
"Skill-Driven" Software Design

1

Abstract: “Skill-Driven" Design (“SDD”) is a comprehensive

computer-aided method of object-oriented software development,
with these two distinct features: (1) It is a language that is
compiled to visuals, rather than a visual editing system and (2) it
is centered on functionality and functional decomposition, rather
than the usual object model. SDD is meant to be an open-source
project that will help professional OO software developers to
construct software fast, allowing a greater portion of the time for
design than has so far been common. This paper presents
highlights of a useful case study, compiled with the pre-release
support software.

Software, Design, Object-Oriented, CASE, Open-Source

I. INTRODUCTION

“Skill-Driven” Design is a general-purpose-software
development method developed and made open to the public
by this author. A “Skill-Driven” design is made in the Design
language, rather than in a binder of charts, as is now common.
The (freely distributed) Design compiler reads the design and
produces the charts, bound in a design presentation, plus code
starters and exported databases, when these becomes
necessary. “Skill-Driven” Design has been in the making for
some 20 years, inspired by Structured Analysis and Design and
facilitated by object-oriented programming. The format of the
Design language is meta-object-oriented. The symbols used
eventually generate code starters for such object-oriented
programming entities as classes, methods and message passing
occasions. The “Skill-Driven” Design paradigm is functional –
it expresses mainly functionality and functional
decomposition.

“Skill-Driven” design is an evolving project. It has been
tested successfully in a number of commercial projects and is
ready to be tested by the general software developing
community. Specifying the entire Design language and its
usage is beyond the present scope. This article describes the
motivation for the method, regarding the present state of the
art. It then demonstrates the usage of the method by highlights
from a case study, annotated with brief definitions of the terms
of the Design language.

Field code TLS.
Manuscript received on 20 November 2002.
Avner Ben has been programming for twenty years and has been teaching

object oriented design and programming and designing object-oriented
applications for twelve years. During the last decade, Mr. Ben has been
working with the SELA group in Israel.

Avner Ben may be reached at avner@skilldesign.com.
The "Skill-Driven" Design site is at http://www.skilldesign.com

II. THE PRESENT STATE
“Programming” is a profession in the making. People have

been working seriously with higher-level languages for less
than 50 years (Fortran, 1957), which is nil compared with the
experience, know-how and discipline that back such
professions as civil engineering that has been with us for
thousands of years or printing with movable type that has been
with us for hundreds of years. Under these circumstances,
anyone’s guess on how a programming project should be
conducted is equally good. In reality, most current
programming efforts are conducted by trial and error. Whole
books and articles are published by respectable professionals
that show how code is written, fails, is improved, fails again, is
improved again and so forth, until eventually it manages to do
something and then, the motivation for the whole project is
worked out from the solution.

Apparently, the quest of the emerging software industry for
discipline has been bottom-up. Our success so far has been on
the low level – the immediate implementation tools. In the
beginning, programmers were occupied mostly with writing
code – devising intellectually pleasing and machine-efficient
“algorithms”. However, in a very short time, “higher level”
languages were offered to allow programmers to express
problems and indulge less with the precise way the computer
implements the solution. It is interesting to note that the “third
generation” languages constructed in the 70’s (e.g., C and
Pascal, as well as improved versions of “second generation”
languages as Fortran, COBOL and BASIC) still dominate the
programming market, in one form or another.

So, we have become adept at how to do it. Still, we know
little about why we do it in the first place. So far, all attempts
to discipline the art of collecting requirements safely and
ensuring their prompt execution into a comprehensive method
have been a passing fashion. The 1980’s saw the first wave of
globally-acknowledged methods of structured software
development – most notably “Structured Analysis and Design”
(“SA/SD” - e.g., DeMarco[1]), SSADM, MERISE etc. These
methods were acclaimed by the academy and embraced by the
greater part of the industry for more than a decade and – puff!
They are gone, almost without a trace.

What was the reason for the commercial failure of the
SA/SD initiative? On the low-level, Structured Design was
geared to generate strictly procedural code. On the high-level,
the Structured Analysis language lacked the now-familiar
object oriented constructs. So, with the revolution of object-
oriented programming, the entire scheme became irrelevant. In

"Skill-Driven" Software Design
By Avner Ben

"Skill-Driven" Software Design

2

addition, the high-level, conceptual constructs of “dataflow”
were downgraded by impatient implementation-minded
individuals to visual programming and forced to imitate raw
programming constructs. I believe this impatience to be the
greatest obstacle in the way to making a respectable profession
of out of programming. Apparently, the current wave of
software design methods – centered around “UML”, is heading
in precisely the same collision course.

 “Unified Modeling Language” (“UML”) [2] originating with
the Rational Company, probably in the context of its “Rational
Rose” CASE tool and was later standardized by the Object
Management Group (“OMG”). The UML concept is
contradictory to everything that the preceding generation stood
for. SA/SD was a comprehensive method. UML is a loose
synthesis. Where SA/SD was based on a main notation (“Data
Flow Diagram” – “DFD”) with precise semantics meant to
trigger fertile analysis, UML is a loose assortment of common
notations imported from elsewhere, meant to invoke heuristics,
if anything. Where SA/SD insisted upon a clear-cut design
paradigm (“see the application from the viewpoint of the data
items that flow through it”) [1], UML is attempting to bridge
among a number of software development disciplines
developed elsewhere.

Finally, there is “Computer Aided Software Engineering”
(“CASE”) which originated in the 1980’s to automate part of
the SA/SD and – on the database development side -
“Entity/Relationship” (“E/R”) diagramming. The advent of
UML has brought with it a revival of the CASE technology,
this time, centered on the “Class Diagram” (A variant of E/R)
and – in the embedded software industry - the hierarchical
finite state machine. However, apart from the qualitative
benefits brought by today’s fast CPU’s, color monitors and
Graphic User Interfaces, the facilities are identical.

