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Mining Answersof On-LineTutoringTools
Brigitte Aguado, AgatheMerceronandAgnèsVoisard

Abstract— With the emergenceof e-learning, on-line tutoring
tools are becomingmore and more important. They changefun-
damentally the feedbackthat teacherscanget fr om their teaching.
What becomesnow possibleis to extract meaningful information
fr om studenthomework available in e-form.

The model presentedin this paper servesasa support to repre-
sent,query, and mine student answersin this context. It provides
extensive descriptive statistics of the classroom, including most
commonmistakesand shortestpaths to solutions. It makesit pos-
sible to extract more sophisticatedinformation. For instance,var-
ious classificationsof studentssuch as classificationby mistakes,
by mastered transformation rules, or by reasoningcan be con-
structed, or one can look for mistakesoften associated together.
Our approach is illustrated with the Logic Tutor, developpedat
SydneyUniversity.

I . INTRODUCTION

With theemergenceof e-learning,flexible education,andthe
increasingnumber of studentsin somefields,on-line teaching
tools are becoming moreand more important. This changes
fundamentallythe natureof interactionbetweenteachersand
students.Sofar, managing student answersconsistedin manag-
ing marks andcomputing statistics.Whatbecomesnow possi-
ble- andchallenging - is theexploitationof studenthomework,
which is availablein electronic form.

Our work aimsat analyzing andmanaging the answersob-
tainedfrom studentsusingon-line teaching tools.Relevantpat-
ternscanbeconveyedin ameaningful wayto bothstudentsand
teachers.Studentscouldfind out their level, progress,andeven
comparethosewith respectto therestof theirgroup. Teachers,
ontheotherhand,couldexaminethisdataundervariousangles
to find trends,common mistakes,mistakesassociatedwith each
other, well-understoodconcepts,problems,progress,andsoon,
possiblygroupingstudentsbyabilities,in orderto readjust their
teachingandprovideproper feedbackto theirstudents.Several
issuesneedto be addressed:managing studentsanswersin a
database,developing appropriatedatamining techniquesspe-
cific to thelearningprocess,andvisualizingandmanaging the
resultsof the mining algorithms. As a first step, to validate
our approach,we make useof anexisting onlineteaching tool,
theLogic Tutor currently in useat Sydney University. It
is anon-line teachingassistantthatallows studentsto practice
formal proofs in propositionallogic. This systemis currently
usedin undergraduateteachingat the InformationTechnology
School at Sydney University, in a courseinvolving morethan
400students.
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We aimatanapproachthatcanbeusedfor onlinecoursesin
general, in particular for thoseofferedby theemerging online
campuses. Most presently-availabletools provide help to dis-
play coursematerialon-line, to facilitateelectroniccommuni-
cation,to managestudentsmarks,andsoon. However, they do
not include modulesto getfeedback from studentson thecon-
ceptsspecificto a given courseandto analyzetheir answers.
Thecontribution of ourprojectis to tacklethis issueboththeo-
reticallyandpractically.

Querying andmining studentanswersrequire to model stu-
dent’s answer. Our approachis basedon machine learninglike
techniquesandbearssimilaritieswith ACM system[7] or pro-
duction system[11] within the problem spaceparadigm [10].
Needto elaborate systemsto classify students is well-known
from traditional teaching.Various researchwork focus on the
studyof suchsystems(see[5], [4], [8]). For example, in [5] a
systemof classifyingstudent errors from essayexamanswers
is developpedin thecontext of anintroductorymicroeconomics
course.Theseworksarenot linkedto any on-line teachingtool.
Sometutoring systems[3] implement human teachingstrate-
giesandtacticsdetermining for example taskdifficulty andde-
greeof assistance.Relevantclassificationsof studentanswers
maycontribute to improve thesestrategies.

This paperis organizedasfollows. Section2 describesthe
model thatservesasa support for handling studentanswersas
well as the basicqueriesthat onewould like to poseagainst
theproposedstructure. Section3 describesmoreelaborateop-
erations andintroducestechniquesfrom datamining. Section
4 illustratesour approachin the context of the Logic Tu-
tor mentionedpreviously. Finally, Section5 draws our con-
clusions.

I I . MODEL

This sectionfirst introducesthestructurethat represents the
reasoning of thestudents.It includesboththevalidandthepos-
sibleinvalid reasoning. Queriescanbeposedagainst thisstruc-
ture to extract meaningful information. They are informally
presentedin thesecondpartof this section.

