

1

Abstract—A number of on-line applications were built for a

small university using a micro-sized development team. Four
ideas were tested during the project: the Twin Peaks
development model, using fully functional prototypes in the
requirements elicitation process, some core practices of Extreme
Programming, and the use of open-source software in a
production environment. Certain project management
techniques and their application to a micro-sized development
effort were also explored. These ideas and techniques proved
effective in developing many significant Internet and networked
applications in a short time and at very low cost.

Index Terms—product champions, project management,
software requirements, software design and development.

I. INTRODUCTION
HE American University of Paris (AUP) is a small
American-style liberal arts institution located in Paris

France, with approximately 900 students and 115 full- and
part-time faculty. Before the year 2000, AUP had not ‘gone
on-line’ other than with a static web site. There was no
ubiquitous e-mail system. Faculty and students could not store
electronic information, create instructional and personal web
sites, or experiment with networked applications. There was
no on-line access to e-mail directories or course catalog and
schedule data. In 2000, AUP concluded that its ‘low-tech’
state complicated its ability to attract students and faculty.

C. B. Haley joined AUP in 1999 as a part-time professor in
the Computer Science department. In addition to wanting to
improve the technical infrastructure to aid teaching his
courses, he was interested in extending the requirements
elicitation techniques described in [7] by incorporating fully
operational prototypes, investigating using the tenets of
Extreme Programming (XP) [1] to build the prototypes, and
exploring the effectiveness of micro-sized teams. Combining
these research interests with the need for a better technical
infrastructure for teaching, he proposed constructing several

C. B. Haley is a part-time 1) associate professor in the Department of
Computer Science, The American University of Paris, 75020 Paris France; 2)
professor of MIS, European School of Economics, 75116 Paris France 3) PhD
student, Computing Department, The Open University, Milton Keynes MK7
6AA, UK; and 4) consultant. (e-mail: charles.haley [at] the-haleys.com).

B. Nuseibeh is a professor of computing at The Open University. (e-mail:
B.A.Nuseibeh [at] open.ac.uk).

Internet-enabled systems for AUP. The proposed systems
were to be based on free and open-source software and
connected with existing AUP administrative systems to the
maximum extent practical, with the twin goals of a)
minimizing cost and duplication of data, and b) maximizing
value to the university community. The institution accepted
the proposal and funded the project at a level of approximately
15,000 € per year. The project started in the summer of 2000
and ran for 2 years.

The remainder of this paper is laid out as follows. Section II
provides some background material and the project goals.
Section III sets the stage by briefly presenting what was built
during the project. Section IV describes how construction of
each system progressed, with particular attention to how the
principles of Twin Peaks were used. Section V revisits the
research questions, and section VI presents conclusions.

II. BACKGROUND AND GOALS

A. Twin Peaks
Although the description of the Twin Peaks model [5] [6]

was published after the project began, the model so
completely captured the project’s spirit that there is significant
advantage in using the model and its terminology to describe
the project. The model proposes a partial development
methodology wherein requirements and architecture (where
architecture includes implementation) are simultaneously
elaborated and verified against each other, bound together by
the specification process. The model extends the spiral
method [2] by making elaboration of requirements an explicit
part of the spiral. The benefits derived from the model include
earlier understanding of the problem(s) being solved, rapid
turn-around, and inherent recognition and incorporation of
project management concerns such as IKIWISI (I’ll Know It
When I See It), easier incorporation of reusable components
such as COTS (Commercial Off-The-Shelf) products, and
rapid change in requirements and technology [3].

Figure 1 illustrates how a project might move from idea to
implementation while using Twin Peaks. The peaks represent
the requirements and architecture artifacts. The further one
moves down a peak, the more detail is present and the more
complete the artifact is. The spiral line represents the
specification process, which is itself not an artifact but the

Going On-line on a Shoestring:
An Experiment in Concurrent Development of

Requirements and Architecture
Charles B. Haley, Bashar Nuseibeh

T

2

simultaneous application of various and distinct methods to
elaborate requirements and implementation.

