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Figure 1: Organization of the conventional cache hierarchy. Legend: MM - main memory;  CPU - central processing unit; T1C and T2C - first and second level of the conventional cache hierarchy. Descripton: Multilevel cache hierarchy is a common solution, for bridging the gap between the fast processor and the relatively slow main memory. This figure presents the most usual cache configuration - two level hierarchy. The first level cache is usually on-chip, while the second level cache is off-chip. Explanation: Since the goal is to achieve fast cache access, the first level cache is usually small. Much larger second level cache makes it possible to achieve high hit ratio. Also, the capacity of the entire hierarchy is determined with the  aspect ratio of the overall memory hierarchy. On the other hand, efficiency of cache subsystem greatly depends on the size of the typical working sets of the applications. Implication: In this analysis, it was chosen that the capacity of the two-level cache hierarchy is about 10% of  the expected working sets of the applications used in this study. 

Abstract - This paper concentrates on the problem of performance evaluation of the split/temporal spatial (STS) cache memory. Conventional solutions imply no separation of data based on their type of locality. A new cache architecture concept was introduced in a previous paper, which implies that data are split into two different cache memory subsystems, according to the type of locality they exhibit: predominantly temporal or predominantly spatial. The two cache subsystems employ a different internal organization, for better utilization of data characteristics. This paper concentrates on the performance analysis of the STS cache, comparatively with the conventional cache (complexity comparison is the subject of a follow up paper). The major conclusion of this work is that the STS approach is not only considerably less complex, but also better in performance. The approach is widely applicable, from the uniprocessor environment, all the way to the mutiprocessor (e.g., SMP and DSM) and the multicomputer environment. One potential domain to benefit from this approach is SCI (Scalable Coherent Interface), which is elaborated in a followup paper.





I. INTRODUCTION



The cache memories in modern systems has become the basic and inevitable mechanism for effective reduction of memory access latencies and improving overall system performance.
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This most effective way to achive this is to employ the multilevel cache hierarchy (Figure 1). 



Existing cache memory architectures are based on the application characteristics of spatial and temporal locality [1]. In current cache memories, the two characteristics are utilized jointly, i.e., the existing cache architectures imply one cache organization which benefits from both characteristics, and makes no attempt to take special advantage of one locality type in one set of conditions, and the other locality type in another set of conditions. Such approach is obviously not optimal, since data/instructions which exhibit a predominantly temporal locality and the data/instructions which exhibit a predominantly spatial locality are equally treated using the same architecural constructs.



In this paper, the term "data exhibiting predominantly temporal locality" assumes that the probability of referencing a certain address again in near future is relatively high. A relatively large percentage of data from this group exhibits the temporal locality "strongly," rather than "predominantly" (e.g., scalars, local variables, synchronization variables, loop control variables, and the similar).



On the other hand, the term "data exhibiting predominantly spatial locality" implies that, after a given address is accessed, the probability is relatively high that a neighboring address will also be accessed. That is why data is fetched in cache in blocks on cache miss. However, a relatively small percentage of data from this group exhibits the spatial locality "strongly"; actually, most of the data from this group also exhibits a relatively strong temporal locality component. Consequently, the term spatio-temporal, rather than spatial, would better reflect the locality type; however, for simplicity reasons, from now on, we will be using the term "spatial" exclusively (e.g., elements of complex data structures, array elements, record elements, and the similar).



The approach to be elaborated in this paper was initially introduced in a 1995 technical report of the University of Belgrade [2] and a previous paper [3]; however, this paper represents the first attempt to analyse the performance approach thoroughly.



