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Abstract— In the paper an important building stone for an end 

user XML-algebra is presented. We believe that a program, 
which is a term, build with user-friendly and expressive mass 
data operations, is user-friendly, too. In this paper assignments 
are considered. An assignment A:= B+C (or A:= B intersect C), 
for example, induces an inner extension, by which a new 
„column“ A is introduced in an XML-document. Here, a term 
like B+C  is evaluated for each pair of  B- and C-values of the 
document, which belong together. The formalization of the 
corresponding inner-extensions is the main contribution of this 
paper. It is based on the initial algebraic approach and a 
corresponding specification of an XML-document as an abstract 
data type.  
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I. INTRODUCTION 

e believe that XQuery is a powerful tool for the manipulation of 
XML-documents, but it seems to us that XQuery is more a 

programming language than a query language for end users. In our 
opinion our XML-algebra is user-friendlier than XQuery, because we 
do not use recursive functions and nested loops. Further, we apply 
operations in an ordinary way. If we consider for example an XPath 
expression document(XX.xml)//YY, then a list of YY-values „results“. 
If  //  would be an ordinary operation, then it would not be possible to 
go to the parents of YY, because these parents exist only in the 
original document but not in the result of  //. Also therefore, we 
believe that XQuery with its sub language XPath is too complicated.  
We think that our XML-algebra consists of powerful and user-
friendly operations. One of the most interesting operations is  stroke, 
which allows to restructure an XML-document into another 
document only by describing the scheme of the desired document. 
Sorting and aggregations of data can accompany this restructuring for 
example (for details compare [2], [3]).   
Stroke is implemented for nested relations in C and for nested 
relations with optional values in CAML (compare [7] and [10]). The 
CAML implementation is based on an algebraic specification 
(compare [1]) and it includes the implementation of  stroke  as well as 
implementations of the XML-algebra operations extension (a 
supplementary operation to the join), path (for the solution of 
problems, like bill of material problems), selection, and inner 
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extension (corresponds to an assignment). The implementation of 
these operations is based on a definition of non-first-normal-relation 
with optional values, too. In this paper the inner extension operation 
is generalized in several ways compared to its specification in [1]. 
Because a table has now not only names for elementary columns, we 
can use beside single data operations as addition, … also operations 
as intersection, ... . Now each basic operation can be defined on 
(complex) tables and not only on simple “values”. Second, if we 
extend a tuple, then it may occur - because of recursive structures - 
that this tuple has to be extended at several points. In order to find 
these points an additional argument of inn-ext is necessary. And third, 
it is possible - because of optional values - that if we extend a tuple at 
a certain position a corresponding value does not exist. Therefore, we 
have to extend the document sometimes by  A? and not only by the 
new column  A. 
Section 1 contains a little introduction using explanatory examples. 
Then, problems in the design of the inner extension are sketched also 
on illustrating examples. The examples show that it is necessary to 
extend a document in some situations by a new column A  and  in 
others by a column “A?”. This results into the formal definition of 
two different operations inn-ext1  and  inn-ext1?.   
In section 2 the essential parts of the specification of XML-
documents of  [4] are summarized, including the axioms that describe 
the sorts Scheme and Table. 
The last section contains the axioms and further auxiliary operations 
of inn-ext1? in full length. Unfortunately, this specification is much 
longer and more complex than the specification in [1]. We try to 
“verify” these axioms soon using an OCAML implementation 
(compare [8]).  

 

II. INTRODUCING EXAMPLES 

Query 1: Compute the area and circumference of a rectangle. 
 where  A := 3.89 
    B := 7.98 
    AREA := A*B 
    CIRCUMFERENCE := 2*(A+B) 
 
 Result:  <TUP0> <A>3.89</A> 
         <B>7.98</B> 
         <AREA>31.04<AREA> 
         <CIRCUMFERENCE>23.74 

</CIRCUMFERENCE> 
     </TUP0>  

( Here TUP0 is a short hand for (A, B, AREA, 
CIRCUMFERENCE) or shorter: 

 
<< A  B  AREA CIRCUMFERENCE: 

    3.89 7.98 31.04 23.74>> 
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The first assignment results into a table containing only an „A-
column“. This table is extended by each of the following 
assignments by an additional column. 
For comparison purposes we formulate this query in XQuery 
(compare [6] and [5]), too: 
 let xs:float $A := 3.89, xs:float $B := 7.98 
 return <TUP0> <A>{$A}</A> 
        <B>{$B}</B> 
        <AREA>{$A * $B} </AREA> 
    <CIRCUMFERENCE>{2*($A+$B)} 