III. PROBLEMS WITH THE PRESENT STATE

A. Problems with UML
UML has been a transitional-period measure and had better

be left that way, until the correct alternative emerges. Its
weaknesses as a lasting platform are too profound for time
alone to mend: It is unreliable, economically inefficient, non-
object-oriented and is improvised to begin with. Its wide
acceptance by the industry at this very moment is poor excuse
– we have seen such fashions come and disappear without
trace – see the case of SA/SD.

1) Reliability
UML designs are heuristics that lack the integrity of the

previous generation methods, which were built to reject error
and draw attention to missing detail - “When a DFD is wrong
– it is glaringly wrong!” [1] UML designs may or may not be
wrong and may or may not contains all the information it takes
– the only way to know for sure is to construct the code!

2) Support for the OO paradigm
Of the 10 odd notations making UML, only one

(“collaboration diagram”) is object-oriented (and is of limited

use). The main notation used by most UML users (and used by
CASE tools to generate code starters) is the class diagram –
which is a just dialect of the Entity/Relationship diagram of
old. In the second and final place comes the Use-Case
diagram, which is the traditional flowchart with an added
object dimension. Most CASE tools do not generate code
starters from it. The embedded programming industry uses the
hierarchical finite state machine model which owes nothing to
UML and its association with objects is superficial. UML-
based development often stresses Use-Case Driven Design[3] -
a method of acquiring requirements procedurally (see for
example its critique by B. Meyer[4]).

3) Methodical basis
At the bottom line, UML is an improvisation that lacks a

sound theoretical basis. Backing the notations with Use-Case-
Driven Design is a bottom-up approach that evades addressing
the real problem domain.

B. Problems with CASE
A CASE tool typically consists of a database with a graphic

front end and a report printing service. Although the
technology has been with us for some 20 years, it is still
premature. The weaknesses of current CASE technology are so
profound as to suggest re-thinking the entire application.
These tools are uneconomical to use and often degrade the
notion of design into little more than visual programming.

1) Graphic user interface
Present CASE tools insists upon WYSIWYG data entry, but

the graphic user interface supplied is not sophisticated enough
to support the claim. Entering data is tedious, erratic,
sometimes irreversible and often uneconomical (compared
even with a general-purpose vector graphic editor such as
Visio or SmartDraw). The graphics produced by most CASE
tools are below presentation quality.

2) Code generation
The common economical justification for using CASE

technology is the ability to generate code starters.
Unfortunately, the symbolic language offered (UML) is not on
a sufficient level of abstraction to support the claim. To
generate code, the designer must trade design (in the original
sense of the word) for “visual programming” – writing the
code in graphic symbols. The real design – e.g., understanding
the business requirements – must be done intuitively
elsewhere. The final urge to downgrade design to visual
programming is “full-cycle” engineering – use a CASE tool to
generate the code, maintain the code and even reverse the
design from the code after the latter has been modified offline.
This low-level scheme has so far been successful in certain
niche applications (e.g., hard-core real-time and GUI database
front-ends) where real design is not an issue. Such applications
are concerned with careful attention to detail, reliable
execution and fast code generation. Here again, we find CASE
technology playing a negative role. It makes whole
installations spawn almost identical code over and again,
instead of seriously attending to reusing their present code
(and designing it for reuse). The latter is perhaps the only

"Skill-Driven" Software Design

3

economical justification for going object-oriented!

C. Problems with UML and CASE
The combination of a notation on an uncertain level of

abstraction with an insufficient graphic user interface creates
an inexplicable gap between the languages of design and
implementation. While this gap was natural in the old
procedural world, it contradicts the very object-oriented
purpose. Consequently, we find programmers driven to either
of two equally bad extremes: they either break the connection
between design and implementation or give up design for
good.

1) Programming by trial and error
Some programmers believe that designs are general

guidelines by nature and do not have to map systematically to
implementation in the first place. They draw charts for the
record, use CASE tools as forms that must be filled, pretend to
follow a project management standard as so much red tape.
Eventually, then write – or generate - the code and proceed to
maintain the code, leaving the design charts to rot on the shelf.
While this approach may have its merits, e.g., for small scale
“explorative programming” and pilot projects, it is
unacceptable in real-life commercial projects because it makes
compliance with the requirements impossible to trace.

2) Visual programming
Importing visual programming to the mainstream of

software design is an attempt to eliminate the gap between
design and implementation by getting rid of the first. The
CASE tool allows the programmer to draw the program with
graphic symbols and leave the real design to intuition, or to a
preliminary stage, mistaken for “analysis”. Again, this practice
is disastrous in real-life general-purpose projects, because it
makes compatibility with requirements impossible to trace.

On top of all that, current CASE technology will not even
allow full-scale visual programming in the first place! UML-
based visual programming fails to copy in full the multi-
paradigm power and complete syntax of modern languages
such as C++, e.g., its support for functional programming. A
single line of C++ code that makes use of standard algorithms
may require a full page of sequence diagram to express. The
results – if attempted – will be less readable than the code!
Too often, the programmer is asked to give up the better part
of his/her language to be able to use the design tool!

3) The chart lay outing economical problem
“One picture is supposed to be worth a thousand words!”

Indeed? One picture, carefully laid out by a professional
graphic artist, may do. On the contrary, the average design
document may contain dozens (if not hundreds) of charts –
class diagrams, sequence diagrams, state/transition diagrams –
all very much alike, some redundant and all in poor
presentation quality. A dozen words may do a better job than a
sequence diagram that contains two lifelines and a single
message or a class diagram with classes spread all over the
page and arcs crossing each other. Is this the job of our senior
programmers – to be part time graphic artists? A senior

programmer, during the phase of design, using a modern
CASE tool (or even a vector graphic editor) may spend
between quarter to half of his/her time doing nothing but lay
outing charts. The effort is un-proportional compared with the
architecture or engineering professions were charting is a long
established activity. Considering the price of a senior
programmer hour, there must be a convincing reason for
spending so much money on a single activity - and the reason
must be better than presentation quality or mere aesthetics.

