

1

Abstract— In the paper an important building stone for an end

user XML-algebra is presented. We believe that a program,
which is a term, build with user-friendly and expressive mass
data operations, is user-friendly, too. In this paper assignments
are considered. An assignment A:= B+C (or A:= B intersect C),
for example, induces an inner extension, by which a new
„column“ A is introduced in an XML-document. Here, a term
like B+C is evaluated for each pair of B- and C-values of the
document, which belong together. The formalization of the
corresponding inner-extensions is the main contribution of this
paper. It is based on the initial algebraic approach and a
corresponding specification of an XML-document as an abstract
data type.

Index Terms—Query Language, XML, Assignments

I. INTRODUCTION

e believe that XQuery is a powerful tool for the manipulation of
XML-documents, but it seems to us that XQuery is more a

programming language than a query language for end users. In our
opinion our XML-algebra is user-friendlier than XQuery, because we
do not use recursive functions and nested loops. Further, we apply
operations in an ordinary way. If we consider for example an XPath
expression document(XX.xml)//YY, then a list of YY-values „results“.
If // would be an ordinary operation, then it would not be possible to
go to the parents of YY, because these parents exist only in the
original document but not in the result of //. Also therefore, we
believe that XQuery with its sub language XPath is too complicated.
We think that our XML-algebra consists of powerful and user-
friendly operations. One of the most interesting operations is stroke,
which allows to restructure an XML-document into another
document only by describing the scheme of the desired document.
Sorting and aggregations of data can accompany this restructuring for
example (for details compare [2], [3]).
Stroke is implemented for nested relations in C and for nested
relations with optional values in CAML (compare [7] and [10]). The
CAML implementation is based on an algebraic specification
(compare [1]) and it includes the implementation of stroke as well as
implementations of the XML-algebra operations extension (a
supplementary operation to the join), path (for the solution of
problems, like bill of material problems), selection, and inner

K. Benecke is with the Otto-von-Guericke-University Magdeburg,
Germany, IWS/FIN, Postfach 4120,
39016 Magdeburg e-mail: benecke@ iws.cs.uni-magdeburg.de).

extension (corresponds to an assignment). The implementation of
these operations is based on a definition of non-first-normal-relation
with optional values, too. In this paper the inner extension operation
is generalized in several ways compared to its specification in [1].
Because a table has now not only names for elementary columns, we
can use beside single data operations as addition, … also operations
as intersection, Now each basic operation can be defined on
(complex) tables and not only on simple “values”. Second, if we
extend a tuple, then it may occur - because of recursive structures -
that this tuple has to be extended at several points. In order to find
these points an additional argument of inn-ext is necessary. And third,
it is possible - because of optional values - that if we extend a tuple at
a certain position a corresponding value does not exist. Therefore, we
have to extend the document sometimes by A? and not only by the
new column A.
Section 1 contains a little introduction using explanatory examples.
Then, problems in the design of the inner extension are sketched also
on illustrating examples. The examples show that it is necessary to
extend a document in some situations by a new column A and in
others by a column “A?”. This results into the formal definition of
two different operations inn-ext1 and inn-ext1?.
In section 2 the essential parts of the specification of XML-
documents of [4] are summarized, including the axioms that describe
the sorts Scheme and Table.
The last section contains the axioms and further auxiliary operations
of inn-ext1? in full length. Unfortunately, this specification is much
longer and more complex than the specification in [1]. We try to
“verify” these axioms soon using an OCAML implementation
(compare [8]).

II. INTRODUCING EXAMPLES

Query 1: Compute the area and circumference of a rectangle.
 where A := 3.89
 B := 7.98
 AREA := A*B
 CIRCUMFERENCE := 2*(A+B)

 Result: <TUP0> <A>3.89
 7.98
 <AREA>31.04<AREA>
 <CIRCUMFERENCE>23.74

</CIRCUMFERENCE>
 </TUP0>

(Here TUP0 is a short hand for (A, B, AREA,
CIRCUMFERENCE) or shorter:

<< A B AREA CIRCUMFERENCE:

 3.89 7.98 31.04 23.74>>

Assignments for XML-Documents

K. Benecke

W

2

The first assignment results into a table containing only an „A-
column“. This table is extended by each of the following
assignments by an additional column.
For comparison purposes we formulate this query in XQuery
(compare [6] and [5]), too:
 let xs:float $A := 3.89, xs:float $B := 7.98
 return <TUP0> <A>{$A}
 {$B}
 <AREA>{$A * $B} </AREA>
 <CIRCUMFERENCE>{2*($A+$B)}