</CIRCUMFERENCE> 
  </TUP0> 
Query 2: Compute the area and circumferences of several 
circles. 
 from <<R*: 1.37  2.49  4.86>>     

where PI := 3.1415 
    AREA := R*R*PI 
    CIRCUMFERENCE := 2 * R *PI 
 
 Result:  

<TUP0><PI>3.1415</PI> 
         <TUP1*> 

<TUP1> <R>1.37</R> 
            <AREA>5.89</AREA> 
            <CIRCUMFERENCE>8.60 

</CIRCUMFERENCE> 
        </TUP1>  

<TUP1> <R>2.49</R> 
            <AREA>27.15</AREA> 
            <CIRCUMFERENCE>15.64 

</CIRCUMFERENCE> 
        </TUP1> 

<TUP1> <R>4.86</R> 
            <AREA>74.20</AREA> 
            <CIRCUMFERENCE>30.53 

</CIRCUMFERENCE> 
        </TUP1> 
                       </TUP1*> 
    </TUP0> 
  
Or shorter: 
<< PI                  ( R   AREA CIRCUMFERENCE)*: 
  3.1415    1.37  5.89  8.60 
        2.49  27.15 15.64 
        4.86  74.20 30.53>> 
 
By the from-part an unnamed table of type R* (a list of R-
values) is created. This table is extended stepwise to (PI, R*), 
(PI, (R, AREA)*), and finally to a table of type (PI, (R, AREA, 
CIRCUMFERENCE)*).  If we replace the second assignment by 
„PI := 3.1415 AT R“, then a „first normal form relation“ of type 
(R, PI, AREA, CIRCUMFERENCE)* results.  
In [10] also collection assignments are implemented such that 
the from-part could be replaced by  L(R) := (1.37, 2.49, 4.86) 
(Here,  L  abbreviates  list) . The corresponding table has the 
same type as the table of the from-part. Due to richer base 
structures, such assignments are not needed now. We could 

replace this by  RS := <<L(R): 1.37  2.49  4.86>> . Here a 
table of type RS with dtd(RS) = L(R) results. By the above 
following inner extensions a table of type (RS, PI) with  dtd(RS) 
= L(R, AREA, CIRCUMFERENCE) results.  
Query 2 in XQuery:  
 let xs:float $PI := 3.1415 

return <TUP0><PI>$PI</PI> 
for xs:float $R IN (1.37, 2.49, 4.86) 

    return <TUP1><R>{$R}</R 
                  <AREA>{ $PI * $R * $R }</AREA> 
     <CIRCUMFERENCE>{ 2* $PI * $R }  
                      </CIRCUMFERENCE> 
   </TUP1> 
  </TUP0> 
Query 3: Compute the Fibonacci numbers until 40. 
 from <<X*: 1 TO 40>> 
 where FIB[1; 2; N+1] := [1; 1; FIB[N-1] + FIB[N]] 
 
   Result:  <<   ( X    FIB)*: 

1 1 
2 1 
3 2 
4 3 
5 5 
6 8 
... 
40       102334155>> 

It is possible to add a selecting condition  „X= 40“, if 
only the final number is desired.  
 

Query 4: Euclidian algorithm for the computation of the 
greatest common divisors from 786524 and 564. 
 where  

AA := 786524 
  BB := 564 
  L(A, B, REMAINDER)[1; N+1 TO REMAINDER = 0] 

 :=[AA, BB, AA mod BB; 
           B[N], REMAINDER[N], B[N] mod REMAINDER[N]] 
 