4) The chart lay outing challenge
Either many programmers are wasting an enormous amount

of good time and money on activities that are just nice to have,
or there is a hidden science of software design chart aesthetics
whose study may promote the profession. For example, we
tend to group classes horizontally or vertically in the class
diagram, to stress hierarchy (of inheritance or containment).
We place symbols near or far from each other to denote some
domain semantics. Whether the lay outing effort helps the
picture replace a thousand words during design review is an
open issue. To really earn its pay, the lay outing effort should
have a solid software engineering outcome, such as exposing
a neglected fact about the domain, or clustering software
components into a software assembly.

I personally believe that software design chart lay outing has
a sound case. Unlike the CASE vendors, the conclusion I
draw is that the tedious – and inefficient - Human lay outing
job must be replaced by algorithms that would do the job
efficiently, and that the logic behind the aesthetics deserves an
honest analysis effort. Allowing your senior programmers to
spend so much expensive time on manual lay outing is about
as economically wise as to allow them to write the resulting
code in assembly language!

D. The “Skill-Driven” alternative
With “Skill-Driven” Design, I propose a fresh start, addressing
the needs of the industry in a top-down way. “Skill-Driven”
Design takes the discipline and analytic approach from SA/SD,
the programming constructs from object-oriented
programming and whatever positive may be collected from the
elements that make UML. “Skill-Driven” Design takes from
SA/SD the idea of deriving the object model from the
functional model, the hierarchical decomposition, the timeless
exposition of processes and the specification of transforms
(but it does not take the DFD notation). From object-oriented
programming, it takes the encapsulation of skills in an entity.
The “Skill-Driven” design project develops along these
guidelines:

• The chart lay outing challenge. Problem: We do not
yet understand the logic of complex chart lay outing.
Manual chart lay outing consumes a forbidding
amount of expensive senior programmer time. With
the poor quality graphics that result from present-day
CASE technology, we are not sure whether this much
time and money is going to a useful purpose.
Solution: The chart lay outing application is yet to be
analyzed and its exact requirements specified. In the

"Skill-Driven" Software Design

4

mean time, only simple charts whose logic is fully
specified will be generated. Creative artwork, where
strictly necessary, is to be added manually.

• The CASE user interface challenge. Problem: We
are not yet capable of a useful graphic user interface
for the purpose of CASE. Solution: In the mean time,
the most economical option is to use a programming-
like language. When the CASE/GUI application is
properly analyzed and a working design is proposed,
it will be implemented as a layer above the Design
language (in conformance with the “document/view”
architecture).

Here are the main assets of the “Skill-Driven” Design
method”:

1) The “Skill-Driven” paradigm
The purpose of a “Skill-Driven” design is to ensure that
program features answer to business functional requirements
and nothing else and that changes of requirements do not
destroy this traceability. Any single fact that the designer adds
must be justified in view of that! It must be possible to stop
any programmer, at any stage whatsoever and make him/her
respond immediately to the question: “Exactly what original
business requirement is promoted by what you are doing right
now?” “I am writing a sort algorithm” is not an acceptable
answer!
The art of “Skill-driven” design strives to be conclusive by
insisting on a single textual notation – the Design language –
generating diverse graphic and textual views. Everything is
measured in terms of required skills. A “Skill-Driven” design
declares the following facts (Fig. 1): The user requires skills of
the software. The software offers facilities to the user.
Software facilities are backed by skills of the software.
Software assemblies are made of skills. This is a functional
paradigm, based upon functional decomposition. It is based
upon the assumption that software is commissioned to serve a
function and must not be allowed to degrade to serving itself!

2) Economy
The use of a design language allows a professional

programmer to clarify complex logical problems to an
arbitrary level of detail without being irreversibly stuck with
code. By the time the final code starter is generated, only the
details remain to be fit in. No matter how lengthy and
responsible the filling in of coding details may be, decisions
made at this stage seldom require reevaluating the design!

The use of a design language has these main benefits:
• Agile high-level development. Build small-scale

systems in record time, while allowing for at least
half of the overall development time to careful
design.

• Steep learning curve. Allow a proficient
programmer to speak in a natural language
(compared with drawing graphics). Generate most
of the graphics for review.

3) Compatibility
Object oriented programming: “Skill-Driven” Design is a
native object-oriented method. The design term “Skill” maps

N:1 to the programming term “method” and the design term
“entity” maps 1:1 to the programming term “class”. On the
contrary, the Design language (purposely) lacks syntax for
expressing a data-structure without functionality or a time-
ordered process.
Present-day paradigms: As novel as the “Skill-Driven”
paradigm may seem, it is really a careful synthesis of a number
of familiar design paradigms (see section IV).
CASE technology: Since one of the outputs of a “Skill-
Driven” design is code-starters, the results of an object-
oriented design may be fed to a visual-programming system
(e.g., CASE tool) via an XML database. On the contrary,
producing a Design source from the information in an UML-
based CASE tool would be a major reverse-engineering
undertaking, since the Design source is on a higher level of
abstraction. When the requirements of lay outing UML-type
charts are properly analyzed and specified, the Design engine
will be adjusted to produce these charts as well.

IV. THE "SKILL-DRIVEN" SYNTHESIS
Object-oriented design is about understanding – as opposed

to solving – problems. The origin of object-oriented
programming is in simulation software. The object oriented
designer constructs a working model of the problem domain,
believing that solutions follow naturally from careful study of
the problem and need not be invented. In the first stage, object
oriented "analysis" activities are there to collect all known and
relevant facts that may contribute to the construction of a
domain model. Then, (top level) "design" activities arrange
these facts into a model that may be constructed using existing
technology. Analysis serves the business. Design is an internal
activity of the software development team, meant to ensure
that the requirements (that were set forth during analysis) are
indeed feasible. Since the cost of design changes during
implementation is prohibitive, it is essential for the design
team to make as much iteration as necessary until persuaded
that the requirements are indeed realistic and that they know
how to implement them. Of course, there always are marginal
cases that may not be fully designed in advance, due to
unfamiliar implementation technology or evolving market.
However, experience has been showing that the part of the
unknown, when well isolated, is much smaller than feared at
the start.