Beforewe proceed, we find it useful to roughly clarify the
kind of on-line teachingtools we have in mind. We think of
tools that proposeproblemsor exercisesto studentson a spe-
cific topic, like the Logic Tutor [1] proposeslogic exer-
cises.Solvinga problemmaynecessitatea numberof interme-
diary steps.At eachstep,thestudentgives someintermediary
resulttogether with a justification.Eithertheresultandjustifi-
cationarecorrector thereis a mistakesomewhere. In thelatter
case,thetutorgivesanerrormessagecontaining someexplana-
tion to thestudentwho, then,mayre-do thestep.Theexercise
finisheswhenthe studenteitherreachesthe solution, or gives
up.
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A. Problemsolvingstructure (PSS)

We needto considera collection of exercisesthat will be
chosenandsolvedby groups of students.Many studentsmay
choosethesameexercise. An exercisehasa certaindifficulty.
It hasafinite numberof solutionsandis solvedby eachstudent
in a sequenceof steps.Eachstepof the reasoning is basedon
a justification. It is valid or invalid. In caseit is invalid, the
system- thetutor - notifiesthestudentwho makesanother try
eitherwith another result,or with another justification,or both.
Note that the notionof justificationis context dependent.For
instance,in thecaseof theLogic Tutor, a justificationis a
rule appliedto formulas. An invalid stepleadsto backtracking
in thereasoning. A correctansweris alist of valid stepsleading
to a solution.

Themostnatural structure thatcomesto mind to model the
problem solving evolution is a tree associatedwith a student
and an exercise. At each level, a step in the reasoning is
represented,which is the justification, or rule, usedfor the
edge,and the intermediate result for the node. An invalid
justificationwill leadto an invalid node,which is a leaf of the
tree- or, in otherwords,a deadendin the reasoning. If the
justification and the result are correct, the justification leads
to a valid node and the process continues until a solution is
reached. This is similar to workflows. The root of the treeis
theproblem to solve.

Definition 1
A solvedexercise(SE)is a 4-tuple:�����������	��
����
����������������

,

where
���	��
��

is a studentwith a certainlevel,

��

is a difficulty
(which canbedefined with respectto the level of a studentas
an exercise can be easyfor a ”good” student and hard for a
mediocreone). Thedifficulty associatedwith anexerciseis an
integerbetween1 and � , with � beinga predefinedparameter.
Finally, PS is the problem to solve and PSS is a problem
solvingstructureasdefinedbelow.

Definition 2
A problemsolvingstructure(PSS)is definedasa tree:����������������

,

where
�

is afinite setof nodessuchthat
��� �!�

,
�#"$�&%'�

is afinite setof edges.
���

is thenodethatformstherootof the�����
, i.e., it is theproblemstatement.

Moreprecisely,( �)�*��+	,.-�/'��01�2+	,.- is thesetof all nodes,where
�3+	,.-

rep-
resentsthesetof valid nodesand

�401�2+	,.-
thesetof invalid

nodes.( �5�6�7+	,.-8019:/7�708�;+	,.-<0=9 is thesetof edges. Theset
�>+	,.-<0=9

is
formedwith thecorrect justificationsprovidedby thestu-
dentwhile theset

�>08�2+	,�-<019
is formedwith theerror mes-

sagesgivenby thesystem.
Thereis a valid edgee from � 0 �*� to � 08?A@ �B� if � 0 is

thestepproposedby a studentasa valid partialsolutionto the
problem,namely, if a valid justificationwasusedanda correct
result given. There is an invalid edgebetween��C �D� and�EC ?F@G�*� if an invalid justificationwasproposedor mistake

SE1 = (St1, 2, PS1, PSS1) SE2 = (St2, 2, PS1, PSS2)

F1

 F3

F5

PSS2: PS1

 F2 F3

F4 F6F5
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Fig. 1. Problem solvingstructures.

hasbeendone in the result,or both. This leadsto an invalid
node, i.e. �HC ?F@>�!��01�2+	,.- .
Edgelabeling.
An edgeis labelledwith (i) the justificationusedat this step
or theerrormessagegeneratedat this stepand(ii) theorder of
the justification in the reasoning at that stage(rememberthat
students maytry a solutionandbacktrack).

Nodelabeling.
A nodeencompassesthevalid or invalid resultin thededuction.
Theroot of thetreecontainstheproblem statement.

Solution.
A correct answeris apathof thePSSleadingto asolutionleaf.
An incompleteansweris a PSSwhoseleavesareeitherinvalid
nodesor nodes thataredifferentfrom thesolution.

Theseconceptsaresummedup in Figure1.
Figure1representstwo solvedexercises,SE1andSE2with

the sameproblem statementand the samelevel of difficulty
with respectto theindividual levelsof thestudents.With each
SEis associateda PSS,namelyPSS1andPSS2.Invalid edges
arerepresentedasthick lines.As we canseefrom theleft hand
sideof the figure (PSS1),justificationj2, thefirst onefollow-
ing F1 cannot be appliedstartingF1 andstudent St1 needs to
backtrackin her/his reasoning andtry another justification.The
student chosesjustification j3 asa secondtry, which leadsto
F3. Note that many mistakes canbe madeat a certainstep,
e.g., j4 andj5 at Level 3 in PSS1. Finally, the fourth stepin
PSS1representstheendof theproblemsolving- theonly valid
leaf, F7. Note that in PSS2the solutionwasfound earlierby
St2. Notealsothe importance of ordering edgesasillustrated
in PSS1betweenlevels3 and4, for instance.This will helpus
to dosomereasoning on thereasoning.

