
The Open Source Myth
Why Executives Should Think Twice about Making Company

Source Code Public

Michael G. Wagner
Department of Computer Science and Engineering

Arizona State University
Tempe, Arizona 85287
Email: wagner@asu.edu

J. Randall ”‘Randy”’ Jue
Etherton Law Group LLC

Tempe, Arizona 85282
Email: randy@ethertonlaw.com

Abstract— This article attempts to address the issue of whether
open source software companies may be undermining their own
competitive advantages by undervaluing the strategic importance
of intellectual property. If this would be true, companies could
risk their existence by following a potentially destructive business
model. We will first take a look at the historic development of the
open source movement. After taking a critical view on some issues
important within the commercial domain we will address the
question of whether open source is a viable option for companies
operating in competitive environments and will furthermore
present three alternative, hybrid licensing approaches.

I. I NTRODUCTION

Along with the Internet, the concept of open source software
has been hailed as one of the biggest drivers of the electronic
economy. Proponents of the concept not only describe it as
a new and better way of developing software - they also
assert the concept supports a variety of business models. The
enthusiasm for the open source concept has lured companies
into adopting open source wholeheartedly; however, lost in the
euphoria is the unanswered question of whether it is indeed a
commercially viable alternative to traditional software devel-
opment. It appears obvious that there is an intrinsic difference
between ”software development model” and ”business model.”
Yet the media and companies that have adopted the so-called
open source model, if it exists, have blurred this distinction.

A. Competitive Strategy

Following the strategic thinking of Michael Porter [9], the
fundamental rule for any business operating in a competitive
environment is to obtain, develop and maintain sustainable
competitive advantages. Within the software industry the most
powerful source for competitive advantages is the creation and
maintainence of intellectual property in the form of source
code. In contrast, the proponents of open source development
regard intellectual property as a retardant to software devel-
opment, which ought to be abandoned in order to stimulate
network effects. One could, of course, argue that the software
industry is not fundamentally competitive; that it allows a
certain amount of cooperation between companies in an effort
to establish a common standard that benefits not one but a
whole group of companies [12]. Nevertheless, on its most

fundamental level, software developers have no other choice
but to compete for the end consumer. Cooperation and stan-
dardization just define the arena in which competition takes
place - they do not reduce the need for competitive strategies.

B. Open Source Model or Myth?

Some have attributed the dot-com crash partly to a failure by
those companies to implement traditional ways of competing
[10]. This article attempts to address the issue of whether
open source software companies may be repeating the sins
of the dot-coms - that these companies may be undermining
their own competitive advantages by undervaluing the strategic
importance of intellectual property. If this would be true,
companies could risk their existence by following a potentially
destructive business model, which motivates the question: Are
we indeed dealing with an open source model or more with
an open source myth? In the following we will first take a
look at the historic development of the open source movement
and proposed open source business models. After taking a
critical view on some issues important within the commercial
domain we will then address the question of whether or not
open source is a viable option for companies operating in
competitive environments.

II. A B RIEF HISTORY OFOPEN SOURCETIME

The open source software movement is built on the idea of
freely distributing the ”source code” of software encompassing
all the lines of code or instructions, typically written in certain
high level programming languages such as C++ or Java. The
term ”high level” refers to the fact that these languages are
closer to natural language making it readable by any pro-
grammer. In a traditional software development environment,
the source code of a company’s software product is regarded
as the company’s intellectual property. The software product
is distributed in object code, or binary form, which is only
readable by a computer, while its source code is only released
to others who are willing to pay for the right to see the code
under strict licensing agreements.

According to the proponents of the open source concept, the
”openness” of the approach results in several key advantages



over closed source development. First, by making the source
code available to everyone, a multitude of programmers can
help modify the code and fix bugs, or flaws, in the code.
Under the closed proprietary model, a user must go through the
company’s customer service department, which in turn must
report the problem to the corresponding software development
unit. Second, because so many people are contributing to the
code, resulting networking effects are expected to lower the
cost of software development, which should translate into less
expensive software. Third, because the code may be modified,
users can customize the code to fit their needs.