</CIRCUMFERENCE>
 </TUP0>
Query 2: Compute the area and circumferences of several
circles.
 from <<R*: 1.37 2.49 4.86>>

where PI := 3.1415
 AREA := R*R*PI
 CIRCUMFERENCE := 2 * R *PI

 Result:

<TUP0><PI>3.1415</PI>
 <TUP1*>

<TUP1> <R>1.37</R>
 <AREA>5.89</AREA>
 <CIRCUMFERENCE>8.60

</CIRCUMFERENCE>
 </TUP1>

<TUP1> <R>2.49</R>
 <AREA>27.15</AREA>
 <CIRCUMFERENCE>15.64

</CIRCUMFERENCE>
 </TUP1>

<TUP1> <R>4.86</R>
 <AREA>74.20</AREA>
 <CIRCUMFERENCE>30.53

</CIRCUMFERENCE>
 </TUP1>
 </TUP1*>
 </TUP0>

Or shorter:
<< PI (R AREA CIRCUMFERENCE)*:
 3.1415 1.37 5.89 8.60
 2.49 27.15 15.64
 4.86 74.20 30.53>>

By the from-part an unnamed table of type R* (a list of R-
values) is created. This table is extended stepwise to (PI, R*),
(PI, (R, AREA)*), and finally to a table of type (PI, (R, AREA,
CIRCUMFERENCE)*). If we replace the second assignment by
„PI := 3.1415 AT R“, then a „first normal form relation“ of type
(R, PI, AREA, CIRCUMFERENCE)* results.
In [10] also collection assignments are implemented such that
the from-part could be replaced by L(R) := (1.37, 2.49, 4.86)
(Here, L abbreviates list) . The corresponding table has the
same type as the table of the from-part. Due to richer base
structures, such assignments are not needed now. We could

replace this by RS := <<L(R): 1.37 2.49 4.86>> . Here a
table of type RS with dtd(RS) = L(R) results. By the above
following inner extensions a table of type (RS, PI) with dtd(RS)
= L(R, AREA, CIRCUMFERENCE) results.
Query 2 in XQuery:
 let xs:float $PI := 3.1415

return <TUP0><PI>$PI</PI>
for xs:float $R IN (1.37, 2.49, 4.86)

 return <TUP1><R>{$R}</R
 <AREA>{ $PI * $R * $R }</AREA>
 <CIRCUMFERENCE>{ 2* $PI * $R }
 </CIRCUMFERENCE>
 </TUP1>
 </TUP0>
Query 3: Compute the Fibonacci numbers until 40.
 from <<X*: 1 TO 40>>
 where FIB[1; 2; N+1] := [1; 1; FIB[N-1] + FIB[N]]

 Result: << (X FIB)*:

1 1
2 1
3 2
4 3
5 5
6 8
...
40 102334155>>

It is possible to add a selecting condition „X= 40“, if
only the final number is desired.

Query 4: Euclidian algorithm for the computation of the
greatest common divisors from 786524 and 564.
 where

AA := 786524
 BB := 564
 L(A, B, REMAINDER)[1; N+1 TO REMAINDER = 0]

 :=[AA, BB, AA mod BB;
 B[N], REMAINDER[N], B[N] mod REMAINDER[N]]

The last two queries demonstrate how a tabular view of
computations is maintained. Query 3 will be processed in
general with help of a recursive function and query 4 by a
while-loop. We believe that both features should be avoided in
end user languages. In both examples the computations start
with 1 and go forward. This seems to be very natural compared
with the backward computations of recursive functions.
Further, the complexity of this recursive function is
exponential. Further query 4 does not require the user
understanding that variables are overwriten in loops.
We have a CAML-implementation of both kinds of
assignments. These implementations work up to now only for
non-first-normal-first-relations with optional values and also
not for arbitrary XML-documents. We shall see that the
specifications of assignments, which are based on one term
only, are already very complicated. Therefore we will only
consider these “simple“ assignments in the following.