B. Queryingthestructure

Useful information for self-evaluation andclassevaluation
canbeobtainedbyperformingtreesearcheseitheronindividual
PSS’s or on forestsof PSS’s. They aredescribedbelow in the
formof queriesthatcanbeposedagainstthestructuredescribed
above.

1) Querieson individual students: Suchqueriesallow one
to checkontheprogressof aparticularstudent, for instance,by
comparingthenumberof invalid nodesin differentSE’s for the
samestudentandat thesamelevel of difficulty.
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2) Querieson groups of students: Thesequeries allow one
tocompI aretheresultsof aclassandtogroupstudentsaccording
to certaincriteria.Thenumberof usefulqueriesin this context
is obviously large. Besides,they mayconcerna singleexercise
or asetof exercises.Suchqueriesinclude:( Who arethestudentswho did not find any solutionto ex-

ercisesPS1,PS2,andPS3?( Who arethe studentswho found the optimal solutionto
exercisePS1?( Whoarethestudentswhoalwaystriedinvalid rulesateach
stepof exercisePS1?( Whoarethestudentswhohaveexactlythesamesolutions?

The resultsof the queries can be obtained directly from
querying the reference structures. Moreover, basicstatistical
operationscanbeperformed.Moreelaborateinformation,such
ascorrelationsbetweenresultsor patterndiscovery, canbeex-
tractedthroughdatamining techniquesasdescribedin thefol-
lowing section.

I I I . FURTHER OPERATIONS

In this section,we introduceoperationsto allow theteacher
to gain a finer insight of the classroom, anda finer insight of
themistakes.Hierachical classificationsserve theformer goal,
associationsthe latter. Both techniquesarewell known in the
dataminingfield [6]. We adaptthemto thetutoring context.

A. Hierachical classifications

Thegoalof a hierachical classificationis to group individu-
als in homogeneous classes,wherehomogeneityis measured
by meansof a distancebetweenindividualsandgroups. The
number of classesis not known a priori. Rather, classification
is stoppedwhen the distancebetweentwo groupes is too
big and doesnot garanteeanymore the homogeneity of the
individualsgroupedtogether.

Generalalgorithm.
We supposethat we have a population of

�
individuals andJ attributes. Each individual is characterizedby the values

takenfor eachof theattributes. This generalalgorithm makes
useof two different distances,an initial distance, which mea-
sureshow differenttwo individualsare,andadistancebetween
groups, andwe will describethesedistancesshortly. Thealgo-
rithm findstheclassesasfollows.

1) Chooseadistancebetweentwo individuals.
2) Pairwise,calculateall initial distancesbetweenindividu-

als. This givesa
�K%L�

triangular matrix of distances,
triangular becausea distanceis symmetric.At this stage,
the
�

individualsareseenas
�

classes,eachclassbeing
composedof M individualonly.

3) Select two classeswith the shortestdistancebetween
them.

4) Groupthesetwoclassesintoanew one.Thus,thenumber
of classesdiminishesby M .

5) Updateall distancesbetweenalreadyexistingclassesand
theonenewly formed.

6) Repeatstep3 to step5 till the shortestdistanceabove a
giventhreshold is reachedor till thereis only oneclass.

M N O P QM 0N 1 0O 5.0 4.5 0P 8.5 7.8 3.6 0Q 7.2 6.7 2.2 2 0

Fig. 2. Matrix of initial distances.

M  N O P QM  N 0O 4.5 0P 7.8 3.6 0Q 6.7 2.2 2 0

Fig. 3. Matrix of distancesafter thefirst iteration of thealgorithm.

The initial distanceis usedin step2 to get initial distances.
Its choicedepends on the particulardata,individuals andat-
tributesthat the algorithm hasto classify. Its choice is cru-
cial as it determines what aspectsof individuals the classifi-
cationconcentrateson, andbelow we show how we proceed
in our context. The distance betweengroups is usedrepeat-
edly in step5. We introduce threecommonly usedmethods
to definea distance betweengroups. With the single linkage
method, thedistancebetweentwo groups is givenby themin-
imal distanceseparatingtwo individualsof eachgroup. With
completelinkage,it is themaximaldistancebetweentwo indi-
viduals of eachgroup that gives the group distance.With the
average method, thedistancebetweentwo groupsis calculated
summing all possibledistancesbetweenany two individualsof
eachgroupanddividing thissumby thenumberof possibilities,
which is R=S @ R % R=S;TFR . Formally:

Let S @  S;T be two groups and U 0 �WVFYX:� denotethe initial dis-
tancebetweenindividuals

V
and
X
.( Single linkage:U � S @Z S T ��� J\[ �H];^2_.`�a bc^2_�d	U 0���Ve�Xf� .( Completelinkage:U � S @  S;T ��� Jhg V ]2^2_ ` a bZ^2_ d	U 0 �WVFYX:� .( Average:U � S @Z S T ���jilk	mon `�p q mon d 9.r�s ];a b	tu _.` u<vwu _�d u .