Essence of the STS (Split Temporal/Spatial) cache approach under consideration here is as follows:

	(a) At compile time, with some estimation probability, the data can be classified as those exhibiting predominantly temporal locality or spatial locality. The "temporal" data need cache hierarchy; however, a smaller cache capacity on each hierarchy level can satisfy the needs, since fetching of entire blocks is not necessary. The "spatial" data do not need any cache hierarchy, and a relatively small prefetch buffer is expected to satisfy the needs. Therefore, splitting the cache according to the STS principle makes the overall cache memory considerably smaller for approximately the same performance. 
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Figure 2: Organization of the STS cache. Legend: MM - main memory;  CPU - central processing unit; SC - spatial part with prefetch mechanism; T1C and T2C - the first and the second level in the temporal part. Desciption: The novel cache organization - STS cache consists of two parts: the temporal and the spatial part. Temporal part is organized as a two-level hierarchy, with one-word block size. Spatial part is one-level with the usual block size and a hardware implemented prefetching mechanism. Explanation: The optimal cache structure (from the locality related cache organization point of view) implies that cache is split into a "temporal" part (with a cache hierarchy and smaller caches on each level) and a "spatial" part (without a cache hierarchy and with a prefetch mechanism to main memory). Spatial data usually include a temporal component (which is symbolically indicated by including a larger block for the spatial part. Implication: Correct dimensioning of the cache hierarchy levels is of the crutial importance for the performance of the STS approach.



(b) At run time, it may become obvious that (due to a wrong compile time estimation) some "temporal" data ended up in the spatial part of the cache architecture, and vice versa. Consequently, hardware mechanisms have to be provided to monitor the run time behavior of data, and to allow the run time transfer and reallocation between the two cache parts. These hardware mechanisms increase the hardware complexity; however, by a relatively small amount. Details of the STS cache organization are given in Figure 2. 



The major problem of this research is performance evaluation of the STS concept. This particular research paper is aimed at the uniprocessor cache memory [4], although the concept under consideration is fully applicable to the multiprocessor cache memories, as well [5].



The same problem was independently recognized and attacked in [6]. They also proposed dual data cache - two parts of cache (temporal and spatial) with different block sizes and prefetching possibility in the spatial part. However, their temporal part is one-level and they proposed only a run time mechanism for detection of data locality which is quite different from ours. This mechanism is based on locality prediction table, which is a history table with information about the most recently executed load/store instruction used to predict the type of locality of referenced data.

 

�SC�T1C�T2C��CH                �N/A�C1�C2��STS1       �C1/2�C1/2�C2/2��STS2�C1�C1/2�C2/2��STS4a�2C1�C1/2�C2/2��STS4b�2C1�C1/2�C2/2��

Table 1: Definition of size of the STS variants analyzed. Legend: SC - spatial part with prefetch mechanism; T1C and T2C - the first and the second level in the temporal part. CH - clasical hierarchy, STS1, STS2, STS4a and STS4b - variations of STS cache; C1 and C2 - initial sizes of the first and the second level of the clasical hierarchy. Description: This table presents the size of  each cache part in different variant analyzed in this paper. The aspect ratio between levels in classical hierarchy was chosen to be 1:8. The overall capacity of  conventional cache hierarchy was tuned to be about 10% of working sets of  applications used in this study.

II. DETAILS OF THE SOLUTIONS TO BE ANALYSED 



This section presents the details of the overall STS cache architecture and its variations. One variation implies the incorporation of separate instructions for each data behavior type (e.g., temporal load, temporal store, spatial load, spatial store, etc.). Such a variation may be easier for existing instruction set architectures (ISAs). For instance, UltraSPARC architecture includes ASI (Address Space Identifier) loads which could be used for this purpose. The other variation implies the tagging and retagging of data ("temporal" and "spatial"). The two variations are theoretically equivalent. However, the analysis to follow is based only on data tagging, since it is practically more feasible in conditions of today's existing microprocessing which include no instructions like ASI (majority).



Also, in the rest of the paper, we will consider only the splitting of the data cache, since that is where much better performance improvement results are expected (instructions exhibit mostly the spatial locality, and the "spatial" part of the STS cache is expected to dominate).



Further discussion is organized into the following subsections: (a) organization of the hardware, (b) compile-time algorithm for initial data allocation, (c) profile-time algorithm for the optional profile time retagging and optimization of relevant parameters, and (d) run-time algorithm for on-line reallocation of data. 