Twin Peaks does not impose a requirements engineering
method, a software architecture style, or a design method on a
project. Members of the project choose appropriate methods
based on their experience and knowledge, and on project
goals, size, and complexity.

B. Extreme Programming (XP)
XP [1] argues that using 12 core practices together

facilitates releasing software that works, is on time, and meets
the customer’s needs. Although applying all 12 XP practices
requires a programming team larger than one person, it did
seem reasonable to test six of them in the context of this
research. The six practices chosen are Planning Game (release
and iteration planning), Onsite Customer (a real end-user is on
the team), Continuous Integration (changes are integrated on
at least a daily basis), Small Releases (release small
increments early and often), Simple Design (engineer for
today, not for tomorrow), and Refactoring (improve the design
of existing code).

One purpose of a Twin Peaks spiral is to verify the
architecture and to obtain feedback on the requirements. Four
of the six XP practices should support this verification:
iteration planning, small releases, continuous integration, and
simple design should help to complete a cycle quickly. The
size of the development team necessitated having end-user
product champions in the project (the Onsite Customer).
Design improvement should be equally natural when
revisiting a prototype.

C. The Goal of the Project
The project’s goal was to make progress on the following

research questions, posed both initially and during the effort:
1. Twin Peaks requires that requirements elaboration and

implementation proceed in parallel. Is this practical in the
context of severely constrained resources? Which
techniques work best in this situation?

2. Both XP and Twin Peaks admit that an implementation
might not be acceptable. In addition, a fully functional
prototype will develop its own user community. Would

users tolerate the levels of change that correction cycles
entail? How does one minimize the problem?

3. One could argue that this project is an example of “heroic
efforts” as described in [4]. Alternatively, to survive over
time the project should be an example of the “sustainable
pace” principle of XP. What would happen?

4. To be successful, existing staff must be able to administer
the systems. How would this constraint affect the
development and rollout of the systems?

5. A significant fraction of AUP’s staff and faculty mistrust
“new” technology. Insertion of new technology is often
seen as ‘fixing something that isn’t broken’. Users feel that
they do not have time to learn about or participate in
building a new system. Does aggressive prototyping help
in this case, or make the problem worse?

III. THE SYSTEMS
It is convenient to start at the end of the story to avoid too

many forward references, to present what was built, and to list
the COTS1 products used during construction of the systems.
Descriptions are very brief; no attempt is made to provide
details about what the systems do or how they do it.

The overarching requirement was that the applications be
written for the Internet (web-enabled) using a ‘pure browser’
model. The requirement applied to both the query and
maintenance applications. One reason was to permit people
outside of AUP to see the information (marketing, if you will)
while avoiding installing software of any kind on any client. A
second reason was to permit system maintenance from
anywhere in the world. Finally, it would be nice to have clean
examples of web applications for use in courses.

There were 8 systems implemented during this project:

A. Basic Support
Every member of the community (student, faculty, staff,

trustee, alumnus, etc.) has network storage and a personal
website. Read/write access to the storage and write access to
the user’s website is secured by userID/password. COTS used:
Linux, apache, samba, MySQL, and netatalk, perl, PHP,
squid.

B. Student E-Mail
Every member of the community has an e-mail account.

The person can choose to have e-mail forwarded or to read it
locally. Local reading is done using a web and/or standard
POP3/IMAP clients. COTS used: sendmail and delivery
daemons, MailMan by Endymion, and RAV e-mail antivirus2.

C. Course Catalog
The AUP course catalog, which is the list of all courses

AUP offers regardless of the semester, is available on the web
and in print. The course listings in the both versions are
generated from a unified course database.

1 Even though the products would be better described as OSOTS (Open

Source Off-The-Shelf software), the term COTS will be used in this paper.
2 This is the only commercial (for fee) software product the project used.

Figure 1: Twin Peaks – A model of concurrent development
of requirements and architecture

3

D. Course Schedules
Semester course schedules (course, time, place, professor,

etc.) are available on the web, updated daily. The schedule is
generated by combining schedule, professor, and enrollment
data from the Registrar’s database with the information in the
course catalog database. The schedule system, implemented
within the course catalog application described above, is a
reasonably large web application consisting of approximately
50 web pages and 20,000 lines of code in 60 objects.