3

Think of a document X1 with dtd(X1) = (A?, B)* and an
assignment C := A + B, then the resulting document should be
of type ((A, C)?, B)*. If an A- and B-value exists, then also a
C-value exists, which can be written at this position.
But, if we consider a document X2 with dtd(X2) = (A?, B?)*
and the same assignment, then neither ((A, C)?, B?)* nor (A?,
(B, C)?)* are appropriate types of the result. We cannot
compose a result for the first scheme, if an A-value exists and a
B-value is missing. On the other hand, we cannot construct a
result for the second type, if a B-value exists and an A-value
does not. Therefore, the resulting scheme should be (A?, B?,
C?)*. Here a C-value can be written, if and only if an A- and a
B-value exists. In this case the given type should be extended
by C? and not by C. From formal point of view we will realize
the former extension by an operation inn-ext1? and the latter
by inn-ext1. The operation inn-ext1? is also needed, if the
given table contains no question mark, namely if the given term
contains partial operations like division of integers or floats.
What is the result, if we consider C := A + B for a document
X3 of type “(D, A*, B*)*” ?
How can C-values be computed, if the result would be of type
“(D, (A, C)*, B*)*”?
Because we have no corresponding B-value for each A-value
(or better a list of corresponding B-values), we cannot compute
C-values. The same holds for the result type (D, A*, (B, C)*)*.
Can we compute C-values, if the result type is (D, A*, B*, C*)*
? This makes sense only, if a C-value is computed for each
combination A- and B-value. Thus, in general a great output
C*-collection (Cartesian product) results, and further it is not
visible to which input data a C-value belongs to. Then we can
say C := A+B is not applicable to X3 or in other words the
application of C := A+B on X3 results in X3. If the user still
wants to apply this assignment, he has to transform X3 at first
to a document of type (D, (A, B)*)*, for example. But this
problem is not considered in this paper.
Now, let X4 be given with dtd(X4) = (A, B)*, dtd(A) = (A1,
A2), and dtd(B) = (B1, B2). Consider the assignment C:= A1 +
B1. Here, we could extend the DTD of A or the DTD of B, but
we believe that our specification is simpler, if we extend the
DTD of X4 to
(A, B, C)*. If the user wishes to extend the DTD of A, then he
has to write
C := A1 + B1 AT A1. The A1 will be an additional (second)
argument of our corresponding inn-ext1-operation.
The next example corresponds to the assignment A := (B = D)
AT D. If „AT D“ is missing, then the system has to generate
this additional argument:

 F: S F: S
 S S
B C D E) = B C D A E
2 1 2 3 2 1 2 true 3
 4 4
 5 6 5 6 false

 (t1) (t2)

inn-ext1(A,{D}, B=D, t1) = t2

Now, we turn to recursive documents:
dtd(X5) = PERSON*
dtd(PERSON) = (NAME, LOCATION, SALARY, MGR?,

 CHILD*)
dtd(MGR) = dtd(CHILD) = PERSON
We are interested in the simple assignment
NET := SALARY*0.66
inn-ext1(NET, {SALARY}, SALARY*0.66, X5) has the DTD
PERSON, with
dtd(PERSON) = (NAME, LOCATION, SALARY, NET, MGR?,
CHILD*), and
dtd(MGR) = dtd(CHILD) = PERSON.
If we consider the specification of inn-ext1 in [1], then it
becomes visible that for each sub table, containing a
component, which has a name as head and which is contained
in the given term, then this name of the term is occupied by the
component of the table. In our case this means, that for each
outermost person (elements of X5) the SALARY-name is
occupied. Now, the term SALARY*0.66 can be completely
evaluated and the result appears in the new NET-column. Since
in our case SALARY appears repeatedly also in each MGR-
and CHILD-component, we have to extend these components,
too.
They are extended by the same superordinated NET-value.
This approach seems to be inadequate for this application. If
we want that always the salary of the corresponding person is
taken for the inner extension, then we have to replace SALARY
by //SALARY.
If we consider
Query 5: Extend the salary of each person by its net salary.
 from X5.XML
 where NET := //SALARY*0.66,

then inn-ext1(NET, {SALARY}, //SALARY*0.66, X5) has the
same DTD as the above extension, but each person is extended
by its own SALARY-value.
Query 5 in XQuery:
 define new_person (element $p)
 returns element
 { <person>
 { $p/NAME }
 { $p/LOCATION }
 { $p/SALARY }
 <net> { $p/SALARY*0.66 }</net>
 for $m IN $p/mgr/person
 return <mgr> {new_person($m)}</mgr>
 for $c in $p/child/person
 return <child> {new_person($c)}</child>
 </person>
 }

<result>
 for $p in document(“x5.xml”)/person
 return new_person($p)