A. The STS variants     



This paper is aimed to compare conventional cache hierarchy with  four  STS variants of the lower transistor count, described in Table 1. The baseline, conventional cache organization, (shown in Figure 1) with two-level hierarchy is referred to as CH. Four variations of the STS data cache, (shown in Figure 3) are referred to as STS1, STS2, STS4a, and STS4b. All STS variants have the same size of hierarchy in the temporal part (a half of capacity of the conventional cache on each level). Spatial part, in the STS1 variant, is of the same capacity as the first level in the temporal part, two times larger in the STS2,  and four times larger in the STS4a and STS4b. The prefetch mechanism for automatic prefetching from memory of the next block to one being currently accessed is provided in the spatial part. 



The access times for different cache hierarchy levels should be chosen according to the technology under consideration; however, for comparison and illustration purposes, in the analysis to follow, we have chosen the access times of each next hierarchy cache level to be four times higher.  The access times for the conventional hierarchy and hierarhies of the temporal parts in the STS1, STS2, and STS4a variants are two cycles for the first level and four cycles for the second level. The access times for the temporal hierarchy  are one cycle for the first level and two cycles for the second level in the STS4b. In all STS variants, access time in the spatial part is two cycles. The main memory access  time is 16 cycles. 



B. The compile-time algorithm



The simplest compile-time algorithm for the initial allocation implies that the simple variables and constants are labeled as T (temporal) and the elements of complex data structures are labeled as S (spatial). More sophisticated algorithms are also possible. Please, note that performance evaluation with semantic benchmarks (e.g., SPLASH-2) makes the initial allocation easy. However, performance evaluation with ready-to-use traces (e.g., ATUM) makes the initial allocation relatively cumbersome, so a default initial allocation may be more appropriate. Later on, at run-time, after some "cold start" period, the retagging mechanism will bring the data onto some kind of "steady state". 



C. The profile-time algorithm



All data blocks are initialy regarded as spatial. Then, a profile time algorithm (depicted in Figure 3) is used for detected and retagging to temporal those blocks that found to exhibit temporal locality. 



Profile time mechanism associated each block with two counters (Xcount and Ycount). The Xcount value for a particular data block (initially zero) is incremented on each access to the upper half of the block, decremented on the access to the lower half of the block, and reset on the replacement of the block. When the Xcount value reaches upper (x) or lower limit (-x), further counting is disabled. The Xcount value is checked periodically (because the density of accesses in a unit of time determines the degree of temporal locality). Period of Xcount checking is controlled by Ycount which counts overall number of accesses to this block. When this counter reaches some prespecified value (y), the value of corresponding Xcount is checked. If either limit (x or -x) is reached, the block is tagged as "temporal", otherwise, it is tagged as "spatial". The block once tagged as temporal, can not later be retagged to spatial (as it can be in the run time algorithm). 





if(hit.in.block)

   if(Tag=Spatial)

      {    if(-X<Xcount<X)

                 if(Hi) Xcount=Xcount+1;

                 else    Xcount=Xcount-1;

            if(Ycount<Y) Ycount=Ycount+1;

            else {   if(-X<Xcount<X) Tag=Spatial;

                       else                        Tag=Temporal;

                       Xcount=0; 

                       Ycount=0;

                    } 

         }



Figure 3: The simple profile time algorithm for tagging of data blocks against their locality. Legend: Xcount and Ycount - counters; X and Y - limits for Xcount and Ycount  respectively; Hi - flag which indicates hit in an upper half of block; Descripton: The two counters are  associated with each block in the data memory. Explanation: Initially, it is assumed that all data are spatial, and that the values of Xcount and Ycount are set to zero. Implication: Assuming the all blocks are initially tagged as spatial, this simple algorithm observes the overall access pattern for each block and retags to temporal those blocks with lower data block utilization.



D. The run-time algorithm   



The algorithm very similar to the profile time algorithm can be easily implemented in hardware for run time tagging/retagging of data according to dynamically observed changing access pattern ( Figure 4).