As anillustrationfor thewholealgorithm,considerQ individ-
ualsandsupposethataninitial distancegivesthe Q % Q matrix
of step2 asshown in Figure2. Supposethatwe choosesingle
linkage to generatethegroup distance.Thetwo classeswith the
minimal distanceare xyM2z and xZNfz , so they aregroupedinto a
new one, xyM  Nfz . Completion of step5 gives thematrix shown
in Figure3. Thedistancebetweenx{O:z and x|M;z is Q while dis-
tancebetweenxZOfz and xZNfz is Pl} Q . Using single linkage, the
minimum is takenfor thedistancebetweenx{O:z and xyM  Nfz . A
similar procedureis followed to obtain the distancebetweenx~P:z and xyM  N�z , andbetweenxcQ�z and xyM  N�z . The minimum
distanceof the whole matrix is now betweenthe classesx~P�z
and xcQ�z , which gives the new class x~P  Qfz After, the second,
then the third iterationwe obtain the matricesshown in Fig-
ure4. Hierarchical classificationis summarizedgraphically in
the form of a dendrogram. The dendrogramobtainedin this
example is shown Figure5.
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M  N O P  QM  N 0O 4.5 0P  Q 6.7 2.2 0

M  N O  P  QM  N 0O  P  Q 4.5 0

Fig. 4. Matrix of distancesafter theseconditeration of thealgorithm.
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Fig. 5. Thedendrogramobtainedfor theexampleFigure2.

Thegeneral algorithmgivesdifferent classifications,depend-
ing on the initial distancechosen(and, to someextent, on the
group distance,thoughtheimpactof thegroup distanceis quite
well understood[6]).

We propose different ways of associatingattributes to
problem solving structures, and different choices of initial
distances,eachwaygivesaspecificinsightinto theclassroom.

Insight into mistakes.
To classifystudentsby mistakesis to group togetherstudents
making the samemistakes. A studentis characterizedby the
answerhegave to a particularexercise.Let

����0 a @��E0��E� , bethe�
structuresobtainedfrom

�
studentsto agivenexercise

���
.

First, we construct theset ��� of all error messagesoccurring
in the

�
structures. Thus, � � � x J @  }o}~}  J�� z if they are� different error messagesoccuring. With this set,we build

a tablewith
�

lines for the
�

structures
��� 0

and � columns
with a M in line

� [ ���� if structure
��� 0

contains aninvalid edge
with label J C , and � otherwise,asshown in Figure6. In other
words,

� [ ���� is M if andonly if student[ hasmademistakewith
errormessageJ C while solvingexercise

���
.

We obtaina table having only binary attributes. Focusing
on mistakes,absenceof mistakes is not informative. In other
words, it makesno senseto take into account in the distance
between[ and

�
attributeswhereboth [ and

�
get � . However,

it makessenseto take into account attributeswhereboth [ and�
get M , asthey bothmakethesamemistakeandmaybothneed

furtherexplanationsfrom theteacherfor thesametopic. There-
fore,we proposetwo distances.Thefirst oneis definedfocus-
ing on non-commonmistakes,while thesecondone(basedon
Dice coefficient) is definedfocusingon mistakesthatbothstu-

J @ J T J!�
M 1 1 1N 1 1 0O 0 0 1P 0 0 1

Fig. 6. Tableof mistakes for � studentsand � errormessages.

dentshave made.Let � bethenumberof attributeswhereboth[ and
�

get M , � bethenumber of attributeswhere [ gets M and�
gets � , and

�
bethenumber of attributeswhere[ gets � and

�
gets M .

1) U � � [ ������ � ?w�� ? � ?H� .
2) U�� � [ ������ M�� T �T � ? � ?w� .
Takingtheindividualsof Table6, onehas:U ��� M  N ��� @� � �:} O;O , U ��� M  O ��� U ��� M  P ��� T� � �:} �;� ,U ��� N  O ��� U ��� N  P ��� �� � M , U ��� O  P �����@ � � .U � � M  N ��� M����� � �:}�N , U � � M  O ��� U � � M  P ��� M�� T� � �:}�Q ,U � � N  O ��� U � � N  P ��� M�� �� � M , U � � O  P ��� M�� @@ � � .
This can be easily extended in the casewhereanswersto

several exercises,insteadof one, are taken into account (the
exercisesneednot to be the samefor all students). The set� � is simply error messagesfrom all invalid edgesseenin all
structures.

Insight into mastered rules.
To obtain a classificationwhere studentsgrouped together
mastersimilar know-how is similar to the classificationby
mistakes. The difference lies in the column of the table. To
build the table, one takes the set � containing all correct
justificationsof all valid edgescontainedin the

�
structures.

Insight into mistakesand mastered rules.
To obtain a classificationwhere studentsgrouped together
make similar mistakes and mastersimilar knowledge is also
done in a similar way. The columns of the tableareobtained
taking � � / � .
Insight into reasoning.
To classifystudentsby reasoning is to group together students
whoobtaina solutionin thesamestraightforwardway. For ex-
ample,studentswhohavefoundashortestsolutionstraightway
shouldgo in the sameclass. Studentswho first try onealter-
native beforethey engage on the way to the shortestpathto a
solutionshould belongto otherclasses,dependingonhow long
they went in the wrong direction. To achieve a sensibleclas-
sification, we do not apply hierarchical classificationstarting
with thewholepopulation,ratherwe performaninitial cluster-
ing andapplyhierarchicalclassificationoneachof theseinitial
clusters.