</result>

4

From this example we can learn also that the following
specification of inn-ext1 has to differ deeply from the
specification of [1]. In the above example is visible that it is not
enough to extend a tuple only at one position. If we apply inn-
ext1 to a PERSON-tuple, we have to extend the PERSON-level
and further we have to apply inn-ext1 to the MGR?- and the
CHILD?-components, too. To specify this, we say that we
extend each component of a tuple and because we have the
additional name -argument (AT name), we can describe that
components without this name remain unchanged.
Because of these changes in specification now assignments of
type
A := INT*0.9, will be possible, too. By such an assignment
each INT-value of a table will be extended.
By the next simple example is demonstrated that recursive
names and unrecursive names may occur in one term.
dtd(X6) = (A, B*)
dtd(B) = (C, B*)
If we consider the assignment D := A + //C, then the following
DTD results:
dtd(inn-ext1(D, {C}, A+//C)) = (A, B*) with
dtd(B) = (C, D, B*)
For each C-value a superordinated A-value exists such that the
term can be evaluated for each C-value. In the specification we
have to use two terms (expressions) to model this. In a term e
only the unrecursive names are occupied such that this term
contains all superordinated values of the table t. In a term e’
all names are occupied. If e’ contains no free variables, then
the corresponding table is extended by the new e’-value and
for further extensions e’ is replaced by e. This replacement is
always done in the above example, if we go into a table of type
tag0(B, t’) .
The specifications of inn-ext1 and inn-ext1? are very similar.
Therefore, we consider only the latter. For the former we have
to replace coll(s1, inj(n)) by inj(n), and add(empty(coll(s1,
inj(n))), x) by x, and empty(coll(s1, inj(n))) by empty-t.
It remains the question, how the system can decide, in which
cases it has to apply inn-ext1 and in which cases inn-ext1? ?
This is not a very difficult question, because in any case,
where we apply inn-ext1, we also could apply inn-ext1?. The
only difference is that the resulting tables have an unnatural
structure in the second case. For example, in query 1 the
following extensions result: empty-s to A, A to (A, B), (A, B) to
(A, B, AREA) and this scheme to (A, B, AREA,
CIRCUMFERENCE). If we apply inn-ext1? the following
equivalent extensions result:
empty-s to A?, A? to (A, B?)?, (A, B?)? to (A, (B, C?)?)?, and
this to (A, (B, (C, D?)?)?)?.
The resulting structure would look a little more pleasingly, if
we do not extend AT A or AT B,..., but if we would allow to
extend AT A?. Then a table of type (A?, B?, C?, D?) would be
yielded. We will not follow this discussion in the paper,
because the user can always generate a natural structure by
using the stroke-operation. With stroke both schemes can be
transformed into a table of type (A, B, C, D). Further, the
specification would become unnecessary complicated. And
third, we have inn-ext1.

It remains to decide in which cases the system can use inn-
ext1 instead of inn-ext1?. The latter is applicable, if the given
term does not contain a partial operation and if the given term
does not contain two names A and B such that A? and B?
occurs in the DTD of the given table.

III. ALGEBRAIC SPECIFICATION OF XML-DOCUMENTS

We do not present a detailed specification of XML-documents
(sort Table) here, but we introduce all needed sorts and
generating operations. For details compare [4]. We use the
algebraic specification language of [9]. The semantic is
described by the initial algebra. This means that specified
objects can be represented by terms in generating operations
and two terms are equal, if and only if it can be deduced from
the given axioms (implications, where the right and left hand
side are equation systems). Operations may have a defining
equation system.

sorts Bool, Nat // Boolean values and natural numbers
opers true, false → Bool
 zero, one → Nat
 succ (Nat) → Nat // successor of a natural number
 (Nat +, * Nat) → Nat // addition and multiplication
 (Nat <, >,...Nat) → Bool // smaller-relation, ...
 and, or (Bool, Bool) → Bool
sorts Coll-sym // collection symbols
opers set, bag, list, s1 → Coll-sym
sorts Letter, Digit, Separator, Connector //

Value // elementary values =Letters + Digits +
Separators + Connectors + Booleans

opers let (Letter) → Value // each letter is a value, …
dig (Digit) → Value
sep (Separator) → Value
bo (Bool) → Value
co (Connector) → Value

sorts Name // simple names for tags
sorts Scheme
opers empty-s → Scheme // empty scheme
 inj (Name) → Scheme // each name is a scheme
 pair-s (Scheme, Scheme) → Scheme

//2-tuple of schemes
 coll (Coll-sym, Scheme) → Scheme
 alternate-s (Scheme, Scheme) → Scheme
axioms s, s', s": Scheme
 pair-s(s, empty-s) = pair-s(empty-s, s) = s
 pair-s(pair-s(s, s'), s") = pair-s(s, pair-s(s', s"))
 alternate-s(alternate-s(s,s'),s")

=alternate-s(s,alternate-s(s',s"))
end
def
opers comp-no (Scheme) → Nat

// the number of components of a scheme
equal-s (Scheme, Scheme) → Bool
// unspecified; simple equality relation
comp? (s: Scheme, s’: Scheme) → Bool