III. CONDITIONS AND ASSUMPTIONS  



In this section, the conditions and the assumptions of the analysis to follow. Under the term conditions we imply the specifiers of the real environment. Under the term assumptions we imply the simplifications that facilitate the analysis without any negative impacts on the validity and the generality of the results.



All caches in the cache subsystem employ write-back policy. The block size length is four 32-bit words for conventional hierarchy and the spatial part in the STS variants, and one word for the temporal hierarchy in the STS. Aspect ratio in the cache hierarchy is 1:8. Organizational parameters of the cache memory are: 4-way set associativity, and LRU replacement algorithm. Inclusion property in maintained in the entire hierarchy. 
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if(hit.in.block)

      {    if(-X<Xcount<X)

                 if(Hi) Xcount=Xcount+1;

                 else    Xcount=Xcount-1;

            if(Ycount<Y) Ycount=Ycount+1;

else {   if(-X<Xcount<X) Tag=Spatial;

                       else                        Tag=Temporal;

                       Xcount=0; 

                       Ycount=0;

                    } 

         }



Figure 4: The simple run time logic for dynamic tagging/retaging of data blocks against their locality. Descripton: The two-counter logic is associated with each block in data cache. Explanation: Default tags fo all data are spatial. Counters are initialy set to zero. After each Xcount value checking, the proper tag is written in a D flip-flop, and both counters are reset. Even if the block changes its tag (retagged) on this occasion, it stays there until being evicted on replacement to memory with its new tag. On next access to this block, a cache miss will be incurred, and the block will be fetched in the appropriate cache part according to the new tag. Implication: This proposed run-time algorithm differs to the previously described profile-time algorithm only in its possibility for retagging the temporal data block again to spatial.



The conditions for correct functioning of the retagging logic are: a) count limit (x) for up-down counter must be no less than a half of block size (in  words); and b) period of checking (y) must no less than count limit (x).



All time-related parameters (described in the section 2a) were chosen for a typical state-of-the-art CMOS VLSI. 



IV. ANALYSIS



The best way to carry out the performance evaluation of some proposed architectural concept is by means of simulation (e.g. in [7]). The same approach is followed in this study. Performance comparison of different STS variants and conventional cache is done with trace-driven simulator based on real address traces.  For this purpose, we used the uniprocessor ATUM address traces that were collected from VAX by changing its microcode [8]. ATUM is a representative collection of single process traces and multiprogramming traces that include user as well as operating system references. The originally obtained traces consist of virtual addresses, but we converted them into real ones. Since our idea deals with data cache only, the data references were extracted from the traces.



Since our analysis was based on already collected address traces, compiler time algorithm for initial data tagging was not possible. Our intention was to validate the usefulness of the proposed approach and to quantify the possible improvement. The most suitable way seemed to be profile-time algorithm in first place. Therefore, the simulation analysis were preceded by profiling data memory according to the algorithm given in sections 2c. In this way, each data block is tagged as spatial or temporal. After that, the simulations were run using previously tagged data for each particular ATUM trace.



Major results of this analysis are given in the enclosed two tables. Table 2 compares the relative performance of different STS variants and conventional cache hierarchy for the selected ATUM traces using the average latency of memory reference as main performance indicator. Since the hit ratio is also very indicative for performance of uniprocessor caches, the hit ratios  for compared configurations averaged over entire set of traces is presented in Table 3. These two tables include the descriptions of the phenomena of interest, their explanations, as well as the comments related to the engineering implications of the presented results.



When we started this research, we expected that the major effects of the STS approach will be in the significant complexity reduction, and only a minor (negligible) performance reduction. However, the results presented here show that the STS approach offers a performance improvement, as well. The approach itself offers great possibilities for further improvement by applying improved run-time algorithms for dynamic tagging and retagging of data. Further experiments are to evaluate these directions.