"Skill-Driven" design addresses this challenge by combining
a number of more or less familiar design and analysis
disciplines in a process that gradually leads to code production
and testing - see Fig. 2. The backbone of the process is
functional: functional analysis (revealing business entities
defined by "strategic-level" skills - see section III) leads to
functional design (specifying all "tactical-level" skills and
arranging them under software facilities - see section VI),
which leads to functional implementation (code starters). The
analysis is supplemented by transform-driven analysis
(revealing business entities and "tactical-level" skills - see
section IV) and use-case driven analysis (determining facilities

"Skill-Driven" Software Design

5

- see section V). Project management combines with functional
design to sequence the system facilities in an evolving product
(see section VII). Data-driven design is used to determine the
exact nature of associations suggested among entities and
resolve entity instances. These improve the quality of the
generated code starters.

Since the present scope would not suffice to describe any of
these disciplines in detail or how they interact, this article will
do with pieces of a case study, highlighting the unique
contribution of each of these methods that make a design
"skill-driven". The information system to be constructed is the
"Personal Billing" system[5], used by the author to keep track
of his teaching and software development jobs with the intent
of billing his clients. This information system is a relatively
small (less than 30 major entities, of which about 10 are
directly related to the business model), lacks intimidating
object-oriented features (such as polymorphism) and is easy to
explain. I wrote my first Personal Billing system some 15
years ago with a mainframe hierarchical database, then
redesigned and implemented it with a PC application
generator, then redesigned and implemented it in Microsoft
Access. The present redesign effort is meant at a fresh
implementation in C# with XML, which (at last!) enables a
full-fledged object-oriented design. Since the business domain
is well known and no implementation risk is expected, the
design may take the lion's share of this one-man project, which
favors "Skill-Driven" design. Since the domain is obvious, and
since "Skill-Driven" design graphics are meant to be intuitive,
then the following account of an information system should be
self explanatory!

V. "FUNCTIONAL ANALYSIS" SUPPORT

A. Terms
The "Assembly" is the basic project management unit of

"Skill-Driven" design. It comprises the least amount of work
that may be assigned to a single developer to design,
implement and test in full. In addition, assemblies also make
semantic and reuse units. An "entity" is anything on which
information is managed and to which responsibility may be
delegated. The conceptual term "entity" maps 1:1 to the
object-oriented implementation term "class". A "skill" is an
ability that is manifest in software and which may be traced to
a functional requirement from the software. The common case
of "tactical-level" skills will be presented later. A "strategic-
level" skill, like those in Fig. 3, does not necessarily suggest a
discrete procedure. It may consist of many activities that are
executed on different occasions, still grouped under one
functional unit. When put together in hierarchy, strategic skills
reconstruct the original requirements of the system. Each
strategic skill gives the reason for the existence of exactly one
entity (or assembly), thus giving a functional definition for
what would otherwise be mistaken for a mere data record or
routine library.

B. Purpose
The "strategic skill" tree (see Fig. 3) displays the division of

the Personal Billing system to assemblies and then to entities.
Each assembly and each entity are defined by a single
"strategic-level" skill. Some entities serve as "façade" for their
assembly - a single entry point for all other objects which are
hidden inside. Entities (and sometimes assemblies) are
arranged hierarchically for the sake of readability1.

The purpose of this chart is to redefine the top-level
functional requirements of the system in practical terms. (All
top-level requirements are constrained 1:1 to software entities
and these are constrained N:1 to assemblies).

VI. "TRANSFORM-DRIVEN ANALYSIS" SUPPORT

A. Terms
"Transform" is a Human language sentence where the

subject is a message-sending object, the verb suggests the
operation required and the object is the receiver of the
message2. A transform may be followed by a comment
detailing the reason for the message and whoever else is
expected to be involved in method of its execution.
"Transform sequence stage" is a sequence of transforms that
either describe a real use case or summarize the necessities of
all use cases of a kind. A transform sequence stage may be
headed by an informal account of the sequence. "Transform
sequence" is a sequence of transform-stages, where the
division to stages suggests significant gaps, e.g., the lapse
between the storage of data and its possible use by another
process. See Appendix 1 for the Personal Billing example.

B. Purpose
"Transform-driven" design is an informal analysis method,

inspired by Structured Analysis and Design, [1] that can teach a
lot about the business domain in a short time and will proceed
to inspire a more precise use-case-driven and functional
analysis and design efforts.3

VII. "USE-CASE-DRIVEN ANALYSIS" SUPPORT

A. Terms
"Functional use-case" is a grouping of automated facilities

that are likely to be applied, in whole or part and in any order,
by the user of the system, to achieve a single major business
objective during a single session - see section VI. The facilities

1 The strategic-skill hierarchy does not necessarily copy a programmatic
inheritance or containment hierarchy. Its sole purpose is to reconstruct the
functional requirements using programmatic entities. It is yet to be studied
whether this for-now intuitive ordering does suggest a logic that merits
formalism.

2 Oddly enough, "transform-driven" design appears to support "use-case-
driven" design. Each transform sequence may be freely adapted to a sequence
diagram and possibly inspire - or validate - a use case. Still, the translation is
by no means 1:1. A transform sequence is a use-case scenario – it details a
sequential flow of events that took place – however, its lines refer to entities,
rather than instances!

3 The "transform sequence" is a far relative of the familiar Data Flow
Diagram ("DFD"), but with an object-oriented stress.

"Skill-Driven" Software Design

6

may be ordered hierarchically for the sake of readability. See
Fig. 4 for the Personal Billing example.

B. Purpose
"Functional" use-case driven analysis is a restricted form of

"use-case driven design"[3]. A use-case specification becomes
functional when it has time ordering successfully removed.
Time ordering is well known to be detrimental to correct
software design. The exact reason is beyond the present scope
- see for example B. Meyer's classical account[4].

The purpose of the "functional" use-case is to offer
automated facilities to the user in an attractive way. This
procedure guarantees that all the system services are indeed
useful and that operations that must be manually sequenced are
considered in advance. An obvious use of "functional" use-
case analysis is to inspire the system's graphic (or other) user
interface - e.g., a menu system.