A. Free Speech in the Bazaar

The open source software concept started as a political idea
called ”Free Software”, which was popularized by Richard
Stallman in 1984 when he formed the Free Software Foun-
dation and its GNU Project [4]. Open source licensing is
based on several key principles set forth in the Open Source
Definition [2], which began as a policy document of the
Debian GNU/Linux Distribution, an early Linux operating
system. In its context, the meaning of ”free” is non-proprietary,
not non-commercial. According to Stallman we should ”Think
’free speech,’ not ’free beer.’”

In 1997, a proponent of free software, Eric Raymond,
contacted a programmer Bruce Perens about the idea of
open source. After numerous discussions, the two formed the
Open Source Initiative, an organization for managing the open
source campaign and its certification mark. Perens wrote the
first draft of the Open Source Definition as ”The Debian Free
Software Guidelines” [4], and refined it using comments from
Debian developers in a month-long e-mail conference in June
1997. If a license does not comply with the principles outlined
in The Open Source Definition, its software cannot be labeled
OSI Certified, a mark specifically governed by The Open
Source Initiative [2].

In Raymond’s view, which he published in his fundamental
work ”‘The Cathedral and the Bazaar”’ [11], open source
development resembles ”a great baabling bazaar of differing
agendas and approaches” very different from the traditional
”cathedral” approach used in proprietary developments. In-
deed, it has to be noted that the open source movement
promotes many concepts that have caused significant advanced
in the way we look at software engineering. In some sense,
open source introduced the notion of distributed software
development [3].

B. A Definition of Terms

As described in [2], the Open Source Definition contains
the following terms:

1) Redistribution Free - The license shall not restrict any
party from selling or giving away the software as a com-
ponent of an aggregate software distribution containing
programs from several different sources. The license
shall not require a royalty or other fee for such sale.

2) Source Code - The program must include the source
code, and must allow distribution in source code as well

as compile form. Where some form of a product is
not distributed with source code, there must be a well-
publicized means of obtaining the source code fro no
more than a reasonable reproduction cost - preferably,
downloading via the Internet without charge. The source
code must be the preferred form in which a program-
mer would modify the program. Deliberately obfuscated
source code is not allowed. Intermediate forms such as
the output of a preprocessor or translator are not allowed.

3) Derived Works - The license must allow modifications
and derived works, and must allow them to be distributed
under the same terms as the license of the original
software.

4) Integrity of The Author’s Source Code - The license
may restrict source-code from being distribute in mod-
ified form only if the license allows the distribution
of ”patch files” with the source code for the purpose
of modifying the program at build time. The license
must explicitly permit distribution of software built from
modified source code. The license may require derived
works to carry a different name or version number from
the original software.

5) No Discrimination Against Persons or Groups - The
license must not discriminate against any person or
group of persons.

6) No Discrimination Against Field of Endeavor - The
license must not restrict anyone form making use of the
program in a specific field of endeavor. For example,
it may not restrict the program from being used in a
business, or from being used for genetic research.

7) Distribution of License - The rights attached to the
program must apply to all to whom the program is redis-
tributed without the need for execution of an additional
license by those parties.

8) License Must Not Be Specific to a Product - The rights
attached to the program must not depend on the pro-
gram’s being part of a particular software distribution.
If the program is extracted from that distribution and
used or distributed within the terms of the program’s
license, all parties to whom the program is redistributed
should have the same rights as those that are granted in
conjunction with the original software distribution.

9) License Must Not Contaminate Other Software - The
license must not place restrictions on other software
that is distributed along with the licensed software.
For example, the license must not insist that all other
programs distributed on the same medium must be open-
source software.

C. GNU Copyleft

Of the various open source licensing, one of the oldest
and well-known licenses is the GNU General Public License
(”GPL”). The GPL allows users to copy, modify, and distribute
the software conditioned on the user’s agreement to license all
derivative versions under the same terms. The GPL has a total
of 12 terms and conditions. To summarize, the GPL mandates



that users must agree to the following:

1) Users may not establish proprietary rights in the soft-
ware;

2) Users must provide the source code to anyone to whom
they give the object code;

3) Users must include notice in the software regarding the
applicability of the GNU GPL; and

4) Users must accept the software without warranties of
any kind.