5

// each component of s occurs in s’
coll? (s: Scheme) → Bool
// s is a scheme for a collection

 red (s:Scheme iff coll?(s) = true) → Scheme
 // a collection scheme is reduced by the topmost collection

// symbol
 coll-type (s:Scheme iff coll?(s)) → Coll-sym

// the collection type of a collection
sorts Table
opers empty-t → Table
 el-tab (Value) → Table

// an elementary table (contains one value)
 empty (s: Scheme iff coll?(s)) → Table
 add (t1: Table, t2: Table iff red(head(t1)) = head(t2))

→ Table
 pair (Table, Table) → Table
 alternate1 (t: Table, s: Scheme) → Table
 alternate2 (s: Scheme, t: Table) → Table

tag0 (n: Name, t: Table iff dtd(n) = head(t) or
dtd(n) = inj(any)) → Table

 head (Table) → Scheme
axioms n: Name; s, s’, s“: Scheme; t, t’, t1, t2, t3: Table; l: Letter,
d: Digit, se: Separator, b: Bool
head(empty-t) = empty-s
head(el-tab(let(l)) = inj(letter), head(el-tab(dig(d))) = inj(digit)
head(el-tab(sep(se))) = inj(separator), head(el-tab(bo(b))) =
inj(bool)
if coll?(s) then head(empty(s)) = s
if t = add(t1, t2) then head(t) = head(t1)
head(pair(t1, t2)) = pair-s(head(t1), head(t2))
head(alternate1(t, s)) = alternate-s(head(t), s)
head(alternate2(s, t) = alternate-s(s, head(t))
if t = tag0(n, t’) then head(t) = inj(n)
pair(empty-t, t) = pair(t, empty-t) = t
pair(t1, pair(t2, t3)) = pair(pair(t1, t2), t3)
alternate1(alternate2(s’, t), s“) = alternate2(s’, alternate1(t, s“))
alternate1(alternate1(t, s’), s“) = alternate1(t, alternate-s(s’,s“))
alternate2(s’, alternate2(s“, t)) = alternate2(alternate-s(s’,s“), t)
if coll-type(head(t1)) = set & red(head(t1))=head(t2)=head(t3)
 then add(add(t1, t2), t3) = add(add(t1, t3), t2)
if coll-type(head(t1)) = bag & red(head(t1)) = head(t2)

= head(t3) then add(add(t1, t2), t3) = add(add(t1, t3), t2)
if head(t1) = coll(set, head(t2))
 then add(add(t1, t2), t2) = add(t1, t2)
if coll-type(head(t1)) = s1 & head(t2) = head(t3)

= red(head(t1)) & t1 = empty(s)
 then add(add(t1, t2), t3) = add(t1, t2)
end
sorts Names // set of name objects
opers empty-n → Names // the empty set of names
 { Name } → Names // a singleton of names
 union-n (Names, Names) → Names

// set theoretic union
in-n (Name, Names) → Bool // element relation

 inclu-n (Names, Names) → Bool // inclusion relation
intersect-n (Names, Names) → Names // intersection

 minus-n (Names, Names) → Names // set difference

…

IV. SPECIFICATION OF INNEXT1?

opers comp2? (n: Name, t: Table) → Bool

(n is a comp2?-component of t, that means there
exists a component of t or an n-table within s1-
collections or alternate expressions)

deep-names-s (s: Scheme) → Names
(all names of s and dtd(n) for n from dtd(n), starting with s;
a name n is recursive, if n occurs in deep-names -s(dtd(n)))

axioms n, n’: Name; ns: Names; v: Value; s: Scheme;
 t, t’: Table

 comp2?(n, el-tab(v)) = (equal-s(inj(n), head(el-tab(v)))
 comp2?(n, tag0(n’, t)) = (equal-n(n, n’) or comp2?(n, t’))
 comp2?(n, pair(t, t’)) = (comp2?(n, t) or comp2?(n, t’))
 comp2?(n, empty-t) = false
 comp2?(n, alternate1(t, s)) = comp2?(n, t)
 comp2?(n, alternate2(s, t)) = comp2?(n, t)
 if truecoll?(head(t)) then comp2?(n, t) = false
 comp2?(n, empty(coll(s1, s))) = false
 if t = add(empty(coll(s1, s)), t’)

then comp2?(n, t) = comp2?(n, t’)

 deep-names-s(empty-s) = empty-n
deep-names -s(inj(letter)) = {letter},...
(for all names without DTD)

if dtd(n) = s then deep-names-s(inj(n))
= union-n({n}, deep-names -s(dtd(n))

deep-names-s(pair-s(s, s’))
= union-n(deep-names -s(s), deep-names -s(s’))

deep-names-s(coll(c, s)) = deep-names-s(s)
deep-names-s(alternate-s(s, s’))