E. Course Registration and Advising Support
Academic advisors have on-line access to their advisees’

course and transfer credit records. The student and the advisor
can together create a schedule for a semester; the courses on
the schedule are checked to see if prerequisites are satisfied
and that there are no schedule conflicts. The result is printed
and signed, and then carried by the student to registration.

F. Systems Administration
Web-based tools were built to create, delete, modify, and

suspend accounts. The system automatically verifies that an
account holder is receiving e-mail by periodically sending an
expiration notice. The account is suspended if the account
holder does not reply to the notice.

G. University-wide E-mail directory
Some faculty and staff use Lotus notes as their e-mail

system. A web-accessible directory was built that could query
both the Notes and the system built for this project.

H. Wireless and Virtual Private Network Access
Secured wireless and VPN access to the university’s

network has been implemented and tested, but is not yet
generally available for use.

IV. THE EXPERIENCE
The Twin Peaks model accurately describes the interplay of

methods used to implement the systems built during this
project. Requirements were elaborated based on user feedback
and the constraints imposed by the COTS software and then
tested using fully functional prototypes. Depending on the
system there were from 2 to 5 iterations of the spiral. Varying
requirements elicitation and project management approaches
were used for the following reasons: failure of the initial
attempt, a desire to test an alternate method, a lack of
resources, or a resource became available. The prototypes and
‘finished’ applications were built using web-application
design and implementation techniques such as embedded
scripting, page generation, and objects with templates.

Some details for each system are presented below.

A. Basic Support
The first version of the requirements came from the

experience of the CS faculty, the supervisor of the student-
accessible computer lab, and a student charged with building a
website for one of the academic departments. It was a
completely functional prototype lacking only security, and

was put into ‘production’ for use by CS and other
technologically well informed students.

Version two of the system completely replaced version one.
It was built in stages, using an order determined from
experience with the first version. Each component of the first
version was discussed with representative stakeholders,
reconstructed, and then verified with the stakeholders. The
number and diversity of stakeholders grew with each stage.
Several components, such as systems administration and user
account expiration went through several revision cycles.

The project was confronted with IKIWISI from the start.
Stakeholders were not confident that their descriptions of their
needs accurately reflected reality. It was only after using the
system that they were able to be precise. This was especially
true for any part of the system that incorporated a user
interface, such as system and user file management.

B. Student E-Mail
This project started by using interviews with students as the

requirements elicitation technique. The technique did not
work, primarily due to the nature of the users. Students are by
nature transient. Long-term means next weekend. Their
coursework presents sufficient difficulties and they do not
wish to be further challenged outside of class. Ideas and
prototypes were ignored during the interviews. The students
said “do the same as hotmail” or yahoo or caramail or one of
around 25 alternate public web e-mail systems. The interviews
gave no useful input beyond ‘make it simple’, so a benevolent
dictator approach was imposed to choose a free (but not open
source) COTS web-based e-mail product that is simple, works
reliably, and is maintained. There have been few complaints.

When first asked, AUP’s administration was not interested
in the student e-mail system, with the exception of people in
the Office of Student Affairs who wanted to be able to send e-
mail to all current students. This disinterest lasted until the
first version was deployed, at which point there was a deluge
of requests to build and maintain e-mail aliases for purposes
ranging from students visiting from a particular university, all
graduating seniors, and members of the drama club.
Continuing administrative costs vetoed maintaining these
aliases by hand, so a way was found to use the Registrar’s
database to identify the members of most of the requested
groups. An end-user-administered mailing group system was
built so the clubs and organizations could maintain their own
mailing lists.

Experience building this system leads one to postulate a
corollary to IKIWISI, specifically IKIWIDSI (I’ll Know It
When I Don’t See It). Even though the administrative users
were not initially able or willing to describe what they wanted,
they had no problem once they had a system that did not
satisfy their needs. In other words, in one step they went
beyond the notion of “that isn’t it, try again” to “what I really
need is X, which isn’t what you did.”