The key element in the GPL is the GNU Copyleft principle,
which requires all open source derived software to be open
source as well. While Copyleft has achieved broad acceptance
around the world, it has also been argued that it is at odds
with some principles of the American economy [5], [6].

III. O PEN SOURCE AS ABUSINESSMODEL

It is important to point out that in this paper we do not
address the issue of whether software developed via the open
source approach is superior to software developed through a
closed proprietary method. To the profit focused company, this
is a secondary issue. Even if it were true that open source
development produces superior results, the question remains
whether profitability can be achieved when a company opens
its product line to competitors. The open source business
model generally requires that software be given away for free.
To achieve a positive cash flow companies therefore have to
focus on other sources of revenue, including product support
and consultation.

A. Open Source Profitability

In ”Open Source As A Business Strategy” [4], Brian
Behlendorf, a co-founder and a core member of the Apache
group, analyzes how this profitability is achieved. Behlendorf
describes a fictitious database company where 40 percent of
the revenue comes from selling the software database product.
The rest of the revenue comes from support, consulting work,
rapid development tools, graphical administration tools, library
of stored procedures/applications, and manuals. According to
Behlendorf the loss of this 40 percent - which will happen
when the company gives the software away for free - is
recouped through the other sources of revenue. Specifically,
Behlendorf argues that:

1) The company will have more ”freedom” to charge more
for these other services than before because the customer
is freed from the cost of the software, which ate up the
bulk of the software package that was bought.

2) The ”free” software will double the amount of systems
using the software.

3) Costs of software development should go down because
motivated customers will likely fix bugs themselves and
innovations in the software will occur because customers
will contribute code to ensure that the software is
maintained as a standard part of the overall distribution.

4) The availability of the source code will only marginally
assist competitors who will compete to provide support

for the software because your company - as the orig-
inal developer of the software - will have brand-name
recognition.

Behrendorf’s open source strategy essentially treats the
software product as a very expensive ”loss leader”, which
will tempt customers to acquire additional services. While this
point of view seems convincing, it is not without problems. In
a typical retail environment, a loss leader is only one article
among many. In the open source environment in the other
hand, the loss leader amounts to the entire product line. More-
over, Behrendorf’s analysis appears extremely speculative. In
particular, it assumes that competitors will not be able to
engage in active brand building to counteract the recognition
of the original open source brand. Linux distributions such as
Red Hat, SuSe, or Mandrake, however, have clearly shown
that it is easily possible to build recognized and successful
brand names on top of the original open source brand.

B. A Proof of Concept

The proponents of the open source concept typically point to
the Linux operating system as proof of the concept’s economic
viability. Linux is a version of the Unix operating system
based on a kernel developed by Linus Torvalds of Finland
along with many collaborators worldwide. Over time, Linux
has attracted a cult-like following among programmers and
systems developers who say it is a more secure, flexible and
economic alternative to Microsoft’s industrial-strength operat-
ing system, Windows XP. Torvalds, who wrote Linux in 1991,
when he was a student at the University of Helsinki, licensed
it in a way that allows anyone to submit improved code and
redistribute it at will. Since then, thousands of programmers
have volunteered elaborate improvements of their own design.

Companies that sell the Linux operating system rely on
making money from ancillary revenue sources. Since the
software itself is given away for free - or may be obtained on
the Internet for free - fees are earned by bundling additional
software with the free software or by providing training or
services. Although Red Hat, and other companies associated
with Linux, raised huge sums of money from eager investors in
the 1990s, it has not been proven that companies trafficking
in open source software will achieve sufficient profitability.
Even Red Hat, which is considered the leader in Linux-driven
companies, admits in a recent filing with the Securities Ex-
change Commission (SEC) [1] that: ”Our open source software
business model is unproven. We have not demonstrated the
success of our open source business model, which give our
customers the right to freely copy and distribute our software.
No other company has built a successful open source business.
Few open source software products have gained widespread
commercial acceptance partly due to the lack of viable open
source industry participants to offer adequate service and
support on a long term basis.” And while this statement is
certainly not surprising when given the legal implications of
an SEC filing, it is strikingly similar to statements made by
dot-com companies in the late 1990s.