= union-n(deep-names -s(s), deep-names -s(s’))
def
sorts Expr (formal expression (term), built from single data

and mass data ground operations and relations; these
expressions will be used as right hand sides of
assignments)

opers n-ex (Name) → Expr
// each name is an expression

 rec-n-ex (Name) → Expr
// each recursive name (//n) is an expression

 v-ex (Table) → Expr
// each table is an expression (value) (constant)

 +-ex ; <-ex (e1: Expr, e2: Expr) → Expr
 =-ex (e1: Expr, e2: Expr → Expr
 and-ex ; or-ex (e1: Expr, e2: Expr) → Expr
 non-ex (e: Expr) → Expr
 if-then-else-ex (e1: Expr, e2: Expr, e3: Expr) → Expr
 intersect-ex (e1: Expr, e2: Expr) → Expr

(Intersection; because of this operation, it is
not enough to introduce only simple values
(v-ex) as constants)

 inclu-ex (e1: Expr, e2: Expr) → Expr
end

6

def
opers +-t (t: Table, t’: Table) → Table
 intersect (t: Table, t’: Table iff coll?(head(t))

& head(t) = head(t’)) → Table
 // Ordinary intersection of tables, which are collections of

// the same type
 intersect-t (t: Table, t’: Table) → Table

//Here we consider only two special operations, which
//build the base for the inn-ext1-
//operations; by inn-ext1 and inn-ext1? these
//operations are applied for all corresponding inner sub
//tables; by these operations the outmost tags are
//omitted and the operations are applied two the
second //argument of tag.

axioms n, n’: Name, v, v’: Table
 +-t(t, t’) = sum(pair(t, t’))

//the specification of the function sum is similar to
//the specification of function all from [3]; computing
//sum(t) it results a table <int>i</int>, if within t no
//float-number exists, it results <float>f</float>, if t
//contains a float. All numbers, occurring in t are
//added.

if t = empty(s) & s = head(t’)
 then intersect(t, t’) = empty(coll(set, red(s)))
if t = add(t1, t2) & in(t2, t’)
 then intersect(t, t’) = add(intersect(t1, t’), t2)
if t = add(t1, t2) & in(t2, t’) = false
 then intersect(t, t’) = intersect(t1, t’)

(The specification of the element relation in is simple
and contained in [3].)

if t = tag0(n, t1) & t’ = tag0(n’, t1’)
 & t2 = stroke(head(t1), t1’) & coll?(head(t1))
 then intersect-t(t, t’) = intersect(t1, t2)
end
opers occupy-ex (e: Expr, t: Table) → Expr
 //All names from e , which occur as components in

//the sense of comp2? in t are occupied by
//corresponding sub tables; if a name n occurs twice
//in topmost level of t, then the leftmost n-sub table
//is taken.

unrec-occupy-ex (e: Expr, t: Table) → Expr
 //Like occupy-ex, but only the unrecursive names are

//occupied.
names-ex (Expr) → Names

//The set of all names, which occur in the given expression.
rec-names-ex (Expr) → Names
unrec-names-ex (Expr) → Names
val-ex (e: Expr iff names-ex(e) = empty-n) → Table
 (The value of an expression without free names)
axioms n : Name ; t, t1, t2, t3, v: Table; e, e1, e2: Expr
if comp2?(n, t2)=true & extract-comp2(t, {n})=triple(t1, t2, t3)

& comp2?(n, t1) = false & comp -no(t2) = 1
 then occupy-ex(n-ex(n), t) = v-ex(t2)
 if comp2?(n, t) = false
 then occupy-ex(n-ex(n), t) = n-ex(n)

 if comp2?(n, t) = true
 then occupy-ex(rec-n-ex(n), t) = v-ex(extract-comp2(t, {n})
 if comp2?(n, t) = false
 then occupy-ex(rec-n-ex(n), t) = n-ex(n)
occupy-ex(v-ex(v), t) = v-ex(v)
occupy-ex(+-ex(e1, e2), t)

= +-ex(occupy-ex(e1, t), occupy-ex(e2, t))
(analogous equations for <-ex, and the remaining
operations)

if comp2?(n, t) = true
 then unrec-occupy-ex(n-ex(n), t) = v-ex(extract-comp2(t, {n})
if comp2?(n, t) = false
 then unrec-occupy-ex(n-ex(n), t) = n-ex(n)
unrec-occupy-ex(rec-n-ex(n), t) = n-ex(n)
unrec-occupy-ex(v-ex(v), t) = v-ex(v)
unrec-occupy-ex(+-ex(e1, e2), t)