Let � @ , . . . , � � the � different pathsto solutions for theex-
ercisethathasbeensolved.Thesepathsaregroupedby length,
which gives


�@
, . . . ,


W�
, J � � . 
�@ contains all pathsto a so-

lution with the shortestpath length,

 T containsall pathsto a

solutionwith the secondshortest path length,andso on. We
make an initial clusteringof structures. This initial clustering
contains at most J¢¡ M clusters,£ � , £ @ , . . . , £ � . £ � is the
setof structuresnot containing a solutionpath, £ @ is thesetof
structurescontaining a solutionfrom set


 @
, . . . , £ � is the set

of structurescontaining a solutionfrom set

��

.
We perform a hierarchical classificationon eachindividual

cluster £ 0 . First, the set �y¤ of all justificationsof all valid
edges occurring in treesfrom £ 0 outsidethe pathto the solu-
tion is constructed. �:¤ contains all justificationsthat did not
contributeto thesolution. With this set,onebuildsa tablewithR	£ 0 R lines ( R	£ 0 R means cardinalityof £ 0 ) and R{� ¤ R columns
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�c@ � T � �
M 0 0 0N 1 1 0O 0 0 2

Fig. 7. Tableof justificationsnot leading to thesolution.

with g in line
� [ ���� if tree

����� 0
containsg occurrencesof valid

egdes with justification
� C outsidethepathto solution. Sucha

table is shown in Figure7. In other words,
� [ ��y� is g if and

only if student[ hasusedg timesjustification
� C for thewrong

purpose,becauseit did nothelpto find thesolution.
We havea tablewith quantitative attributes.Amongexisting

distancesonquantitativeattributes,thosethatarerelevant in our
context arethosethattakeinto account all attributesandthatdo
not standardize values. The generalisedeuclidean distanceis
the onefrom geometry generalizedto an arbitrarynumber of
attributes. If somejustificationsaremore important thanoth-
ers, the teachermight want to useweights as in the weighted
generalised euclidean distance. The manhattan distancesim-
ply adds the differences(in absolutevalue)obtainedfor each
attribute.

1) Generalisedeuclideandistance:

Uy¥ � [ ������5¦ §©¨�ª u «~¬2u¨�ª @ �Y� [ .:� � �8�|���Y� T .
2) Weightedgeneralisedeuclideandistance:

U|® � [ ��y�3� ¦ § ¨�ª u « ¬ u¨�ª @°¯ ¨ %��Y� [ .:� � �8�|�:��� T , where ¯ ¨
is a weigth.

3) Manhattandistance:U ��� [ �������§©¨�ª u «o¬;u¨�ª @ R ��� [ ��� � �1�|�:��� R .
Takingtheindividualsof Table7, onehas:U�¥ � M  N ����± M ¡ M � M;} P�M , U�¥ � M  O ��� ± P � N ,U ¥ � N  O ����± M ¡ M ¡ P � N:} P�Q .U � � M  N ��� M ¡ M � N , U � � M  O ��� N ,U � � N  O ��� M ¡ M ¡ N � P .
Contraryto themistakesor masteredrulescase,it is not ob-

vious how to extendthis classficationtaking several exercises
into account.

B. Associations

Quite often studentsmake morethanonekind of mistakes.
If a teacheris awareof mistakesthatoftenoccurtogetherwhile
solvingan exercise,shemay take this fact into accountin her
teaching. Thegoalof associationmining techniquesis to find
items,in ourcasemistakes,oftenoccuring together.

GeneralAlgorit hm.
We supposethat we have a population of

�
individuals and

eachindividual is characterizedby a list of items. Figure 8
givesanillustration. Individual M , for instance,is characterized
by thelist

� M  N � .
Itemsoften occuring together aregiven by rulesof the fol-

lowing form:O�²³P , support �:} P , confidence�:} �;� , orM'²´N , support �:}�N , confidence�:} �;� .
Thefirst rulemeansthatif item O is present,thenitem P is also

Item listM (1, 2)N (1, 2, 3)O (1, 3, 4)P (2, 4)Q (2, 4, 5)� (2, 5)µ
(3, 4)¶

(3, 4, 5)·
(3, 4, 5, 7)M~� (3, 5, 6)

Fig. 8. ¸Y¹ individuals andtheir list of items.

present. This is supported by Py�yº of the individuals with a
confidenceof �;��º .