C. IBM’s Linux Strategy

Along with Red Hat, the open source software community’s
other favorite example of validation is IBM’s adoption of
the Linux operating system for much of its hardware. In
early 2001 IBM announced that it will put Linux on all of
its computer models, from wristwatch-computer prototypes to
mainframes, hoping to combine the flexibility and low costs
of open-source software with IBM’s strengths in hardware and
services. For example, IBM would offer its Global Services
customers a cheaper alternative to licensed software, which
the company claimed would lead to more consulting contracts
and more hardware sales.

The media has portrayed this alliance between Linux and
IBM as a tremendous victory for the open source community.
When IBM announced its decision towards Linux, the com-
pany said it was doing more than choosing an operating system
- that it was catching a wave of the future. It appeared as if
the decision was entirely the fact that Linux is open source
software; however, it is important to keep in mind that IBM
is primarily a hardware vendor with a history of failures in
developing a successful operating system. By outsourcing the
operating system for IBM’s proprietary hardware platforms to
the Linux community, IBM made the decision to refocus on
its core competency. In other words, IBM has not abandoned
traditional business practices. It is still building its business
around proprietary intellectual property. This is strikingly dif-
ferent from a software company like Red Hat, which is trying
to build a business without proprietary intellectual property.

IV. A C RITICAL V IEW ON OPEN SOURCE

Unfortunately, the open source discussion is often led by
beliefs rather than facts clouding advantages as well as disad-
vantaged. In the following we discuss five important issues that
need to be considered when we examine open source licensing
in a commercial environment. First, Linux is often used as
a univeral example even though its success might not be a
result of the open source license at all. Second, open source
is often popularized mainly as a way to fight the monopolistic
software giant Microsoft. Third, liability issues are usually
neglected even though they are of fundamental importance in
commerce. Fourth, the use of revolutionary language by the
open source movement has to raise eyebrows in any case;
and finally, the American Constitution provides no reason to
argue that freedom and proprietary development are mutually
exclusive concepts.

A. Linux Is No Universal eXample

Because the Linux operating system has achieved some
success in the marketplace as an alternative to Microsoft’s
Windows, it has evolved into the role model of the open source
software movement. However, it is questionable whether its
success is solely due to its development as an open source
project. Just as it would be an oversimplification if a medical
researcher would be trying to narrow the cause of a disease
to a single item of food without taking into consideration
environment, genetics, and all the other food items consumed,

the success of the Linux operating system is likely a much
more complicated picture.

As noted above, Linux is a version of the Unix operating
system. To use Linux in its purest form, a user must be adept
with a complicated syntax of arcane commands. In dramatic
contrast, the Windows operating system is built around a
complex and feature-rich graphical interface that is perceived
to be extremely user-friendly. The main advantage of Linux is
that its architecture allows it to be significantly more stable,
secure and flexible than the Windows operating system. This is
an advantage for business applications that require reliability
and not so much user friendliness. Only very recently, there
has been a push towards more user-friendly Linux or Unix
based user interfaces, such as Gnome or Mac OS X, tailored
for the consumer market.

B. Fighting Microsoft

Another reason for the surge of Linux is a backlash against
Microsoft, who dominates the software market in an almost
monopolistic way. The company is often seen as an evil force
that is trying to take over the world - a perception only
reinforced by the federal government’s anti-trust suit and its
settlement. At the same time, many members of the open
source community view the ”free software” idea as more
than just a software development paradigm. To some extent
it is a belief system. Thus, the competition between Linux
and Windows operating systems is unnaturally elevated to the
degree of an almost biblical confrontation.