VIII. "FUNCTIONAL DESIGN" AND IMPLEMENTATION SUPPORT

A. Terms
A skill is considered "tactical" when it may be implemented

in a procedural language by a single procedure, block or
expression. A "Facility" is a tree (or forest) of tactical skills
and thus is effectively "object-oriented Pseudocode".
"Reliance" is a binary directed association between two skills,
where one skill requires another. (E.g., in order “to format
Billing Report”, one must also be able “to format Work” many
times.) Whether the same person does both jobs, or whether
the person responsible for the first job delegates responsibility
to another person does not change the very fact of reliance.
Most reliances are implemented simply, in a procedural
language, as function call, block nesting or expression nesting.
(For example, compare the exploded "facility" of Fig. 5 with
the generated code starter of Appendix 3.) The "functional
closure" of a skill is all its reliances. I.e., to satisfy a skill, all
skill in its closure must be satisfied, subject to reliance
conditions. A "facility" is exploded for presentation by
expanding the functional closures of its roots.4 Software
facilities often feature single root and explode to a tree. Forest
facilities describe an asynchronous – or “event-driven” -
design where a number of skills are required to realize a skill,
but they have to be coordinated from outside. (E.G., the
“Report Production” facility relies both “to initialize Billing
Report” and “to print Billing report”. The first skill does not
chain the latter and the latter skill does not wake the first. It is
expected of whoever presses the “Print” button to make sure
that the report is indeed initialized. Otherwise, the results are
undefined.) A detailed account of a non-trivial event-driven
design may be found in my “Skill-Driven” account of the
Model/View/Controller architecture. [6] A facility root may
itself be a branch in the explosion of another facility. Cutting
to size is either the result of use-case analysis (see section V),

4For the sake of information hiding, facility explosion is cut at assembly

boundary.

but just a matter of convenience.
"Coupling" is an asynchronous binary directed association

between two skills where the first skill requires a resource that
only the second skill can produce, but it cannot control it. E.g.,
reading data that has (hopefully) been written on time or
waiting for an event to fire. Couplings are synchronization
information that suggests the time ordering of reliances in the
same closure (which are, by default, arbitrarily ordered).

Another means for understanding the implicit order between
skills is the analysis of their contract. Each skill is defined by
pre-conditions, post-conditions, axioms and failure conditions.
Matching preconditions to post-conditions may help to analyze
the implicit order. The exact syntax of the "TLDBC" (Top-
Level "Design by contract") is inspired by B. Meyer's work on
the Eiffel language [4]. The syntax of the TLDBC language is
beyond the present scope - see appendix 3 for an example.

"Visibility" between entities is implied when an entity relies
upon another entity. "Visibility" between assemblies is implied
by visibility between entities of different assemblies. A major
objective of the "Skill-Driven" designer is to minimize
visibilities among entities and in particular, among assemblies.
Visibilities among assemblies limit the modularity of the
design and complicate project management5.

B. Purpose
The main activities in the "Skill-Driven" Design process is

ordering tactical skills in facility explosions and watching the
result from various angles. Normally, the process is "top-
down", starting from facility roots and proceeding down to
detail when its time is ripe. When ready for "low level" - or
"detailed" - design, the designer enters an iterative process of
adding detail such as function names and argument types,
generating code starters and occasionally stopping to correct
the design itself.

C. Visual language
Since functional design is the backbone of "Skill-Driven"

Design (as well as its birthplace), the latter proudly offers an
abundance of graphic representations and levels of summary
for depicting it. Fig. 5 features a facility explosion in an
hierarchical view - the form that appeals most to the
procedural programmer. This simple form resembles a
procedure call tree, however, as the "code starter" of
Appendix 3 shows, the mapping is definitely not 1:1. This
code was generated from the information in the Design
program database, reflecting mostly the facility of Fig. 5. The
code is a "starter" only, waiting for a proficient programmer to
expand it to a working form. The objective of code starter
generation is to allow the programming-minded designer to
understand the implications of the design in code as many
times as needed during the design process, before committing

The analysis of visibility is also where the functional and data-driven

paradigms meet. "Navigability" over an association between two entities is a
special case of visibility. In "Skill-Driven" Design – as in SA/SD before it -
the object model is expected to result from careful analysis of the
skill/reliance model.

"Skill-Driven" Software Design

7

to the final code.
The "wire chart" in Fig. 6 is a graphic representation of the

same facility that is exploded in Fig. 5, but with a profound
object-oriented stress. The wire chart is sorted by entity, so
that time ordering is made (intentionally) impossible. The call-
tree ordering is implicit. For those who must chart the control
flow within the reliance lattice, the applet that actually displays
wire charts in the Design output (which is on an Internet page)
kindly supplies a chart animation service. The purpose of the
wire chart is to show the collaboration among the participants
in detail. Although the wire chart contains the same amount of
detail as the respective facility explosion, its timeless format
stresses the density of the reliance lattice and makes recurring
patterns of control the more apparent and shows immediately
how elegant - or how clumsy - the design is. The wire chart
format especially excels in exposing couplings (charted on the
right margin). On the contrary, it is practically impossible to
show coupling information effectively in a time-driven format
such as call tree, flowchart or sequence diagram.

Since all functional decomposition details are in an
automated system, the next step is to provide the designer with
higher-level summaries. Fig. 7 features an entity-level wire
chart of the facility explosion in Figs 5-6.6 This view level is
beginning to be of interest to the real design-minded designer.
Finally, the project-management-minded designer is offered a
system-wide visibility summary on assembly level – see Fig. 8.
It is well known that the schedule of a software project is
determined almost entirely by the dependency (i.e., visibility)
among the software assemblies. Therefore, the ability to assess
the assembly-level visibility lattice at any time is guaranteed to
drive the designer to limit the dependency among assemblies
to only where strictly necessary!