4

C. Course Catalog & Course Schedule
These two systems are clearly the most problematic on

several dimensions: requirements shift, rapidity of change, and
complexity of development. Four distinct versions were built;
three of them were tried in production.

When the project started, AUP had at least three groups
maintaining versions of course catalog information in
‘production.’ The first group maintained the paper catalog, the
second AUP’s website, and the third the Registrar’s data. One
goal was to combine these versions into a single definitive
database. Centralizing the data and the processing would
dramatically impact how the three groups operate, making
finding a “product champion” from one or more of the three
groups imperative. Unfortunately, in the beginning none of
the stakeholders saw enough benefit in combining the
information to participate in the project, so the first system
was built using a “best guess” method. IKIWISI (and
IKIWIDSI) worked again, and the university Webmaster
became the first product champion. She took it upon herself to
interview students and administrative staff, and to sell the idea
to the Registrar by showing them something that they could
use. The second version was designed using her results.

The second version was very successful from the point of
view of the users, but much less so from the point of view of
the people who were responsible for maintaining the data.
Maintenance consisted of changing several small files and
running an “import” process; a process that was error prone
and complex. Fortunately, at this point the project picked up a
product champion in the Registrar’s office. She worked out
how to obtain the needed information from the Registrar’s
course schedule database, eliminating 95% of the complexity
of data entry. Version 3 was born.

The last version came into existence when the supervisor in
charge of the printed catalog was convinced to bring the
production of the document in-house and to generate the
course listings in the printed catalog from the database. She
agreed to participate under the condition that she be supported
by the developer3 on an on-going operational basis throughout
the initial project. This was the only time the technique of
reporting directly to the user of the technology was used, and
the technique worked very well in this case. The supervisor
became the third champion.

This system would not have been successful without the
Twin Peaks spirals and without aggressive prototyping. The
project initially faced indifference and occasional hostility,
both of which had to be overcome to succeed. The product
champions were nurtured by giving them something to work
and play with, and by encouraging their inventiveness by
implementing their ideas. Reticence was overcome by
working directly with users, isolating them from ‘blame’ if the
project did not go well. Hostility disappeared as the
champions became more enthusiastic.

3 To help identify who is doing what, the role of ‘developer’ is introduced.

C. B. Haley was the only developer.

Shifting requirements remains a difficult problem. The
institution is continuously modifying its curriculum and
changing how courses are related. For example, in Fall 2002
the notion of ‘paired courses’ was developed, where a student
must take both courses simultaneously or take neither. As of
this writing, information systems maintenance concerns are
not taken into account when deciding to make changes,
usually leading to ‘after the fact’ scrambling.

D. Course Registration and Advising Support
A more classical approach was used to build this

subsystem. Two CS students asked if they could build a
registration and advising support system as their senior
project. An agreement was struck stipulating that the students
start with the existing catalog and schedule system. In effect,
it became a COTS product for their project. Starting there, the
students identified the stakeholders (students, advisors, the
Registrar, and the Academic Dean), conducted interviews,
prototyped the results, and repeated the process. In the end,
there were two spirals through the requirements and
architecture peaks.

The classical approach worked well here because what was
being built was an add-on to the existing system. In effect, the
prototypes were already built and in production. Imagining the
extensions was not an overly large step.

E. Systems Administration
The stakeholders for systems administration were easy to

identify and easy to work with. In particular, the supervisor of
the student computer lab was and is an enthusiastic champion
of the project. However, he and his staff were unable to
describe what they needed.

We solved the problem by using two different methods
during the spirals. The first was the approach described above:
aggressive prototyping and IKIWISI. The second approach
corresponds roughly to the XP “simple design” practice;
anticipate very little but respond rapidly when the need arises.
When a problem was discovered it was first resolved by brute
force. Immediately thereafter, the developer worked with the
stakeholders to implement a means for them to resolve the
problem themselves. This technique worked well, but was
difficult to live with because for a time the developer was on
call seven days/week. Fortunately, the problems were minor
and discovered within weeks of deployment.

F. University-wide E-mail directory, and Wireless and
Virtual Private Network Access
It was clear from the beginning what these two systems

were to do. Both efforts were dominated by technical and
security concerns, and almost no end-user input was required.