V. CONCLUSION



The STS approach, previously introduced by the same authors, has been now evaluated from the performance point-of-view. It has been shown that the performance/complexity of the STS cache factor is so much better, compared to the conventional cache. This makes one beleive that the STS approach will find its way into the modern microprocessors and the multiprocessor/multicomputer systems, including those based on SCI.
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Table 2: Performance comparison of the various STS variants and the conventional cache. Legend: Left column includes the names of the original ATUM traces; Symbols STS1, etc. have been defined in Table 1. Description: This table summarizes performance comparison of  four different STS variants and the conventional cache. The average latency of a memory reference has been adopted as the main performance indicator. The numbers in this table show relative percentual performance improvement (positive) or degradation (negative) of the STS variants, compared to the conventional cache hierachy. The numbers have been calculated as a  difference of average latencies of the corresponding STS variant and the conventional cache, divided by the average latency of the conventional cache. The relative performance of all evaluated STS configurations is presented for each particular ATUM trace of interest. The OPI (overall performance indicator, in the last row) is averaged acrros all used traces (weighed by their number of references). Therefore, OPI gives a representative global notion of the STS performance advantage over the usual cache hierarchy. Explanation: The STS1 with the same capacity on the first level (temporal and spatial parts together) and half the capacity on the second level (as the conventional cache hierarchy) shows equal (or even slightly better, which is unexpected) performance. Doubling the capacity of the spatial part in STS2 (compared to STS1) significantly improves the access latency (about 8%) for a reasonable cost, since the added number of  transistors is relatively small. Doubling the capacity of the spatial part from STS2 to STS4a further improves the performance of the STS, although the incremental gain is somewhat lower. This is a natural consequence of the fact that data tagged as spatial does not exhibit only the sequential locality (accessing the next address), but also the temporal locality (accessing the same address).  If this would not have been true, than increasing the spatial part would not bring any significant gain (prefetch buffer would do the job). However, for some of the traces, improvement is more than doubled, which means that pure spatial locality is not present. In these cases, it can be expected that larger spatial part can additionally boost the performance, yet with a lower transistor count, compared to the conventional cache. The STS4b variant reflects the effects of the assumption that decreasing the capacity of the temporal hierarchy by half (compared to conventional hierarchy) also halves the access times, for technology related reasons. This assumption especially holds true as the capacity of hierarchy levels becomes larger, which indicates an evident potential for performance improvement. The highest performance gain is evidenced in traces which exhibit a significant amount of temporal locality.  The explanations is in the smaller block size of the temporal part, which leads to better utilization of cache space and avoiding cache pollution with unnecessary data. Implication: Performance figures presented in this table (for particular traces) have been characterized with noticable variations. This reflects a profound impact of the specific access pattern of a particular trace on average access latency. The ability to more clearly distinguish between temporal and spatial locality in a trace is the main prerequisite for better results.  Also, the general conlcusion that can be drawn from this table is that cost/performance ratio of the STS is clearly better, since it achieves better performance for smaller transistor count, due to the tuning of cache architecture to the expected or observed type of data locality.
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Table 3: Hit ratios of the STS variants and the conventional cache.  Legend: CH - Conventional hierarchy; all other symbols have been defined previously. Description: This table presents the overall hit ratio for all compared configurations (the rightmost column). For each configuration, this number is broken into the particular hit ratios for different components in the temporal and the spatial parts (calculated as the ratio of the number of hits into this specific component and the overall number of memory references). Explanation: The results shows that about one third of all hits are serviced by the spatial part of the STS. The increase of hit ratio in the spatial part (caused by enlarging its capacity) is quite consistent with effects on the average access latency. It can be noticed again that incremental gain decreases while the transistor count in this part doubles. Hit ratios of both levels in the temporal part for all STS variants (and also for the spatial part in the STS4a and the STS4b variants) are exactly the same, since their capacities in each part are equal. Even the second level of  the conventional hierarchy is twice as large as the second level in the  temporal part of the STS, its hit ratio is not much better. The reason for this is in a better utilization of the second level in the  temporal hierarchy (one-word block size). Implication: This table clearly demonstratres that hit ratio is not an ultimate cache performance indicator. In spite of the fact that the STS1 and the STS2 show lower hit ratios than the conventional hierarchy, according to Table 2, they perform better. This is because miss servicing time in the temporal part is shorter due to smaller block size than in the conventional hierarchy. 