Linux’s success is also based on the fact that the open
source software approach represents the most effective way
to enter a market that is dominated by a single developer.
One barrier to the entry of newcomers in the technological
marketplace is a phenomenon known as the ”network effect.”
Consumers and businesses dislike adapting to new systems,
increasing switching costs and therefore establishing barriers
to entry by newcomers. A similar situation can be found
in the instant messaging market. When teenagers became
hooked to America Online’s Instant Messenger, AOL took the
opportunity to seize the market to such an extent that even a
large company like Microsoft still struggles to enter.

C. Never-Never Land

In the fairly tale Peter Pan, one of the major themes explored
is the reluctance to grow up, to avoid responsibility. The tale
describes a special place where kids can live and be happy
without ever maturing into adulthood. Similarly, open source
developers to some extent are attempting their own version
of Never-Never Land by avoiding any responsibility for the
software they create. This may be useful when a piece of
software is based a recreational project passed among hackers.
But when that piece of software evolves into a complex
consumer product that will be distributed to millions of people,
this risk avoidance strategy is unrealistic.

Most open source licenses are designed to deflect risk away
from the software developers. As one open source advocate
has stated: ”If free software authors lose the right to disclaim



all warranties and find themselves getting sued over the
performance of the programs that they’ve written, they’ll stop
contributing free software to the world. It’s to our advantage
as users to help the author protect this right.” Unfortunately,
it is a basic business tenet that at the end of the day someone
must be accountable when something goes wrong. The open
source software approach is not foolproof and some open
source software will produce defective products. And even if
it is true that the open source developers will respond more
quickly to bugs than a closed proprietary company, this will
not rectify the damage suffered by consumers.

D. The Open Source Revolution

Unfairly or not, critics of the open source community belittle
its members for the fervor with which they defend the open
source movement. It cannot be denied that the open source
community considers itself a somewhat political organization.
The open source software community consistently borrows ter-
minology from the American Revolution. One of the favorite
mantras of the members of the open source community is
”freedom.” The members of the community brazenly describe
the movement as the ”Open Source Revolution.” Bruce Perens
has described The Open Source Definition as ”the bill of rights
for the computer user.” Yet, despite all of this revolutionary
rhetoric, the open source community rejects a notion embraced
by the Framer of the United States Constitution - the value of
intellectual property.

E. Freedom and Intellectual Property

At its core, intellectual property is about the incentive to
create something new and original. In the Constitution, the
Patent and Copyright Clause explicitly states the purpose of
protecting intellectual property is ”[t]o promote the Progress
of Science and useful Arts.” In Mazer v. Stein, 347 U.S. 201
(1954), the United States Supreme Court stated as follows:
”’[t]he copyright law, like the patent statutes, makes reward to
the owner a secondary consideration’. The economic philoso-
phy behind the clause empowering Congress to grant patents
and copyrights is the conviction that it is the best way to
advance public welfare through the talents of authors and
inventors in ’Science and useful Arts.’”

The reason for this is easily understood. The creation of
something new - such as software, for example - requires
tremendous amount of time and other costs to the programmer.
A programmer will not invest time in creating new software
unless his expected return from doing so exceeds the cost
of doing so. The programmer must earn some form of profit
from the endeavor. The open source community asserts that
there exists a pool of hackers that will be drawn to open
source projects for the glory of getting the credit of having
contributed to the project. While there may be programmers
who fit into this category, it is unrealistic to expect that enough
hackers motivated only by glory will be make themselves
available for open source projects. Furthermore, as the number
of open source project increases, the benefit of being part in a

development community diminishes making it less attractive
for the average programmer.

The open source community correctly points out that there
are costs that accompany the creation of intellectual property
right. One cost is that the right to exclude others limits the
diffusion of the innovation to others. Another cost is the holder
of the intellectual property right may charged more than the
marginal cost, which means that fewer consumers will be able
to benefit from the innovation because of the prohibitive cost.
However, the Framers obviously recognized these costs as
well, which is why the intellectual property rights are limited
in scope and duration. The framers of the constitution believed
in freedomand intellectual property.

V. TO OPEN OR NOT TOOPEN?

So, does it make sense to open a company’s source code
following the open source model? As in many cases, there
is no universally applicable answer to this question. In a non-
profit environment, open source is an excellent tool to circum-
vent licensing issues that might arise from the environment
the organization is working in. Academics, for example, quite
often use open source licensing to bypass the rather strict
intellectual property rules enforced by many Universities.