The last two queries demonstrate how a tabular view of 
computations is maintained. Query 3 will be processed in 
general with help of a recursive function and query 4 by a 
while-loop. We believe that both features should be avoided in 
end user languages. In both examples the computations start 
with 1 and go forward. This seems to be very natural compared 
with the backward computations of recursive functions. 
Further, the complexity of this recursive function is 
exponential. Further query 4 does not require the user 
understanding that variables are overwriten in loops.  
We have a CAML-implementation of both kinds of 
assignments. These implementations work up to now only for 
non-first-normal-first-relations with optional values and also 
not for arbitrary XML-documents. We shall see that the 
specifications of assignments, which are based on one term 
only, are already very complicated. Therefore we will only 
consider these “simple“ assignments in the following.  
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Think of a document  X1  with dtd(X1) = (A?, B)* and an 
assignment C := A + B, then the resulting document should be 
of type  ((A, C)?, B)*. If an  A- and B-value exists, then also a 
C-value exists, which can be written at this position.  
But, if we consider a document  X2  with  dtd(X2) = (A?, B?)* 
and the same assignment, then neither  ((A, C)?, B?)* nor (A?, 
(B, C)?)* are appropriate types of the result. We cannot 
compose a result for the first scheme, if an A-value exists and a 
B-value is missing. On the other hand, we cannot construct a 
result for the second type, if a B-value exists and an A-value 
does not. Therefore, the resulting scheme should be (A?, B?, 
C?)*. Here a C-value can be written, if and only if an A- and a 
B-value exists. In this case the given type should be extended 
by  C?  and not by C. From formal point of view we will realize 
the former extension by an operation  inn-ext1?   and the latter 
by  inn-ext1. The operation inn-ext1?  is also needed, if the 
given table contains no question mark, namely if the given term 
contains partial operations like division of integers or floats.  
What is the result, if we consider C := A + B  for a document  
X3  of type  “(D, A*, B*)*” ? 
How can C-values be computed, if the result would be of type 
“(D, (A, C)*, B*)*”?  
Because we have no corresponding B-value for each A-value 
(or better a list of corresponding B-values), we cannot compute 
C-values. The same holds for the result type (D, A*, (B, C)*)*. 
Can we compute C-values, if the result type is (D, A*, B*, C*)* 
? This makes sense only, if a C-value is computed for each 
combination A- and B-value. Thus, in general a great output 
C*-collection (Cartesian product) results, and further it is not 
visible to which input data a C-value belongs to. Then we can 
say   C := A+B is not applicable to X3 or in other words the 
application of  C := A+B on  X3  results in X3. If the user still 
wants to apply this assignment, he has to transform  X3  at first 
to a document of type (D, (A, B)*)*, for example. But this 
problem is not considered in this paper.  
Now, let  X4  be given with dtd(X4) = (A, B)*, dtd(A) = (A1, 
A2), and dtd(B) = (B1, B2).  Consider the assignment  C:= A1 + 
B1. Here, we could extend the DTD of  A  or the DTD of B, but 
we believe that our specification is simpler, if we extend the 
DTD of  X4  to 
(A, B, C)*. If the user wishes to extend the DTD of A, then he 
has to write  
C := A1 + B1 AT A1. The A1  will be an additional (second) 
argument of our corresponding inn-ext1-operation.  
The next example corresponds to the assignment A := (B = D)  
AT D. If  „AT D“ is missing, then the system has to generate 
this additional argument:  
 
   F: S     F: S  
   S      S 
B C D E )  = B C  D A E 
2 1 2 3  2 1 2 true 3 
   4      4 
 5 6    5 6 false  

   (t1)            (t2) 
 
inn-ext1(A,{D}, B=D, t1) = t2 

Now, we turn to recursive documents: 
dtd(X5) = PERSON* 
dtd(PERSON) = (NAME, LOCATION, SALARY, MGR?, 

 CHILD*) 
dtd(MGR) = dtd(CHILD) = PERSON 
We are interested in the simple assignment   
NET := SALARY*0.66 
inn-ext1(NET, {SALARY}, SALARY*0.66, X5) has the DTD  
PERSON, with 
dtd(PERSON) = (NAME, LOCATION, SALARY, NET, MGR?, 
CHILD*), and  
dtd(MGR) = dtd(CHILD) = PERSON.  
If we consider the specification of  inn-ext1 in  [1], then it 
becomes visible that for each sub table, containing a 
component, which has a name as head and which is contained 
in the given term, then this name of the term is occupied by the 
component of the table. In our case this means, that for each 
outermost person (elements of X5) the SALARY-name is 
occupied. Now, the term SALARY*0.66  can be completely 
evaluated and the result appears in the new NET-column. Since 
in our case SALARY appears repeatedly also in each MGR- 
and CHILD-component, we have to extend these components, 
too.  
They are extended by the same superordinated NET-value. 
This approach seems to be inadequate for this application. If 
we want that always the salary of the corresponding person is 
taken for the inner extension, then we have to replace SALARY 
by  //SALARY.  
If we consider  
Query 5: Extend the salary of each person by its net salary. 
    from     X5.XML 
 where NET := //SALARY*0.66, 
 
then  inn-ext1(NET, {SALARY}, //SALARY*0.66, X5) has the 
same DTD as the above extension, but each person is extended 
by its own SALARY-value.  
Query 5 in XQuery: 
 define new_person (element $p) 
  returns element 
 { <person> 
   { $p/NAME } 
   { $p/LOCATION } 
   { $p/SALARY } 
   <net> { $p/SALARY*0.66 }</net> 
   for $m IN $p/mgr/person 
   return <mgr> {new_person($m)}</mgr> 
   for $c in $p/child/person 
   return <child> {new_person($c)}</child> 
  </person> 
 } 
 