= +-ex(occupy-ex(e1, t), occupy-ex(e2, t))
(analogous equations for <-ex, and the remaining
operations)

names-ex(n-ex(n)) = {n}
names-ex(rec-n-ex(n)) = {n}
names-ex(v-ex(t)) = empty-n
names-ex(+-ex(e1, e2))
= union-n(names-ex(e1), names-ex(e2))
 (analogous equations for the remaining operations)

rec-names-ex(n-ex(n)) = empty-n
names-ex(rec-n-ex(n)) = {n}
names-ex(v-ex(t)) = empty-n
names-ex(+-ex(e1, e2))
 = union-n(names-ex(e1), names -ex(e2))
 (analogous equations for the remaining operations)

val-ex(v-ex(v)) = v
if names-ex(e1) = names-ex(e2) = empty-n
 then val-ex(+-ex(e1, e2)) = +-t(val-ex(e1), val-ex(e2)) &
 & val-ex(intersect-ex(e1, e2))

 = intersect-t(val-ex(e1), val-ex(e2))
 & val-ex(=-ex(e1, e2)) = equal-t(val-ex(e1), val-ex(e2))
…
end
def
opers
inn-ext1?-s (n: Name, n’: Names, s: Scheme iff card(n’) <= 1)

 → Scheme
//The given scheme s is extended by a new name n
//direct behind the name n’; the scheme is extended
//at all positions, where n’ occurs.

a-inn-ext1?(n: Name, n’: Names, e: Expr, e’: Expr, t: Table
iff card(n’) <= 1) → Table
//Auxiliary operation; in e each unrecursive name is
//occupied exactly once; in e’ each name is
//occupied; after each inner extension e’ is replaced
//by the topical e.

inn-ext1? (n: Name, n’: Names, e: Expr, t: Table

7

iff card(n’) <=1) → Table
//Right beside each name n’ the given table t is
//extended by one new column named n?, the
//corresponding values are computed by e from
//superordinated values, formally we consider n’ as a
//one elementary set of names, to allow also an empty
//set of names; if an assignment N := e AT POS is
//given, then n’ ={POS}. If the AT-part is missing,
//and the expression contains only one name p, then
//we choose n’ = {p}. If the expression contains no
//name, then n’ is the empty set, otherwise for n’ the
//deepest and from all deepest names the rightmost
//name is taken.

axioms n, n’, n“: Name; ns: Names; e, e’: Expr;
s, s’, s“: Scheme; t, t1, t2, t’: Table

inn-ext1?-s(n, {n’}, inj(n’)) = pair-s(inj(n’), coll(s1, inj(n)))
if n’ != n” then inn-ext1?-s(n, {n’}, inj(n”)) = inj(n”)
inn-ext1?-s(n, {n’}, pair-s(s, s’))

= pair-s(inn-ext1?-s(n, {n’}, s), inn-ext1?-s(n, {n’}, s’))
inn-ext1?-s(n, {n’}, coll(c, s’)))

= coll(c, inn-ext1?-s(n, {n’}, s’))
inn-ext1?-s(n, {n’}, alternate-s(s, s’))
 = alternate-s(inn-ext1?-s(n, {n’}, s), inn-ext1?-s(n, {n’}, s’))
inn-ext1?-s(n, {n’}, empty-s) = empty-s
inn-ext1?-s(n, empty-n, s) = pair-s(s, coll(s1, inj(n)))

if head(t) = inj(n’) & names-ex(occupy-ex(e’, t)) = empty-n

then a-inn-ext1?(n, {n’}, e, e’, t) =
= pair(t, add(empty(coll(s1, inj(n)))

 , tag0(n, val-ex(occupy-ex(e, t)))))
if head(t) = inj(n’) & names-ex(occupy-ex(e’, t)) != empty-n &

then a-inn-ext1?(n, {n’}, e, e’, t)
= pair(t, empty(coll(s1, inj(n))))

if head(t) = inj(n”) & n” != n’
& in-n(n’, deep-names-s(inj(n”))) = false
then a-inn-ext1?(n, {n’}, e, e’, t) = t

if t = tag0(n”, t’) & n” != n’ & in-n(n’, deep-names-s(inj(n”)))
 & rec-names-ex(e’) = empty-n

then a-inn-ext1?(n, {n’}, e, e’, t)
 = tag0(n”, a-inn-ext1?(n, {n’}, e, e, t’))

if t = tag0(n”, t’) & n” != n’ & in-n(n’, deep-names-s(inj(n”)))
 & rec-names-ex(e’) != empty-n

then a-inn-ext1?(n, {n’}, e, e’, t)
 = tag0(n”, a-inn-ext1?(n, {n’}, e, e’, t’))

if t = empty(s) then a-inn-ext1?(n, {n’}, e, e’, t)
= empty(inn-ext1?-s(n, {n’}, s))

if t = add(t1, t2)
then a-inn-ext1?(n, {n’}, e, e’, t) =
= add(a -inn-ext1?(n, {n’}, e, e’, t1)

