cache.

General conclusion is that the STS concept offers a significant improvement from the cost/performance point of view. Initial data tagging in profile time is proved to be especially effective. This also indicates that a compile time mechanism could be effective, too. Because of the steady nature of data locality type, the run-rime retagging logic on an initially tagged memory does not pay off for added complexity. Between the compared STS variants, the STS4b (which assumes a twice as fast cache) is clearly the best. Among other variants, the STS2 (with size of the spatial part equal to the size of first level cache in the conventional hierarchy) is the most cost-effective one.

VI. CONCLUSION

The goal of the novel cache architecture concept - the STS cache - is to achieve a better performance/complexity by optimizing cache organization and data handling according to their locality. In a previous paper, it was demonstrated that the STS is able to attain a performance improvement. This paper shows that this approach is also able to reduce the complexity (area occupied by the design), which proves its advantage over the conventional cache solution. This makes one believe that the STS approach will find its way into the modern microprocessors and the multiprocessor/�multicomputer systems, including those based on the SCI.

ACKNOWLEDGMENTS
The authors are thankful to the following individuals for providing the response to the basic notions presented here, and for their encouragement to continue with the research efforts in the domain of the STS cache: Professor Michael Flynn of Stanford University, Professor Alan Jay Smith of the University of California at Berkeley, Professor Gul Agha of the University of Illinois at Urbana-Champaign, Professors Hank Dietz, H.J. Siegel, and Jose Fortes of Purdue University, Professors Yale Patt and Trevor Mudge of the University of Michigan, Professor Ali Hurson of the University of Pennsylvania, Professor Daniel Tabak of the George Mason University, Professor Mateo Valero of the University of Barcelona in Spain, Professor Antonio Prete of the University of Pisa in Italy, and Professor Per Stenstrom of the Chalmers University in Sweden.

REFERENCES
[1] 	Smith, A.J., "Cache Memories," ACM Computing Surveys, September 1982, pp. 473-530.
[2] 	Milutinovic, V., The STS Cache, University of Belgrade Technical Report #35/95, Belgrade, Serbia, Yugoslavia, January 1995.
[3]	Milutinovic, V., Tomasevic, M., Markovic, B., Tremblay, M., “A New Cache Architecture Concept: The Split Temporal/Spatial Cache,” Proceedings of the IEEE/MELECON-96, Bari, Italy, May 1996 (Submitted: September 1995)
[4]	Milutinovic, V., Markovic, B., Tomasevic, M., Tremblay, M., “The Split Temporal/Spatial Cache: Initial Performance Analysis,” Proceedings of the SCIzzL-5, Santa Clara, California, USA, March 1996.
[5]	Tomasevic, M., Milutinovic. V., The Cache Coherence Problem in Shared Memory Multiprocessor Systems, IEEE CS Press, Los Alamitos, California, USA, 1993.
[6]	Gonzales, A., Aliagas, C., Valero, M., “A Data Cache with Multiple Caching Strategies Tuned to Different Types of Locality,” ACM International Conference on Supercomputing, Barcelona, Spain, 1995, pp. 338-347.
[7]	Najjar, W., Colorado State University, Personal communication, May 1996.
[8] 	Flynn, M.J., Computer Architecture: Pipelined and Parallel Processor Design, Jones and Bartlett Publishers, Boston, Massachusetts, USA, 1995.
[9]	Mulder J., Trade-offs in Processor-Architecture and Data Buffer Design, Technical Report, CSL-TR-87-345, Stanford University, December 1987.
��
�STS1�STS2�STS4a�STS4b��CR�1.13�1.07�0.97 �0.97��CR1�1.21�1.13�1.00 �1.00��Table 2: The results of the complexity analysis. Legend: CR - complexity ratio between the conventional cache hierarchy and the corresponding STS variant (run-time tagging logic included in the STS); CR1 - complexity ratio between the conventional cache hierarchy and the corresponding STS (run-time tagging logic excluded); all other symbols are previously defined. Description: The figures from the table express the ratio of the areas needed for the conventional cache hierarchy and the corresponding STS variant. Numbers greater than 1 imply a larger complexity of the classical design compared to the STS. Evidently, STS1 and STS2 are less complex compared to the classical design while the complexity of STS4a and STS4b is about the same as of the classical design. Explanation: The area saving comes from much lower capacity in the spatial part. Although the STS has the half a capacity of a usual hierarchy in the temporal part, its tag storage overhead is higher because of one-word block length. The STS also includes two counters (11 bits) per each block in the spatial part, the prefetch logic, and some additional resolving logic. Implication: This complexity analysis assumed relatively small caches which favors the conventional design. For larger caches, the overhead of additional resources needed for the STS would become less in overall area count, so the relative complexity of the STS cache compared to classical cache will decrease.

�EMBED MSDraw * mergeformat���

Figure 1. Organization of the STS cache subsystem. Legend: CPU - processor; PFL - prefetching logic; SC - spatial part; WB - write buffers; T1C and T2C - first and second level in the temporal part; MM - main memory; SC Hit, T1C Hit, and T2C Hit - hit detection signals; MFC - "memory function completed" signal sent by memory. Description: The STS cache consists of two parts: the temporal and the spatial part. Temporal part is organized as a two-level hierarchy, with one-word block size. Spatial part is one-level with the usual block size and a hardware-implemented prefetching mechanism. Explanation: Memory reference request from the processor is sent to all STS cache modules at the same time. When a hit in one part of the STS (temporal or spatial) is detected, a signal is sent to the other part of the STS to prevent its request to the main memory. In the case of a miss in some STS module, eviction is prepared by placing a chosen block into write buffer (if dirty). If SC Hit signal is raised, temporal hierarchy aborts the activities, does not evict the block, and invalidates the contents of write buffer. If hit in T1C and/or T2C is detected, the SC stops the work. In the case of T1C miss and T2C hit, data are also written into T1C. When data are not found in any of the STS modules, memory fetch is initiated. Memory returns the block of appropriate length which is dependent on its current locality tag. This tag determines whether the block will be placed into spatial or temporal STS part. Fetch into temporal part loads both T1C and T2C. After loading block into STS, eventual eviction goes on by emptying write buffers (if evicted block is dirty). If the block is written into SC, then prefetching logic also initiates memory request for the next block (if not already present and also spatial). Implication: Write buffers are necessary for hiding the eviction from processor and simultaneous searching and activities in both STS parts when a dirty block is being evicted .

�STS1�STS2�STS4a�STS4b��PR�1.01�1.08�1.13�1.44��CR�1.13�1.07�0.97 �0.97��CR1�1.21�1.13�1.00�1.00��PC�1.14�1.16�1.09�1.40��PC1�1.21�1.22�1.13 �1.44��Table 3: Evaluation of the STS cache with profile time tagging only. Legend: PR - performance ratio (average memory latency of the conventional hierarchy divided by the average memory latency of the corresponding STS variant), PC - PR x CR, PC1- PR x CR1, all other symbols have been previously defined. Description: Data are initially tagged at profile time. Two alternatives are possible for initial tagging: software profiling (without additional logic - complexity CR1) or hardware profiling (with retagging logic - complexity CR). In both cases, there is no data retagging at run-time. Explanation: The STS approach using data memory tagging before run time achieves performance improvement and also complexity reduction, especially if software profiling is employed. This is because the access pattern of each data item is averaged across the entire run and spurious oscillations of the run-time algorithm are alleviated. Also, data are always fetched to the appropriate part of the STS cache. Implication: Initial tagging of data at profile-time was shown to be more effective than dynamic tagging at run-time.