From a commercial perspective, the main flaw of the GPL
(”the pure open source licensing model”) is that the Copyleft
requires a company to require any code changes to be made
available to the public including the company’s competitors.
This eviscerates an important way of obtaining a sustainable
competitive advantage. Consequently, the GPL makes little
sense for commercially released software if the company
considers this software as one of its main assets. To achieve
profitability in the software industry, a company must be able
to build a business around proprietary intellectual property.

A. Three Alternative Licensing Strategies

If the pure open source licensing approach is not the
answer, then what is an alternative solution? Is there a middle
ground between the pure open source licensing model and
closed proprietary model? This may be possible in three ways.
One way is the multiple licensing approach. For example,
the Berkeley Standard Distribution (”BSD”) license allows a
company to distribute modified software without disclosing the
modifications. It also allows for the software to be incorporated
into a combined software product that uses closed proprietary
software.

A second way of facilitating a company’s ability to build
its business around proprietary intellectual property might be
termed a ”Delayed open source approach.” Under this licens-
ing model, royalties would be paid for limited number years
to the open source developers with the stipulation that the
software must be later released as open source software. This
allows the company to recoup its investment in innovation. It
somewhat resembles the patent approach.

A third way could be to create a patent pool. Under this
model, various companies would join patent pools created by
cross-licensing. The advantage for a company in joining a



patent pool would be to eliminate the costs of negotiating with
several different companies for related technology that needs
to be combined in order to produce a particular product.

VI. CONCLUSION

Open source has established itself as a very important
tool in today’s software industry; however, there is absolutely
no reason to believe that open source has to be the only
driving force in software commerce. Company executives
should analyze very closely if the opening of source code
undermines the strategic position of the company before they
decide on licening through an open source model. At the same
time, open source should not be treated as a threat, but rather as
a mechanism capable of identifying and correcting problems
within the software market. Open source developments are
driven by consumers. A successful open source project is
usually an indication that software companies are not properly
responding to the needs of their customers.

REFERENCES

[1] Form S-3, Registration Statement under The Securities Act of 1933,
filed by Red Hat, Inc. with the Securities and Exchange Commission
on July 20, 2001. [Online]. Available: http://www.sec.gov/Archives/
edgar/data/1087423/000102140801503660/ds3mef.txt.

[2] (2002) The Open Source Initiative (OSI) website. [Online]. Available:
http://www.opensource.org.

[3] C. Davis and C. Bayrak, ”Open Source Development and the World Wide
Web: A Certain Tension,”ACM Software Engineering Notes, vol. 27, no.
5, pp. 93-97, 2002.

[4] C. DiBona, S. Ockman, and M. Stone (eds.),Open Sources: Voices from
the open source revolution. O’Reilly, 1999.

[5] R. Gomulkiewicz, ”The License is the Product: Comments on the Promise
of Article 2B for Software and Information Licensing,” 13Berkeley
Technology Law Journal891, 1998.

[6] R. Gomulkiewicz. ”How Copyleft Uses License Rights To Succeed In
The Open Source Software Revolution And The Implications For Article
2B,” 36 Houston Law Review179, 1999.

[7] M. A. Lemley, ”The Economics of Improvement in Intellectual Property
Law,” 75 Texas Law Review989, 1997

[8] J. Lerner and J. Tirole, ”Some Simple Economics of Open Source,”
Journal of Industrial Economics, vol. 52, pp.197-234, 2002.

[9] M. E. Porter,Competitive Strategy: Techniques for Analyzing Industries
and Competitors. Free Press, 1998.

[10] M. E. Porter, ”Strategy and the Internet,”Harvard Business Review,
March 2001.

[11] Eric Raymond (1997) The Cathedral and the Bazaar. [Online]. Available:
http://www.tuxedo.org/ esr/writings/cathedral-bazaar/.

[12] D. Tapscott, ”Rethinking Strategy in a Networked World,”Strat-
egy+Business, vol. 24, 2001.