 , a-inn-ext1?(n, {n’}, e, e’, t2))
if t = alternate1(t’, s)

then a-inn-ext1?(n, {n’}, e, e’, t) =
 = alternate1(a -inn-ext1?(n, {n’}, e, e’, t’)

, inn-ext1?-s(n, {n’}, s))
if t = alternate2(s, t’)

then a-inn-ext1?(n, {n’}, e, e’, t) =

= alternate2(inn-ext1?-s(n, {n’}, s)
 , a-inn-ext1?(n, {n’}, e, e’, t’))

if t = pair(t1, t2)
then a-inn-ext1?(n, {n’}, e, e’, t) =

= pair(a-inn-ext1?(n, {n’}, unrec-occupy-ex(e, t),
occupy-ex(e’, t), t1),
a-inn-ext1?(n, {n’},
unrec-occupy-ex(e, t), occupy-ex(e’, t), t2))

if names-ex(e’) = empty-n
then a-inn-ext1?(n, {n’}, e, e’, empty-t) = empty-t

if names-ex(e’) != empty-n
then a-inn-ext1?(n, {n’}, e, e’, empty-t) =

= add(empty(coll(s1, inj(n))), tag0(n, val-ex(e)))
if names-ex(occupy(e’, t)) != empty-n

then a-inn-ext1?(n, empty-n, e, e’, t) =
= pair(t, add(empty(coll(s1, inj(n))), tag0(n, val-ex(e))))

if names-ex(occupy(e’, t)) = empty-n
then a-inn-ext1?(n, empty-n, e, e’, t) =

= pair(t, empty(coll(s1, inj(n))))

if card(ns) <= 1

then inn-ext1?(n, ns, e, t) = a-inn-ext1?(n, ns, e, e, t)
end

Finally, we remark that also the basic operations of our data
model may appear in the right side of an assignment. Thus
A:=stroke(S(B, C), CC) can be considered for example as an
operation, which maps each inner table CC of a given
document to another table (of type S(B,C)). In places like this,
we can consider the target scheme as a constant.

REFERENCES
[1] K. Benecke, „Structured Tables – A new Paradigm for Databa ses and

Programming Languages“, (German), Deutscher Universitätsverlag,
Wiesbaden 1998,

[2] …, „Stroke-A Powerful Operation for XML-like Data”, Proc.
SCI2002, Orlando July 2002, pp. 273-278

[3] … „Formal Specification of stroke for XML-Documents”,
http://fuzzy.cs.uni-magdeburg.de/benecke.html

[4] …, “Understanding the Structure of XML-Documents”, submitted
for publication

[5] D. Chamberlin, P. Fankhauser, D. Florescu, M. Marchiori, J. Robie,
“XML Query Use Cases”,W3C Working Draft 16 Aug 2002,
http://www.w3.org/TR/xmlquery-use-cases

[6] D. Chamberlain, J. Clark, D. Florescu, J. Robie, J. Simeon, M.
Stefanescu, „XQuery: A Query Language for XML“, W3C Working
Draft 16 August 2002, http://www.w3.org/TR/xquery

[7] X. Leroy, “The Caml Light system release 0.7-, Documentation and
user’s manual”, http//: pauillac.inria.fr/caml, INRIA 1995

[8] X. Leroy et. al., The Objective Caml system release 3.06-
Documentation and user’s manual”,
http://caml.inria.fr/distrib/ocaml-3.06/ocaml-3.06-refman.pdf,
August 2002

[9] H. Reichel, „Initial Computability, Algebraic Specifications, and
Partial Algebras“, Akademie Verlag Berlin (Oxford-Press) 1987

[10] D. Schamschurko, „Implementation of the Trunk of the FROM-
WHERE-STROKE-construct in CAML-Light“, (in German),
Praktikumsbeleg, DeTeCSM Magdeburg, 1996

[11] K. Williams, et. al., “Professional XML Databases”, Wrox Press
Ltd., Birmingham, 2000