Theconceptssupport andconfidencehaveaprecisemeaning
thatwe introducenow. Let

�	0 a @��E0��E� , be
�

lists of data,and »
bethesetsof itemsoccurring in all

� 0 a @��E0��E� . In our example,
we have » � xyM  N  O  P  Q  �  µ z . Oneis looking for rulesof the
form ¼½²¿¾ , with ¼  ¾ " » having support andconfidence
abovea minimum threshold.( Support: À~Á|Â � ¼Ã²°¾ ��� u Ä � r u Å�ÆfÇ�È � r�É u� .( Confidence: Ê	ËZ�{Ì � ¼Ã²°¾ ��� u Ä �Wr u Å©ÆfÇ�È �Wr É uu Ä � r u Å'È � r�É u .

Theconcept of support is tomakesurethatonly itemsoccurring
oftenenough in thedatawill betakeninto account to establish
theassociationrules.Confidencemeasureswhether¾ is really
implied by ¼ . If ¼ occurs a lot anyway, thenalmostany sub-
set ¾ couldbeassociatedwith it. A confidencewhich is high
enoughmakessurethat ¼ and ¾ havesomecausallink.

The algorithm [2] works by constructing several extra
lists. First, list


 @
of single mistakes having the desired

support is constructed. Let us take a minimum support N;�yº
with the data of Figure 8. À~Á|Â � M ��� �@ � � O;��º , henceÀoÁyÂ � M ��Í N2�yº , so item M belongs to


 @
. Making similar

calculations for all items leadsto

Î@��Ï� M  N  O  P  Q � . From
�@

, onededucesthe list

 T of pairshaving a support above or

equal to the minimum. For example À~Á|Â � M  N ��� T@ � � N;�yº ,
but À~Á|Â � M  P �*� @@ � � M{�yº . Making similar calculations
for all possible pairs of the list


Ð@
gives in our example
 T �Ñ�Y� M  N ��~� M  O ��{� N  P �	~� N  Q ��{� O  P �	~� O  Q ��~� P  Q �Y� . Then,

thelist

 � of tripleswith support aboveor equalto theminimum

is constructed, which gives here

 � � �Y� O  P  Q �Y� . In our

example no extra list can be addedbecause no quadruple
hasenough support. From eachlist


 0  [ Í M , one tries any
combinationandonly ruleswith aconfidenceabovethedesired
threshold arekept.For example, Ê	ËZ�~Ì � NÒ²´P �Ó� T� � �|�yº , orÊ	ËZ�~Ì � N!²¿P �Ô� T� � P|��º . Takingruleshaving a confidence
greateror equal to �;��º , we get theassociationrulesshown in
Figure9.

Associations for mistakes.
Toadaptthegeneralalgorithm toourcontext is straightforward.
Let
����� 0

bethetreerepresenting theanswerof student[ . From
this treewe construct the list

� 0
which containsall error mes-

sagesof all invalid edgesof tree
����� 0

, i.e., all mistakesmade
by this student.Thesetof items » is thenformedby all error
messagesof invalid edgesoccurring in the

�
trees. The data
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Rule Support ConfidenceM'²´N N;�yº �|�yºM'²°O N;�yº �|�yºO�²³P Py�yº �|�yºPÒ²°O Py�yº �|�yºQ�²°O O|�yº �|�yºQ�²³P O|�yº �|�yºP  QÔ²°O N;�yº �|�yºO  QÔ²³P N;�yº �|�yº
Fig. 9. Association rulesobtainedfrom thedataFigure8.

obtainedthatway canbeminedfor associationsusingthegen-
eralalgorithm.

In a teachingcontext, it makessenseto have a support anda
confidencewhicharenot too low. Indeed, only mistakesoccur-
ing oftenenough togetherneedspecialcarein teaching. Mis-
takes that occurseldomaregiven by the descriptive statistics
andmayneedsomespecificactionwith theconcernedstudents,
notnecessarilya revisionof theteachingmateriallikemistakes
associatedtogether might need.

Associationsfor mistakescanbeeasilyextendedin thecase
whereanswersto severalexercises,insteadof oneexercise,are
taken into account (the exercisesneednot to be the samefor
all students).An algorithmic issueworthwhile to explore is to
deduceassociationsfor a setof exercisesfrom theassociations
obtainedfor eachexerciseseparately.

IV. ILLUSTRATION

The main motivation for our approach comes from the
Logic Tutor [1], ane-toolto trainstudentsin aspecialfield
of logic calledthelogicalproofs. It hasbeenusedfor two years
now in the course ’Languagesand Logic’ followed by more
than P|�|� students enrolled in computer scienceat the Univer-
sity of Sydney. Theimpressive amount of datacollectedled us
to theideaof exploiting themin awaythatwasneverdone,but
alsonotpossible,before.

A. General presentationof theLogic Tutor

An exercise is a set of formulas from propositional logic.
This setis composedof the premissesplus oneparticular for-
mula called the conclusion. To solve an exercise is to derive
the conclusion from the premissesby applying rulesof logic.
A stepof thederivation worksasfollows. Thestudent selects
formulas,eitherpremissesor formulasalreadyderived, applies
a logical rule to themandobtainanew formula which is added
to the set. If the studentmakesa mistake in a step,the tutor
givesimmediatefeedback aboutthenatureof themistake and
a tip to correct it. Thederivation stopswheneitherthelastfor-
mulaobtainedby thestudentis equalto theconclusion, or the
studentgives up.