<result> 
     for $p in document(“x5.xml”)/person 
     return new_person($p) 

</result> 
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From this example we can learn also that the following 
specification of inn-ext1 has to differ deeply from the 
specification of [1]. In the above example is visible that it is not 
enough to extend a tuple only at one position. If we apply inn-
ext1 to a PERSON-tuple, we have to extend the PERSON-level 
and further we have to apply inn-ext1  to the MGR?- and the 
CHILD?-components, too. To specify this, we say that we 
extend each component of a tuple and because we have the 
additional name -argument (AT name), we can describe that 
components without this name remain unchanged.  
Because of these changes in specification now assignments of 
type 
A := INT*0.9, will be possible, too. By such an assignment 
each INT-value of a table will be extended. 
By the next simple example is demonstrated that recursive 
names and unrecursive names may occur in one term.  
dtd(X6) = (A, B*) 
dtd(B) = (C, B*) 
If we consider the assignment D := A + //C, then the following 
DTD results:  
dtd(inn-ext1(D, {C}, A+//C)) = (A, B*) with   
dtd(B) = ( C, D, B*) 
For each C-value a superordinated A-value exists such that the 
term can be evaluated for each C-value. In the specification we 
have to use two terms (expressions) to model this. In a term  e  
only the unrecursive names are occupied such that this term 
contains all superordinated values of the table  t.  In  a term  e’  
all names are occupied. If  e’  contains no free variables, then 
the corresponding table is extended by the new  e’-value and 
for further extensions  e’  is replaced by  e. This replacement is 
always done in the above example, if we go into a table of type  
tag0(B, t’) .  
The specifications of  inn-ext1  and inn-ext1? are very similar. 
Therefore, we consider only the latter. For the former we have 
to replace  coll(s1, inj(n))  by inj(n), and add(empty(coll(s1, 
inj(n))), x) by x, and empty(coll(s1, inj(n))) by  empty-t.  
It remains the question, how the system can decide, in which 
cases it has to apply  inn-ext1  and in which cases  inn-ext1? ?  
This is not a very difficult question, because in any case, 
where we apply  inn-ext1, we also could apply  inn-ext1?. The 
only difference is that the resulting tables have an unnatural 
structure in the second case. For example, in query 1 the 
following extensions result: empty-s to A, A to (A, B), (A, B) to 
(A, B, AREA) and this scheme to (A, B, AREA, 
CIRCUMFERENCE). If we apply inn-ext1? the following 
equivalent extensions result: 
empty-s to A?, A? to (A, B?)?, (A, B?)? to (A, (B, C?)?)?, and 
this to (A, (B, (C, D?)?)?)?. 
The resulting structure would look a little more pleasingly, if 
we do not extend  AT  A  or AT B,..., but if we would allow to 
extend  AT A?. Then a table of type (A?, B?, C?, D?) would be 
yielded. We will not follow this discussion in the paper, 
because the user can always generate a natural structure by 
using the stroke-operation. With stroke both schemes can be 
transformed into a table of type (A, B, C, D). Further, the 
specification would become unnecessary complicated. And 
third, we have  inn-ext1.  

It remains to decide in which cases the system can use  inn-
ext1  instead of  inn-ext1?. The latter is applicable, if the given 
term does not contain a partial operation and if the given term 
does not  contain two names  A  and  B  such that  A?  and  B?  
occurs in the DTD of the given table. 

 

III. ALGEBRAIC SPECIFICATION OF XML-DOCUMENTS  

 
We do not present a detailed specification of XML-documents 
(sort Table) here, but we introduce all needed sorts and 
generating operations. For details compare [4]. We use the 
algebraic specification language of [9]. The semantic is 
described by the initial algebra. This means that specified 
objects can be represented by terms in generating operations 
and two terms are equal, if and only if it can be deduced from 
the given axioms (implications, where the right and left hand 
side are equation systems ). Operations may have a defining 
equation system.  
 
sorts   Bool, Nat  // Boolean values and natural numbers 
opers true, false → Bool 
 zero, one  → Nat 
 succ (Nat) → Nat   // successor of a natural number 
 (Nat +, * Nat) → Nat  // addition and multiplication 
 (Nat <, >,...Nat) → Bool  // smaller-relation, ... 
 and, or  (Bool, Bool) → Bool 
sorts   Coll-sym     // collection symbols  
opers   set, bag, list, s1  → Coll-sym    
sorts   Letter, Digit, Separator, Connector  //  