A major benefit of this subproject was to bring the IT staff
into the overall effort. As they control both the network and
the Notes e-mail system, their participation was desirable and
necessary. They are now active project supporters.

The e-mail directory is in production, but the VPN and
wireless system is not. VPN and wireless access rollout awaits
sufficient budget to cover maintenance and user support.

5

V. THE LESSONS
One surprising lesson learned was that the severe limit on

development resources was not a deciding factor in any of the
projects. The effort was sustainable, and in fact enjoyable.
There was never a situation where the time required to
accomplish something destroyed the utility of doing it. Until
the project finished in spring 2002, all of the expressed needs
of the stakeholders were satisfied. The nature of the systems
(many small pieces), the extensive use of COTS components,
the willingness of the champions to find expedient solutions,
and the natural flexibility of a one-person programming group
all played a part in this happy state of affairs.

Although ‘heroic efforts’ was not a direct problem, the idea
reappeared and contributed indirectly to a major project
failure. Ending the research project has proved problematic
for AUP for two reasons. The first is that the project produced
useful systems with no apparent effort, giving the impression
that continued development would be equally as easy and
inexpensive. The second is that because of the apparent ease,
the administration did not realize that the maintenance costs
would exceed the construction costs. The projected cost of
maintenance was a shock for AUP’s administration, resulting
in the indefinite postponement of rollout of the VPN and
wireless services. It is a clear failure of the project to have
built systems that AUP has come to depend on, while
inadequately assisting the University to prepare for the
systems’ continued maintenance and development.

Initially, the user community was not overly disturbed by
the changes in the systems that came with reimplementation of
the initial versions. There were a few cases where some
champion was so attached to a prototype (“her” prototype!)
that she resisted a change, but these events were rare and
easily overcome. However, as time went on the resistance
grew rapidly. The hypothesis, supported by interviews, is that
the early adopters were interested both in the improvements
offered by the systems and in being a part of the process,
whereas the late adopters were interested in the results but had
no interest in the process. In addition, the apparent stability of
the system had begun to convert the ‘anti-tech’ members of
the community into users. Interviews with people who put
themselves into the anti-tech group have made it clear that
they began to use the systems only because they saw
colleagues deriving benefits and because they felt confident
that what they learned to use would remain stable.

The project would have failed if the systems administration
problems had not been addressed as they were. On one hand,
an attempt could have been made to anticipate all of the tools
that the computer lab staff would need and build them; the
project would never have finished. On the other hand, the staff
members could have been given the system and then to their
own devices; the system would have been shut off a week
after deployment. The compromise of first solving problems
by hand and then building the needed tools worked well,
ensuring that tools were known to be useful before they were
built and spreading out the workload over many weeks.

The micro-development effort helped in three ways. The
first and most obvious is the lack of bureaucracy; there were
no reasons for members of the project to put procedural
barriers in front of themselves. The second was the ability to
form and disband small user-based teams as needed while
maintaining project consistency. The third was the ease in
changing project management styles. The major negatives
were having only one pair of eyes on the problem and
personality clash. The first was worked around by holding
‘design reviews’ with students taking web-related courses.
The second was more problematic; there was no fallback if the
developer did not work well with some stakeholder. AUP’s
Webmaster becoming a product champion obviated the
problem, because she became a second channel between the
project and the users.

Five of the six principles of XP that were tested with the
project worked well. The Twin Peaks spirals were more
effective and completed more quickly because of the focus on
simplicity and small releases. Continuous integration and
iteration planning helped with verifying and testing the
systems because “new” features were always available to the
champions. The product champions (the “Onsite Customers”)
were essential to the project. However, design improvement in
the XP sense did not yield the expected benefits, primarily
because the prototypes were rewritten from the ground up. In
XP, design improvement is defined as refactoring, or
improving design without modifying behavior, with the result
that rewrites for new functionality do not generally qualify as
design improvement even if basic improvements were made
during the process.