As anexample considertheexercisebelow with P premisses
andtheconclusionintroducedby Õ .

1-
��Ö³×Ø��Ù ²°Ú ���

2-
��Û £Ü² � Új² �����

3-
��Ö ² £ �

4-
Û £

� �cÝ J } � Ë�}ßÞÔËZ� J } �wÁwÀ � }ßàáÝWÌ	À|}O M ��Ö ² £ �Ï�P N Û £ �
O  P O Û�Ö ��â M  N

Fig. 10. A stepof thelogic exercise.

� �cÝ J } � Ë�}ãÞÔËZ� J } ��ÁwÀ � }ßàáÝWÌ	À|}O M ��Ö ² £ � �
P N Û £ �
O  P O Û�Ö ��â M  NO  P P Û�Ö�×\Ù Ö UyU�}äOM Q ��Öã×¢��Ù ²°Ú ��� �
M  O  P � ��Ù ²°Ú � Ú � O  QN µ ��Û £Ü² � Ú�² �����Ï�N  P ¶ � Új² ��� � � N  µM  N  O  P · ��Ù ² �Ò� åæ� �  ¶

Fig. 11. A possibleanswer.

Õ ��Ù ² ���
.

Three stepsof aderivation areshown in Figure10.
Thecolumn

� �ZÝ J } refersto thepremissesused,
� Ë�} to the

line number of thederivation, thecolumn ÞÔËZ� J } is a formula,��ÁwÀ � } is thelogical ruleusedand àáÝWÌ	À|} arethelinesthelogical
ruleappliesto. Thespeciallogical rule thatallows to write lineM and N is

�
indicatingthat thesetwo formulasarepremisses.

Thelogical rule thatallowsto write formula
Û�Ö

, line O , is ��â
for ModusTollensandit appliesto lines M and N , makinguseof
premissesO and P .

Supposethat thestudentmakesa mistake, andusesthe jus-
tification � � for Modus Ponens insteadof ��â . TheLogic
Tutor checksstepby stepthe answerof the student. This
stepis checkedasincorrect becauseModusPonens cannotbe
appliedto the two lines enteredby the student. The logic
tutor looksfor a reasonto themistake. Thefirst searchis to
checkwhetherthestudentmadea mistake in thechoiceof the
rule,i.e.,whetheranotherruleappliesto thetwo linesindicated
by thestudent.This is thecasehere.TheLogic Tutor re-
jectsthe input of thestudentandproducesthe following error
messageinvalid justificationModusPonenscannot beapplied,
try ModusTollensinstead. Theinput of thestudentis rejected,
so the studenthasto give another input, however the mistake
is savedby thetool under thenameinvalid justification Modus
Ponens.

A possiblecompleteanswerto this exerciselike it would be
in thefinal window on thescreenis shown in Figure11. As al-
readymentionned,

�
meanspremisse, ��â means ModusTol-

lens,
Ö U|U standsfor Addition, Ú � standsfor DisjunctiveSyl-

logism, � � meansModusPonens, and
åæ�

standsfor Hypo-
theticalSyllogism. Themistake doesnot show up becausethe
Logic Tutor doesnotacceptwrong inputs.Rather, it helps
students to correcttheirmistakesandto producecorrect inputs.

B. Castinganswers into problemsolvingstructures

Presently, completeanswers,including mistakes,arestored
andpartof theextensive descriptive statisticsasdescribedear-
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E

3  1  (A−>C) P

4  2 ~C P

3,4  3 ~A  MT  1,2

3,4  4 (~A|B)  Add  1,2

2,4  3 ~A  MP  1,2

1  5 (A|(B−>D))  P

1,3,4  6 (B−>D)  DS  3,5

2  7 (~C−>(D−>E))  P

2,4  8 (D−>E)  MP  2,6

1,2,3,4  9 (B−>E)  HS 5,7

P

MT

Add

P

P

P, 2

IJ MP, 3

DS, 7

MP, 9

HS, 10

, 4

, 5

, 8

, 1

, 6

Fig. 12. A problem solvingstructurefor thelogic exercise.

lier in thepapercanalready beobtained. Statisticsonmistakes
havealready provenusefulfor revisions [9].

We illustrateon our running example how anansweris cast
intoatreestructureasdescribedin SectionII. Theresultingtree
for the answerof Fig. 11 is shown in Fig. 12. Let us call our
exercise,composedof the four premissesandthe conclusion,���

. Theroot is labeledwith
���

. Eachnodecontainsaninput
asgiven by the student,while eachedgegiveseitherthe rule
usedin the input, or theerrormessagegiven to thestudentby
thesystem.

OnenoticesthatthepresenttreehasO leaves,oneis a invalid
node becauseof themistake. Thenode usingtherule Addition
shows a wrongdirection takenby thestudent.The last leaf is
thesolution.