Value  // elementary values =Letters + Digits + 
Separators + Connectors + Booleans 

opers  let (Letter) → Value  // each letter is a value, … 
dig (Digit)  → Value 
sep (Separator) → Value 
bo (Bool) → Value 
co (Connector) → Value 

sorts  Name       // simple names for tags  
sorts  Scheme  
opers empty-s  → Scheme    // empty scheme  
 inj (Name) → Scheme    // each name is a scheme 
 pair-s (Scheme, Scheme) → Scheme   

//2-tuple of schemes  
 coll (Coll-sym, Scheme) → Scheme   
 alternate-s  (Scheme, Scheme) → Scheme  
axioms   s, s', s": Scheme 
    pair-s(s, empty-s) = pair-s(empty-s, s) = s  
    pair-s(pair-s(s, s'), s") = pair-s(s, pair-s(s', s")) 
 alternate-s(alternate-s(s,s'),s") 

=alternate-s(s,alternate-s(s',s")) 
end 
def 
opers   comp-no (Scheme) → Nat                

// the number of components  of a scheme  
equal-s (Scheme, Scheme) → Bool  
// unspecified; simple equality relation  
comp? (s: Scheme, s’: Scheme)  → Bool   
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// each component of  s  occurs in  s’ 
coll? (s: Scheme) → Bool     
// s is a scheme for a collection 

 red (s:Scheme iff coll?(s) = true) → Scheme 
 // a collection scheme is reduced by the topmost collection  

// symbol 
 coll-type (s:Scheme iff coll?(s)) → Coll-sym    

// the collection type of a collection 
sorts   Table        
opers empty-t → Table  
 el-tab (Value) → Table    

// an elementary table (contains one value) 
 empty (s: Scheme iff coll?(s)) → Table  
 add (t1: Table, t2: Table iff red(head(t1)) = head(t2))  

→ Table     
 pair (Table, Table) → Table    
 alternate1 (t: Table, s: Scheme)  → Table  
 alternate2 (s: Scheme, t: Table) → Table 

tag0 (n: Name, t: Table iff dtd(n) = head(t) or  
dtd(n) = inj(any)) → Table  

 head (Table) → Scheme     
axioms  n: Name; s, s’, s“: Scheme; t, t’, t1, t2, t3: Table; l: Letter, 
d: Digit, se: Separator, b: Bool 
head(empty-t) = empty-s 
head(el-tab(let(l)) = inj(letter), head(el-tab(dig(d))) = inj(digit) 
head(el-tab(sep(se))) = inj(separator), head(el-tab(bo(b))) = 
inj(bool) 
if coll?(s)  then head(empty(s)) = s  
if t = add(t1, t2) then  head(t) = head(t1) 
head(pair(t1, t2)) = pair-s(head(t1), head(t2)) 
head(alternate1(t, s)) = alternate-s(head(t), s) 
head(alternate2(s, t) = alternate-s(s, head(t)) 
if t = tag0(n, t’) then head(t) = inj(n) 
pair(empty-t, t) = pair(t, empty-t) = t 
pair(t1, pair(t2, t3)) = pair(pair(t1, t2), t3) 
alternate1(alternate2(s’, t), s“) = alternate2(s’, alternate1(t, s“)) 
alternate1(alternate1(t, s’), s“) = alternate1(t, alternate-s(s’,s“)) 
alternate2(s’, alternate2(s“, t)) = alternate2(alternate-s(s’,s“), t) 
if coll-type(head(t1)) = set & red(head(t1))=head(t2)=head(t3)  
       then add(add(t1, t2), t3) = add(add(t1, t3), t2) 
if coll-type(head(t1)) = bag & red(head(t1)) = head(t2)  

= head(t3) then add(add(t1, t2), t3) = add(add(t1, t3), t2)  
if head(t1) = coll(set, head(t2)) 
 then add(add(t1, t2), t2) = add(t1, t2)  
if coll-type(head(t1)) = s1 & head(t2) = head(t3)  

= red(head(t1)) & t1 = empty(s) 
 then add(add(t1, t2), t3) = add(t1, t2)  
end 
sorts   Names          // set of name objects  
opers empty-n → Names     // the empty set of names 
 { Name } → Names      // a singleton of names 
 union-n (Names, Names) → Names   