IX. DATA-DRIVEN DESIGN SUPPORT

A. Terms
"Class" is the programmatic representation of "Skill-

Driven" Design's "entity". "Association" represents permanent
visibility between two entities. "Navigability" is the fact of the
permanent visibility - a path is made possible between any
instances of two classes, allowing whoever got to that point
(e.g., a method executing over an object) to navigate on. In
"Skill-Driven" design, navigability is a restricted case of
visibility and visibility is just the fact of reliance of one entity
on another (to promote the provision of some facility). The
decision that a visibility is permanent - and thus merits an
association in the class diagram - is largely manual. The
default association is "aggregation". It simply states that an
object of a type is aware of the existence of an object of
another - or the same - type and no more. "Composition" is a
special case where the object, in addition to being aware of the
other object's existence, also controls its life span, and thus

6 This format is a cross between functional design and the object model. It
shows net visibilities - specifying collaboration - among objects and skips the

effectively "contains" - or "composes" - it. While it is not
essential for the composing object to create the composed
object, it is essential that it will clean it up in time and will not
allow another object to endanger its existence. Objects of each
type in the association have a "role". The "quantity" of a role
is the number of objects of a type that are allowed for it, given
one object, playing the other role. Role "cardinality" is an
array of quantities, where each consecutive pair suggests either
a range or an alternatives. A quantity of zero makes the role
"optional".

B. Status
Fig. 9 features the "class diagram" of the "business"

assembly (i.e., the "document") of the Personal Billing
system.7

The graphics at Fig. 9 were rendered using SmartDraw 6.
The "Skill-Driven" Design support for data-driven design is
currently under definition. This important design discipline has
been deliberately left to late at the Skill-Driven Design project.
The challenge of combining functional design with data-driven
design (without degrading to visual programming) is not a
small one and requires much attention to detail.

X. PROJECT MANAGEMENT SUPPORT

A. terms
Assembly "evolution" is a linear plan for implementing a

assembly. Assembly "generation" is a stage in a assembly
evolution, scheduling a number of skills (of this assembly) for
implementation. The entire closure of these skills will be
implemented in this stage, except for skills that have been
explicitly scheduled for a later generation. The assembly
evolution defines a product that is growing in functionality
with each successive generation, until reaching maturity in the
last generation, which installs the entire functional closure of
the assembly. Like a assembly, the very system evolves too,
but the system has no skills of itself. The “milestones” -
generations in the system evolution – assemble a number of
assembly generations and thus schedule a system-wide
product. Like a assembly evolution, the system evolution
describes the gradual construction of the system product from
limited to partial to full-fledged functionality. The final
milestone exhausts all generations of all assemblies in the
system. See Fig. 10 for a Personal Billing system example.

The system Gantt (see Fig. 11) charts the successions of
assembly generations, ordered horizontally according to their
inherent visibility constraints (analyzed from skill/reliance).
The duration of each assembly generation is computed from
the number of skills it involves. The unit used to measure
duration in a "Skill-Driven" project is the "EM" - "Entity
Measure" - the average number of useful skills per a useful

procedural details. Thus, it establishes the background for constructing "class
diagrams".

7 The Class diagram, which is part of the UML, is a derivative of the long
established "entity/relationship" model.

"Skill-Driven" Software Design

8

entity in the system. Skills and entities are "useful" if they are
relied upon by someone. When computing the time left for
working over a assembly generation, it is assumed that the
implementation will take an equal time to that invested in pure
analysis and design (unless another ratio is specified), the
percentage of design completeness and evaluation factor of the
assembly and developer, if specified. To convert the duration
from EM to days, an EM is considered to represent 3 days
(unless another ratio is specified).

B. Purpose
In "Skill-Driven" design, from the moment a significant

number of skills and reliances is accumulated, the project
Gantt materializes and proceeds to accompany the designer at
any step, ensuring that a realistic evaluation of resources and
development time is always at hand, based upon precise data.
Although the assertion of "three days per class" (or "100
classes per man-year") may seem arbitrary at first sight, it has
been well proven in hard-core object oriented projects,
involving above 30 major business entities. In projects that
give reason to believe that the pace should be faster or slower -
adjust the EM accordingly. To be on the safe side, state the
percentage of completeness for each assembly generation, to
account for additional design work that may lie ahead.

XI. THE STATUS OF THE “SKILL-DRIVEN” PROJECT
The Design language was specified and implemented in late

2000. It was used in a small (5000 useful C++ code lines)
commercial project in 2001. The language was completely
restructured by end 2001. During 2002, the Design compiler
was used in a commercial project to generate C++ code
starters for code that eventually weighed some 30,000 useful
C++ lines.

The functional support is the pillar of the entire system and
is well defined and functioning, with the exception of “virtual”
skills” that are under construction. The project-management
support was added during 2002 and used successfully to
schedule a commerical project. The use-case-driven and
transform-driven support layers are conceptually important but
structurally superficial and are currently under construction.
Two major tasks are still ahead: The data-driven support will
boost the usefulness of the generated code starters. However, I
had rather plan this layer with much caution, to prevent the
peril of degrading to visual programming. Finally, a teamwork
support will be added to allow a team of developers to use the
same design repository concurrently in an intelligent way. This
final task has more to it than just client/server architecture of
the Design compiler. It involves an analysis of the teamwork
design application and the addition of interaction among
systems to the Design language. Until then, the Design
compiler will safely remain a single user tool that
accommodates a single system.

The Design compiler currently weighs some 15000 useful
Python lines plus some lines of Java and Javascript. It may be
downloaded freely from the “Skill-Driven” design site[7] in
either raw Python or in Microsoft Windows executable form,

together with an HTML presentation-support library.
Although the Design code has - itself - been designed in the
Design language, it is currently under construction and is
likely to be adjusted to meet users’ demands. When release 1.0
of the Design language and compiler will is ready, I will place
both final code and its “Skill-Driven” design at the “Skill-
Driven” Design site for the public to use under an open-
license. I expect that to happen by end 2003.

APPENDIX
This section features three textual samples from the Personal Billing case
study whose careful reading will enhance the pictorial samples brought in the
figures.