V. CONCLUSION

In thispaper, wehavepresentedageneral modelto represent
studentanswersobtained from on-line tutoring tools. Our ap-
proachusesatreestructurecapturing bothmistakesandcorrect
reasoning of students. This modelallows to processexercises
moregeneralthanmultiplechoice ones.

Thanks to this support, meaningful informationfrom a ped-
agogical viewpoint canbe delivered to teachers who canthen

personalizeandadjusttheir teaching. This includesclassifica-
tion of studentsby mistakes,by masteredrulesor by reason-
ing. Furthermore,we minemistakesfor associations.This ap-
proachof findingmistakesoftenoccurring together contributes
to a new feedbackfor teacherswho maytake it into account in
theelaborationof their coursematerial.

Wehaveillustratedourmodel takingtheLogic Tutor, an
e-tool to train studentsin formal proofs andcurrently in useat
theUniversity of Sydney.

Our currentworks follows two directions. First, we areim-
plementing the associationalgorithm to mine the databaseof
theLogic Tutor. Indeed,findingpatterns of mistakesoften
occurring togethercouldleadto revisetheway logical rulesare
introducedto studentsin thelogiccoursewherethetool is used.

Second, we are validating our approachwith further exer-
cisesthat fall in thescopeof on-lineteachingtoolswe have in
mind. As a first example, we took anexercise on if statement
solvedby undergraduatestudentsfollowing a coursein “Intro-
ductory Programming” at the University Leonard de Vinci in
Paris. We have performeda hierarchical classificationby mis-
takesof the studentsfollowing the method presented in Sec-
tion III taking distanceU � . The result shows a strongcorre-
lation betweentheclassificationby mistakeswe have obtained
andtheranking of thestudentsobtainedby traditional way(hu-
manmarks),which is encouraging.This preliminary work has
put in evidencea short-comingof currently availabletoolsof-
fering hierarchicalclassification,especiallythedrawingof den-
drograms.As afuturework,wewantto improvethereadability
of dendrogramsfor teachersandobtainaninformativesequence
of thestudentsalongthehorizontal axis.

Future researchincludesalso an extensionof insight into
mistakesor intomasteredruleswherenotonlymistakesormas-
teredrulesaretakeninto account,but alsotheir order. For ex-
ampleif a studentmakes a mistake, noticesit and correct it
by applying acorrecttransformationruleassociatedto themis-
take, a teachermight considerthat the studenthasunderstood
themistake anddoesneedfurther explanations.Several varia-
tionsarepossibleandneedto beexplored.

Finally, futureresearchincludesexploring otherdatamining
algorithmsandtheirapplicationto theeducation context aswell
asthe studyof a generalplatform to easethe development of
on-line tutoring tools.

REFERENCES

[1] D. Abraham, L. Crawford, L. Lesta,A. Merceron and K. Yacef, “The
Logic Tutor: A Mult imediaPresentation’,’ Interactive MultimediaElec-
tronic Journal of Computer-Enhancedlearning, Vol. 3, Nb. 2, Nov. 2001

[2] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules,” in Proceedings of the 20th VLDB Conference, Santiago, Chile
1994

[3] B. duBoulay, R. Luckin, “Modeling HumanTeachingTacticsandStrate-
giesfor TutoringSystems,” International Journal of Artificial Intelligence
in Education, Vol. 12,pp.235-256,2001.

[4] M. Druger, “A Perspective on ExamsandGrading”, Journal of College
ScienceandTeaching” , Vol. 30, Issue3, pp.210-211,2000.

[5] C. Ellard, M. Feinberg, J. S. Siekpe,“Classifying studenterrorsin the
introduction to microeconomicscourse,” BusinessQuest,Journal of Ap-
plied Topics in BusinessandEconomics, 2002.

[6] J.W. HanandM. Kamber, DataMining: ConceptsandTechniques. Mor-
ganKaufmann,2000.

[7] P. Langley, S.Ohlsson,“AutomatedCognitiveModeling,” Proceedingsof
theSecondNational Conferenceon Artificial Intelligence, 1984.



A TESTFORIEEETRAN.CLS— [RUNNING ENHANCED CLASS V1.5] 8

[8] N. Lee,“Notionsof ErrorsandAppropriate Corrective Treatment,” Hong
Kong Papers in Linguistics and Language Teaching, Vol. 14, pp. 55-70,
1990.

[9] L. Lesta and K. Yacef, “An Intelligent Teaching-Assistant Systemfor
Logic,” Proceedings of Intelligent Tutoring Systems, Biarritz, France,
Springer-Verlag,June2002.

[10] A. Newell, “Reasoning,ProblemSolving, andDecision Processes:The
Problem SpaceHypothesis,” in R. Nickerson(Ed.),Attention andPerfor-
mance, Hillsdale, LawrenceErlbaumAssociates,1980.

[11] A. Newell, H. Simon, “Human ProblemSolving,” Englewood Cliffs,
Prentice-Hall, 1972.

[12] R. Sison,M. Shimura,“Student Modeling andMachineLearning,” Inter-
national Journal of Artificial Intelligencein Education, Vol. 9, pp. 128-
158,1998.