// set theoretic union  
in-n (Name, Names) → Bool  // element relation 

 inclu-n (Names, Names) → Bool  // inclusion relation 
intersect-n (Names, Names) → Names // intersection 

 minus-n (Names, Names) → Names  // set difference 

… 

IV. SPECIFICATION OF INNEXT1? 

 
opers   comp2? (n: Name, t: Table) → Bool  

(n is a  comp2?-component of  t, that means there 
exists a component of   t  or an n-table within s1-
collections or alternate expressions) 

deep-names-s  (s: Scheme) → Names 
(all names of  s  and dtd(n) for n from dtd(n), starting with  s; 
a name  n  is recursive, if  n  occurs in deep-names -s(dtd(n))) 

axioms  n, n’: Name; ns: Names; v: Value; s: Scheme;  
     t, t’: Table 

 comp2?(n, el-tab(v)) = (equal-s(inj(n), head(el-tab(v))) 
 comp2?(n, tag0(n’, t)) = (equal-n(n, n’) or comp2?(n, t’)) 
 comp2?(n, pair(t, t’)) = (comp2?(n, t) or comp2?(n, t’)) 
 comp2?(n, empty-t) = false 
 comp2?(n, alternate1(t, s)) = comp2?(n, t) 
 comp2?(n, alternate2(s, t)) = comp2?(n, t) 
 if truecoll?(head(t)) then comp2?(n, t) = false 
 comp2?(n, empty(coll(s1, s))) = false 
 if t = add(empty(coll(s1, s)), t’)  

then comp2?(n, t) = comp2?(n, t’) 
 

 deep-names-s(empty-s) = empty-n 
deep-names -s(inj(letter)) = {letter},...   
(for all names without DTD) 

if dtd(n) = s then deep-names-s(inj(n))  
= union-n({n}, deep-names -s(dtd(n)) 

deep-names-s(pair-s(s, s’)) 
= union-n(deep-names -s(s), deep-names -s(s’)) 

deep-names-s(coll(c, s)) = deep-names-s(s) 
deep-names-s(alternate-s(s, s’))  

= union-n(deep-names -s(s), deep-names -s(s’)) 
def 
sorts   Expr  (formal expression (term), built from single data 

and mass data ground operations and relations; these 
expressions will be used as right hand sides of  
assignments) 

opers   n-ex  (Name) → Expr             
// each name is an expression 

 rec-n-ex (Name) → Expr             
// each recursive name (//n)  is an expression 

    v-ex (Table) → Expr            
// each table is an expression  (value) (constant) 

   +-ex ; <-ex (e1: Expr, e2: Expr ) → Expr   
    =-ex (e1: Expr, e2: Expr → Expr 
    and-ex ; or-ex (e1: Expr, e2: Expr ) → Expr 
    non-ex (e: Expr ) → Expr 
 if-then-else-ex (e1: Expr, e2: Expr, e3: Expr) → Expr 
 intersect-ex  (e1: Expr, e2: Expr) → Expr  

(Intersection; because of this operation, it is 
not enough to introduce only simple values 
(v-ex) as constants) 

 inclu-ex (e1: Expr, e2: Expr) → Expr 
end 
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def 
opers  +-t (t: Table, t’: Table) → Table 
 intersect (t: Table, t’: Table iff coll?(head(t))  

& head(t) = head(t’)) → Table 
  // Ordinary intersection of tables, which are collections of 

// the same type 
 intersect-t (t: Table, t’: Table) → Table 

//Here we consider only two special operations, which 
//build the base for the inn-ext1- 
//operations; by inn-ext1 and inn-ext1? these 
//operations are applied for all corresponding inner sub 
//tables; by these operations the outmost tags are 
//omitted and the operations are applied two the 
second //argument of tag.  

axioms  n, n’: Name, v, v’: Table 
 +-t(t, t’) = sum(pair(t, t’)) 

//the specification of the function  sum is similar to 
//the specification of function all from [3]; computing 
//sum(t) it results a table <int>i</int>, if within   t no 
//float-number exists, it results <float>f</float>, if  t  
//contains a float. All numbers, occurring in  t  are 
//added. 
 

if t = empty(s) & s = head(t’)  
   then intersect(t, t’) = empty(coll(set, red(s))) 
if t = add(t1, t2) & in(t2, t’)  
   then intersect(t, t’) = add(intersect(t1, t’), t2) 
if t = add(t1, t2) & in(t2, t’) = false  
   then intersect(t, t’) = intersect(t1, t’) 

(The specification of the element relation  in is simple 
and contained in [3].) 
 

if t = tag0(n, t1) & t’ = tag0(n’, t1’)  
   & t2 = stroke(head(t1), t1’) & coll?(head(t1)) 
   then intersect-t(t, t’) = intersect(t1, t2) 
end 
opers  occupy-ex (e: Expr, t: Table) → Expr   
         //All names from  e , which occur as components in 

//the sense of  comp2?  in  t are occupied by 
//corresponding sub tables;  if a name  n  occurs twice 
//in topmost level of  t,  then the leftmost n-sub table 
//is taken. 

unrec-occupy-ex (e: Expr, t: Table) → Expr   
 //Like occupy-ex, but only the unrecursive names are   