Appendix 1. A comprehensive "transform sequence" traversing the Personal
Billing system. This is the story of a course, from Service to Contract to
Account to delivery of Events to billing.

1. We add a “Design” course to our services.

a. The Accountant inserts a Service, (Service type
"Course", default Account type "Class").

2. A client takes interest in the new course. We make a
contract for 25 Gold an hour for teaching and 10 Gold for
checking exams. By default, classes begin at 09:00 and
last 8 hours.

a. A Client opens Contract (for Service).
b. Contract opens Tariff (for Skill. Sequence

repeated twice).
c. Service retrieves Skill (For validation).
d. Tariff opens Tariff Version (the default).
e. Tariff Version opens Hour Rate (starting at

current date).
3. 3. We are commissioned a design class by the client,

Client code 125, allowed 1-hour commuting time. A Class
is scheduled every Thursday, from October 8, 5 times in
a row.

a. A Contract retrieves Tariff (for Skill).
b. Contract opens Account (external id set to 125,

default commuting time set to 1).
c. Account opens Work (for Tariff Version).
d. Work retrieves Contract (through Tariff, through

Tariff Version, to validate against Contract
through Account).

e. Calendar opens Event (for Work. Sequence
repeated 5 times, dates computed.)

4. October 15 is moved to previous Wednesday.
a. A Schedule Row View modifies Work Schedule

Cell View. (Update done by dragging cell in the
schedule editor.)

b. Schedule Cell View modifies Event (date set to
14).

5. The teaching event of October 14 indeed takes place. It
is checked, less half hour, due to our delay. In addition,
two exams are checked, lasting an hour.

a. A Schedule Cell View modifies Event (changing
duration to 7.5, status to True).

b. Schedule opens Work Schedule Row (for
same Account and Skill "Exam").

c. Account retrieves Work (for Skill "Exam"
through Tariff through Tariff Version. Assume
not found - proceeding to open).

d. Contract retrieves Tariff (for Skill "Exam", to
validate).

e. Account opens Work (for same Account and
Tariff).

f. Schedule View opens Schedule Row View (for
the new Schedule Row).

"Skill-Driven" Software Design

9

g. Schedule Row View activates Schedule Cell
View (duration 1 hour).

h. Calendar opens Event (for Work, duration 1).
6. Early November, an attendance report and a billing

report are produced for October. October 15 gives two
lines in the attendance report: The teaching event on
October 15 adds 25 * (7.5 + 1) = 212.5 to
client/class/teaching and to total for pay and is closed for
modification. The checking event on October 15 adds 10
* 1 = 10 to client/class/checking and to total for pay and
is closed for modification.

a. (Deliberately omitted.)

Appendix 2. Part of the Personal Billing Design code, containing the
beginning of the Billing Report assembly, an entity, some skills and the
explosion of the facility painted in Figs. 5-7 and coded in appendix 3. Each
line is a separate command, starting with a keyword. Keywords have been
capitalized automatically by the Design program. The minus symbol denotes a
continuation line. The item symbol is for "user-defined" items. Such items
are looked for by certain printouts (e.g., the namespace attribute, where
available, is used by the code generator - otherwise it is generated). Other
unknown attributes (e.g., "invariant" in the entity definition) are simply
appended to the descriptor, when printed). Reliances are denoted by the
keyword “RELIANCE” or by the paragraph symbol. The owner of the
reliance is determined by the degree of indent. The level numbers are
generated for readability and may be removed. The grouping of skill TLDBC
definitions under entity is generated automatically. When planning, the
designer normally dictates skill definitions on the fly, while relying upon
them for the first time (or accumulating definition parts later on). The clause
“Façade” strategic skill defines the entity as the façade of the assembly. The
“provided” clause specifies coupling: “to print Billing Report” relies upon
data from “to initialize Billing Report”, but cannot oversee its production.

ASSEMBLY P-Bill Report Assembly ("pbl_report")
§ NAMESPACE rpt

 MAJOR-STRATEGIC-SKILL to bill Clients and report to them
 § IS to summarize Payable Events per time period and
 - Client and compute amounts payable

ENTITY Billing Report ("BillRpt")
§ IS the report of all Works within a period, with hour totals
- and amount payable
§ INVARIANT report ready for printout
 FACADE-STRATEGIC-SKILL
 MINOR-STRATEGIC-SKILL to export billing report
 SKILL to initialize Billing Report
 § IS the Billing Report constructor
 TRANSFORM OF report period
 TRANSFORM OF AND client list
 TRANSFORM TO raw report line sequence
 SKILL to format Billing Report
 TRANSFORM OF Schedule
 TRANSFORM OF AND client list
 TRANSFORM TO raw report line sequence
 METHOD format()

 - # (Remaining skills and entities deliberately omitted)

FACILITY Billing report production
 RELIANCE 1 to initialize Billing Report
 RELIANCE 2 to initialize the Schedule
 RELIANCE 2 to format Billing Report
 RELIANCE 3 MANY Work,OPTION Client in list:
 - to format Work for Billing Report
 RELIANCE 4 MANY: to summ Payable Event
 RELIANCE 5 to get hours payable
 RELIANCE 3 to summ Work amount due
 RELIANCE 4 to quote Hour Rate per Work
 RELIANCE 4 to compute Work amount due
 RELIANCE 4 to summ grand amount due
 RELIANCE 4 OPTION: to open Skill summary line

 RELIANCE 4 to sum Skill amount payable
 RELIANCE 1 to print Billing Report
 PROVIDED DATA FROM to format Billing Report
 - CONTEXT Billing report production
 RELIANCE 2 MANY: to print Report Line

 - # (Remaining facilities deliberately omitted)