VI. CONCLUSIONS
Twin Peaks works. It works even better when used with

completely functional prototypes. Prototypes have a risk,
though. One must really be willing to abandon completely a
given prototype, or many of the benefits will be lost because
keeping a prototype can pollute the process. The catalog and
schedule system required three complete and distinct
implementations before the requirements were well
understood, then a fourth to build the version running today.

The use of fully functional prototypes as part of the spiral
works. Use of prototypes can suffer from the criticism found
in [7], that users sometimes accept prototypes without
criticism. Users can also become attached to what they are
offered. These problems were manageable in the context of
this project. A major positive argument is that users can freely
experiment with working systems whenever they want to as
opposed to during a meeting. The two people who became the
most influential product champions began this way, playing
with the system as they confronted particular problems in the
course of their work. They wanted to see if the new system
could help them.

As noted in section V, the largest failure of the project was
the failure to adequately involve the upper levels of the
University’s administration in the process. One could

6

conclude that the University was not well served by producing
these systems at a bargain-basement price as opposed to a
more ‘normal’ cost4, and by failing to make explicit the
continuing development and maintenance costs.

Although building multiple implementations could be
considered a waste of resources, the effort was in fact
efficient.5 The cost is clearly reasonable. Interviews have
indicated that satisfaction with the result is high. The quality
of the feedback from the early prototypes was superb, both at
the conceptual and at the detail level. Vocabulary problems
were avoided by ‘pointing’ at examples. It was easier to
discuss cost/benefit because we had a very accurate estimate
of the cost. People were converted from being actively hostile
to being active supporters because they could directly
participate and rapidly see the results of ‘their’ suggestions.

Applying the five principles of XP helped in two significant
ways: rapid turnaround of the prototypes and empowering the
product champions. Focusing on results and releases helped
ensure that the needed functionality was built without
delaying the project to add extraneous features. All three of
the champions felt that they had real control over the project’s
direction. They could see the effects of their suggestions,
sometimes within hours. The priorities the champions set were
respected. Two champions began to think of the system as
‘theirs’. XP as a whole was not tested, but using these five as
an ensemble can be recommended.

As noted in section V, the project did not test the sixth XP
practice, design improvement, that was originally on the list.
Not testing the practice should not be taken as a statement that
the practice does not work.

The micro-team approach worked well on this project.
Having the flexibility to change approaches, involve others in
the project, and negotiate pathways through the obstacles
made a large difference both in the degree that the results met
the users’ needs and in how quickly the project could
progress.

4 The director of AUP’s IT department estimated that replacing the

applications built during this project would require several experienced
engineers, costing approximately 10 times more than spent on this project.

5 Unfortunately, accurate records of time spent developing, in interviews,
and in ‘support’ of the individual systems were not kept. As such, these
arguments are somewhat anecdotal.

REFERENCES

[1] K. Beck, Extreme Programming Explained: Embrace Change. Addison-

Wesley, 1999.
[2] B. Boehm, "A Spiral Model of Software Development and

Enhancement," IEEE Computer, vol. 21, no. 5, May, pp. 61-72, 1988.
[3] B. Boehm, "Requirements That Handle IKIWISI, COTS, and Rapid

Change," IEEE Computer, vol. 33, no. 7, Jul, pp. 99-102, 2000.
[4] D. Jung-Gribble, "Heroic Effort is not a Sustainable Model," in

Proceedings of the 25th SIGUCCS conference on User services.
Monterey, CA USA: ACM Press, 1997, pp. 67-72.

[5] B. Nuseibeh, "Weaving the Software Development Process Between
Requirements and Architecture," in From Software Requirements to
Architectures (STRAW '01). 23rd International Conference on Software
Engineering, ICSE 2001. Toronto, Ontario, Canada, 12-19 May, 2001.

[6] B. Nuseibeh, "Weaving Together Requirements and Architectures,"
IEEE Computer, vol. 24, no. 3, March, pp. 115-119, 2001.

[7] A. Sutcliffe, "A Technique Combination Approach to Requirements
Engineering," in Proceedings of the Third IEEE International
Symposium on Requirements Engineering (RE '97). Annapolis, MD,
USA, 6-10 Jan 1997, pp. 65-74.