//occupied. 
names-ex (Expr) → Names  

//The set of all names, which occur in the given expression. 
rec-names-ex (Expr) → Names  
unrec-names-ex (Expr) → Names 
val-ex (e: Expr iff names-ex(e) = empty-n) → Table  
         (The value of an expression without free names)      
axioms   n : Name ; t, t1, t2, t3, v: Table; e, e1, e2: Expr 
if comp2?(n, t2)=true & extract-comp2(t, {n})=triple(t1, t2, t3)  

& comp2?(n, t1) = false & comp -no(t2) = 1 
    then occupy-ex(n-ex(n), t) = v-ex(t2) 
 if comp2?(n, t) = false  
  then occupy-ex(n-ex(n), t) = n-ex(n) 

 if comp2?(n, t) = true 
  then occupy-ex(rec-n-ex(n), t) = v-ex(extract-comp2(t, {n}) 
 if comp2?(n, t) = false  
  then occupy-ex(rec-n-ex(n), t) = n-ex(n) 
occupy-ex(v-ex(v), t) = v-ex(v)        
occupy-ex(+-ex(e1, e2), t)  

= +-ex(occupy-ex(e1, t), occupy-ex(e2, t))  
(analogous equations for <-ex, and the remaining 
operations) 

        
if comp2?(n, t) = true       
 then unrec-occupy-ex(n-ex(n), t) = v-ex(extract-comp2(t, {n}) 
if comp2?(n, t) = false  
        then unrec-occupy-ex(n-ex(n), t) = n-ex(n) 
unrec-occupy-ex(rec-n-ex(n), t) = n-ex(n) 
unrec-occupy-ex(v-ex(v), t) = v-ex(v)        
unrec-occupy-ex(+-ex(e1, e2), t)  

= +-ex(occupy-ex(e1, t), occupy-ex(e2, t))  
(analogous equations for <-ex, and the remaining 
operations) 

 
names-ex(n-ex(n)) = {n} 
names-ex(rec-n-ex(n)) = {n} 
names-ex(v-ex(t)) = empty-n 
names-ex(+-ex(e1, e2))  
= union-n(names-ex(e1), names-ex(e2)) 
 (analogous equations for the remaining operations)        
        
rec-names-ex(n-ex(n)) = empty-n 
names-ex(rec-n-ex(n)) = {n} 
names-ex(v-ex(t)) = empty-n 
names-ex(+-ex(e1, e2))  
    = union-n(names-ex(e1), names -ex(e2)) 
 (analogous equations for the remaining operations)        
 
val-ex(v-ex(v)) = v 
if names-ex(e1) = names-ex(e2) = empty-n 
   then val-ex(+-ex(e1, e2)) = +-t(val-ex(e1), val-ex(e2)) & 
    & val-ex(intersect-ex(e1, e2))  

     = intersect-t(val-ex(e1), val-ex(e2)) 
    & val-ex(=-ex(e1, e2)) = equal-t(val-ex(e1), val-ex(e2)) 
… 
end 
def 
opers   
inn-ext1?-s (n: Name, n’: Names, s: Scheme iff card(n’) <= 1) 

 → Scheme  
//The given scheme  s  is extended by a new name  n  
//direct behind the name  n’;  the scheme is extended 
//at all positions, where n’ occurs. 

a-inn-ext1?(n: Name, n’: Names, e: Expr, e’: Expr, t: Table  
iff card(n’) <= 1)  → Table 
//Auxiliary operation; in  e  each unrecursive name is 
//occupied exactly once; in  e’   each name is 
//occupied; after each inner extension  e’  is replaced 
//by the topical  e. 

inn-ext1? (n: Name, n’: Names, e: Expr, t: Table  
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iff card(n’) <=1 ) → Table 
//Right beside each name  n’  the given table  t  is  
//extended by one new column named  n?, the 
//corresponding values are computed by  e  from 
//superordinated values, formally we consider  n’ as a 
//one elementary set of names, to allow also an empty 
//set of names; if an assignment  N := e AT POS is 
//given, then n’ ={POS}.  If the AT-part is missing, 
//and the expression contains only one name  p, then 
//we choose n’ = {p}. If the expression contains no 
//name, then n’ is the empty set, otherwise for  n’  the 
//deepest and from all deepest names the rightmost 
//name is taken. 
 

axioms  n, n’, n“: Name; ns: Names; e, e’: Expr;  
s, s’, s“: Scheme; t, t1, t2, t’: Table 

inn-ext1?-s(n, {n’}, inj(n’)) = pair-s(inj(n’), coll(s1, inj(n))) 
if n’ != n” then inn-ext1?-s(n, {n’}, inj(n”)) = inj(n”)  
inn-ext1?-s(n, {n’}, pair-s(s, s’))  