Appendix 3. This C++ class code was generated from the facility explosion in
Fig. 5. Net skills are preceded by "todo:". Reliance on skills that are
implemented by a discrete method generates function call. Skill contract
generates comment.
01: // Billing Report
02: // the report of all Works within a period, with
hour totals and amount payable
03: // INVARIANT: report ready for printout
04: class BillRpt
05: {
06: // visibilities (suggested member data)
07: private:
08: schd::Schedule aSchedule;
09: std::vector<RptView> RptViews; // MANY
10: public:
11: // "to initialize Billing Report"
12: // Description: The Billing Report constructor
13: // Transform of (a) report period and (b)

client list into raw report line sequence.
14: BillRpt() {
15: aSchedule = new Schedule;
16: format();
17: // (implementing "to format Billing Report")
18: }
19: // "to format Billing Report"
20: // Transform of (a) Schedule and (b) client

list into raw report line sequence.
21: void format() {
22: // MANY Work,OPTION Client in list: "to
23:format Work for Billing Report"
24: while (/* Work */) {
25: if (/* Client in list */) {
26: formatWork();
27: }
28: }
29: // "to summ Work amount due"
30: // Transform of (a) Work and (b) Work total

hours.
31: /* unconditional block */ {
32: aWork.QuoteHourRatePerWork();
33: // todo: "to compute Work amount due"
34: // Transform of (a) total hours and (b)

hour rate (amt) into Work amount due.
35: // todo: "to summ grand amount due"
36: // Transform of (a) Work amount due and

// (b) accumulated total amount due into
accumulated total amount due.

37: // OPTION first Work of a Skill met: "to
open Skill summary line"

38: // Transition when first Work of a Skill
met, leading to total Skill amount
due zero.

39: if (/* first Work of a Skill met */) {
40: // todo: "to open Skill summary line"
41: // Transition when first Work of a

Skill met, leading to total Skill
amount due zero.

42: }
43: // todo: "to summ Skill amount payable"
44: // Transform of (a) Work amount payable,

(b) accumulated total Skill amount
due into accumulated total Skill
amount due.

45: }
46: }
47: // "to print Billing Report"
48: // Transition when printing requested, leading

to report visible.
49: // - Transform of Report View.
50: void print() {
51: // MANY: "to print Report Line"

"Skill-Driven" Software Design

10

52: while (/* unknown condition */) {
53: aRptView.PrintReportLine();
54: }
55: }
56: // "to format Work for Billing Report"
57: // Transform of Schedule Row into raw report

line.
58: void formatWork() {
59: // MANY: "to summ Payable Event"
60: // ransform of (a) Payable Event, (b)

accumulated Work amount due into
accumulated Work amount due.

61: while (/* unknown condition */) {
62: // todo: "to summ Payable Event"
63: // Transform of (a) Payable Event, (b)

accumulated Work amount due into
accumulated Work amount due.

64: }
65: }
66: }; // end class BillRpt

REFERENCES
[1] DeMarco, T. Structured Analysis and System Specification, Prentice

Hall, Englewood Cliffs, NJ, 1978.
[2] The latest UML standard may be found at the official UML site at

http://www.uml.org/.
[3] Jacobson I., Object-oriented design, a use-case driven approach,

Addison Wesley 1992.
[4] "Object-Oriented Software Construction Second Edition," Bertrand

Meyer, Prentice Hall PRT, Upper Saddle River, New Jersey, 1997.
[5] The complete case study is listed at the "Skill-Driven" Design internet

site at http://www.skilldesign.com/ Design/1/2/0.html
[6] Ben A., “The MVC Architecture – A Skill-Driven Account”, JOOP

December 2000. See also http://www.skilldesign.com
\articles\mvcintro\article.html

[7] The Design compiler may be downloaded from the "Skill-Driven"
Design internet site at http://www.skilldesign.com/ Design/1/1/4.html

"Skill-Driven" Software Design

11

[8] List of figures

Fig. 1. the facts declared by a “Skill-Driven” design.

Fig. 2. The analysis/ design paradigms that contribute to "Skill-Driven
Design.

Fig. 3. The Personal Billing "strategic skill tree".

Fig. 4. The functional use-cases of the automated Personal Billing. One use-
case is expanded to show facility detail.

Fig. 5. Hierarchical explosion of a software "facility". This functional
decomposition forest is the object-oriented Pseudocode for the "Billing
Report production" facility. Indentation denotes reliance. Two skills have
been expanded, showing comment, TLDBC and coupling information. The
dark folder symbol on the left margin indicates that the respective skill is also
root for a separate facility (exploded elsewhere).

Fig. 6. "Wire chart" - a spatial explosion of the facility of Fig. 5. Arcs on the
left margin denote reliances. The arc on the right margin denotes coupling (in
this case, "data" coupling).

Fig. 7. This wire chart features an entity-level summary of the information in
Fig. 6. All reliances in one direction between two entities have been reduced
to a single arc expressing "visibility" between them.

Fig. 8. This wire chart summarizes all known visibilities among all
assemblies of the Personal Billing system.

Fig 9. Separately drawn "class diagram" of the business model assembly.

Fig. 10. Detail from the Personal Billing project plan. Although the Design
specifies only 190 skills with useful dependencies, the parentages of
completeness given by the designer on various occasions more than doubles
the size to 453 expected skills. The "EM" ("Entity Measure") computed for
this system is 12.58 (skills per Entity). Assuming the standard criteria of 3
days per EM, the project should last 108 days, if executed by a single
developer. The table shows, for each milestone, the assembly generations that
it is waiting for. The remaining time in EM for the three generations listed
here is 0.3, 0.3 and 0.6 EM respectively, assuming that the part of the design
should take 50% of the time. In the first item the design is done, In the
second it is 75% done and in the third, only 25% done. In total, this milestone
anticipates 1.8 EM to be completed.

Fig. 11. Detail from the Personal Billing Gantt chart. The vertical order of the
chart is dictated by the division of the plan to milestones, where each
milestone is waiting for the completion of so many assembly generations. The
horizontal order is computed from the visibilities among the skills in the
assembly generations. Since the project has a single developer, the Gantt is a
single time sequence, with no overlapping jobs. The dark bars represent the
duration of assembly generations. The numbers above them represent the
milestones to which they belong. The names of the milestones and assembly
generations are written in the left column.

"Skill-Driven" Software Design

12

"Skill-Driven" Software Design

13

"Skill-Driven" Software Design

14