= pair-s(inn-ext1?-s(n, {n’}, s), inn-ext1?-s(n, {n’}, s’))  
inn-ext1?-s(n, {n’}, coll(c, s’)))  

= coll(c, inn-ext1?-s(n, {n’}, s’)) 
inn-ext1?-s(n, {n’}, alternate-s(s, s’))  
    = alternate-s(inn-ext1?-s(n, {n’}, s), inn-ext1?-s(n, {n’}, s’)) 
inn-ext1?-s(n, {n’}, empty-s) = empty-s 
inn-ext1?-s(n, empty-n, s) = pair-s(s, coll(s1, inj(n))) 
 
if head(t) = inj(n’) & names-ex(occupy-ex(e’, t)) = empty-n 

then a-inn-ext1?(n, {n’}, e, e’, t) =  
= pair(t, add(empty(coll(s1, inj(n))) 

   , tag0(n, val-ex(occupy-ex(e, t)))))  
if head(t) = inj(n’) & names-ex(occupy-ex(e’, t)) != empty-n & 

then a-inn-ext1?(n, {n’}, e, e’, t)  
= pair(t, empty(coll(s1, inj(n))))  

if head(t) = inj(n”) & n” != n’  
& in-n(n’, deep-names-s(inj(n”))) = false  
then a-inn-ext1?(n, {n’}, e, e’, t) = t 

if t = tag0(n”, t’) & n” != n’ & in-n(n’, deep-names-s(inj(n”)))  
 & rec-names-ex(e’) = empty-n 

then a-inn-ext1?(n, {n’}, e, e’, t)  
     = tag0(n”, a-inn-ext1?(n, {n’}, e, e, t’)) 

if t = tag0(n”, t’) & n” != n’ & in-n(n’, deep-names-s(inj(n”)))  
 & rec-names-ex(e’) != empty-n 

then a-inn-ext1?(n, {n’}, e, e’, t)  
     = tag0(n”, a-inn-ext1?(n, {n’}, e, e’, t’)) 

if t = empty(s) then a-inn-ext1?(n, {n’}, e, e’, t)  
= empty(inn-ext1?-s(n, {n’}, s)) 

if t = add(t1, t2)  
then a-inn-ext1?(n, {n’}, e, e’, t) =  
= add(a -inn-ext1?(n, {n’}, e, e’, t1) 

  , a-inn-ext1?(n, {n’}, e, e’, t2)) 
if t = alternate1(t’, s)   

then a-inn-ext1?(n, {n’}, e, e’, t) = 
  = alternate1(a -inn-ext1?(n, {n’}, e, e’, t’)  

, inn-ext1?-s(n, {n’}, s)) 
if t = alternate2(s, t’)  

then a-inn-ext1?(n, {n’}, e, e’, t) = 

= alternate2(inn-ext1?-s(n, {n’}, s) 
   , a-inn-ext1?(n, {n’}, e, e’, t’))  

if t = pair(t1, t2)  
then a-inn-ext1?(n, {n’}, e, e’, t) =  

= pair(a-inn-ext1?(n, {n’}, unrec-occupy-ex(e, t), 
occupy-ex(e’, t), t1), 
a-inn-ext1?(n, {n’},  
unrec-occupy-ex(e, t), occupy-ex(e’, t), t2)) 

if names-ex(e’) = empty-n  
then a-inn-ext1?(n, {n’}, e, e’, empty-t) = empty-t 

if names-ex(e’) != empty-n  
then a-inn-ext1?(n, {n’}, e, e’, empty-t) =  

= add(empty(coll(s1, inj(n))), tag0(n, val-ex(e))) 
if names-ex(occupy(e’, t)) != empty-n  

then a-inn-ext1?(n, empty-n, e, e’, t) = 
= pair(t, add(empty(coll(s1, inj(n))), tag0(n, val-ex(e)))) 

if names-ex(occupy(e’, t)) = empty-n  
then a-inn-ext1?(n, empty-n, e, e’, t) = 

= pair(t, empty(coll(s1, inj(n)))) 
 
if card(ns) <= 1  

then inn-ext1?(n, ns, e, t) = a-inn-ext1?(n, ns, e, e, t) 
end 
 
Finally, we remark that also the basic operations of our data 
model may appear in the right side of an assignment. Thus 
A:=stroke(S(B, C), CC)  can be considered for example as an 
operation, which maps each inner table  CC  of a given 
document to another table (of type S(B,C)). In places like this, 
we can consider the target scheme as a constant.  
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