
SSGRR-2003W CONFERENCE, L’AQUILA, ITALY. JANUARY 2003 1

Abstract—Multimedia network systems require image and
video compression schemes in order to efficiently take
profit from the available bandwidth.
In this paper, we present a wavelet still-image coder, called
LTW (Lower-Tree Wavelet), based on the construction
and codification of coefficient trees as other proposals do.
This algorithm is fast and symmetric (except in extremely
low bit rates), which makes it adequate for real-time
interactive multimedia applications. We have compared
our algorithm with several well-known coders in terms of
rate/distortion performance using the standard Lena
image. Results show that LTW, with lower temporal
complexity, achieves better results than EZW (0.9 dB
PSNR) and stack-run (0.25 dB). Also, we have tested the
temporal complexity of LTW algorithm, resulting 3.5 times
faster than an optimized EZW. On the other hand,
compared to DCT-based standards, like JPEG, our
algorithm outperforms them in 5 dB approx. (at similar bit
rates)

Key words—Still image coding; interactive multimedia
network application; wavelet coding; tree oriented
encoder.

I. INTRODUCTION
 ne of the main part within a multimedia network
system is the efficient data encoder. Multimedia

information naturally takes large amount of data to be
represented and thus, a compression system is required
in order to avoid wasting bandwidth.

In order to encode image and video data, the most
widely used technique is transform domain. During the
last decade, some popular standards emerged using the
Discrete Cosine Transform (DCT), but currently a new
image transform strategy has shown better behavior than
the DCT-based ones. This mathematical tool is known
as wavelet transform.

A wide variety of wavelet-based image compression
schemes have been reported in the literature. The early
wavelet image coders [1] were designed to exploit the
ability of compacting energy on the wavelet
decomposition. They used quantizers and variable-
length entropy coders, showing little improvements with
respect to the popular DCT-based ones.

However, the properties of wavelet coefficients can be
exploited more efficiently. In that sense, Shapiro [3]
developed a wavelet-based encoder that considerably
improves the previous proposals. The encoder, called

 J. Oliver, M.P. Malumbres, J.Pons and R. García are with the
Department of Computer Engineering at the Technical University of
Valencia, Valencia, 46022 SPAIN. (E-mail: {joliver,mperez,jpons,
roman}@disca.upv.es).

Embedded Zero-tree Wavelet encoder (EZW), is mainly
based on two questions (a) the similarity between the
same kind of sub-band in a wavelet decomposition, and
(b) a quantization based on a successive-approximation
scheme that can be adjusted in order to get a specific bit
rate. The encoder includes an entropy encoder (typically
an adaptive arithmetic encoder) as its final stage.

Said and Pearlman [2] proposed a variation of EZW,
called SPIHT (Set Partitioning In Hierarchical Trees). It
achieves better results than EZW, even without taking
into account the final arithmetic encoding stage. The
improvements are due to the way it groups the wavelet
coefficients and how it stores the significant
information.

A different approach to the previous algorithms is the
one proposed in [4], known as the stack-run algorithm.
This algorithm has a similar structure than JPEG coders.
That is, after wavelet decomposition, wavelet
coefficients are quantized using a classic quantization
scheme. Then, quantized coefficients are entropy coded
using a run-length encoder (RLE) and, finally, an
arithmetic encoder is used.

In [5], a joint space-frequency quantization scheme
was proposed. It uses a spatial quantization, like zero-
tree, in combination with a standard scalar quantizer.
The idea is based in the fact that natural images are
perfectly modeled by a linear combination of compacted
energy in both frequency and space domains.

One of the most widely used technique from the above
presented ones is tree encoding. However, this kind of
coder exhibit an important asymmetry, due to the way
that construction of significance coefficient maps and
refinement stages are performed in the encoding stage.
So this kind of coder, by nature, are not able to work
efficiently with interactive multimedia applications.

In this paper, we propose a new wavelet still-image
coder that it is simpler and faster than others previously
published [3][2]. We have called it LTW (Lower-Tree
Wavelet) coder. The main contribution of LTW is the
way that it builds the coefficient map. It does not use an
iterative loop in order to determine the significant
coefficients and to assign them bits. It builds the
significant map in only one step using two symbols for
pruning tree branches, and then, depending on the
required target bit rate, it codes the significant
coefficients also in one step. This algorithm significantly
reduces the complexity of the encoder stage in such
manner that it is similar to the decoder stage. So, another
important feature of LTW is its symmetric behavior at
certain bit rates.

In section 2 a description of the proposed algorithm is
shown. In section 3, we show a performance evaluation

A Wavelet-based Image Codec for Interactive
Network Applications

J. Oliver, M. P. Malumbres, J. Pons, and R. García

O

2 J. OLIVER et al.: A WAVELET-BASED IMAGE CODEC FOR INTERACTIVE NETWORK APPLICATIONS

of our proposed scheme in terms of rate/distortion and
computation complexity performance metrics. Section 4
presents some design considerations. Finally, in section
5 some conclusions and future work are drawn.

II. THE LOWER-TREE WAVELET CODER
For the most part, digital images are represented with a

set of pixel values. The encoder proposed in this paper
can be applied to a set of coefficients C resulting from a
dyadic decomposition Ω(⋅), in order that C=Ω(P). The
most commonly used dyadic decomposition in image
compression is the hierarchical wavelet subband
transform [1], so an element Cc ji ∈, is called transform
coefficient.

Tree oriented wavelet image encoders are proved to
efficiently transmit or store the set C, achieving great
performance results. In these algorithms, two stages can
be established. The first one consists on encoding the
significance map, i.e., the location and amount of bits
required to represent those coefficients that will be
encoded (significant coefficients). In the second stage,
significant transform coefficients are encoded, i.e. their
sign and magnitude bits, depending on the desired target
bit rate.

One of the main drawbacks in previous tree oriented
wavelet image encoders is their high temporal
complexity. That is mainly due to the bit plane
processing at the construction of the significance map,
that is performed along different iterations, using a
threshold that focuses on a different bit plane in each
iteration. Moreover, the bits of the significant
coefficients are also bit plane processed.

Our proposed LTW algorithm is able to encode the
significance map without performing one loop scan per
bit plane. Instead of it, only one scan of the transform
coefficients is needed. The LTW also can encode the
bits of the significant transform coefficients in only one
scan.

Let us define some concepts before the LTW be
explained. Like in the rest of tree encoding techniques,
coefficients from C can be logically arranged as a tree.
In our algorithm, every coefficient bac , in the LL
subband (the scaled version of the original image) is the
root of a tree. For each root node placed at (a, b), its
offspring will be formed by three coefficients placed at
(a+width(LL), b), (a, b+height(LL)) and (a+width(LL),
b+height(LL)). The offspring of the rest of nodes (c, d)
are the four coefficients placed at (2c, 2d), (2c+1, 2d),
(2c, 2d+1), (2c+1, 2d+1) (except for those nodes in the
first level of decomposition subbands, LH0, HL0 and
HH0, that represent the leaves of the trees).

We also have to define the order to scan the subbands
in the first stage, where the significance map is built. We
use a zig-zag order, starting from the LL subband, so
that all the subbands at a level n are always scanned
before the n-1 subbands. Finally, coefficients in a
subband are scanned in a Morton order. Notice that both
the scan order and the trees are defined in a similar way
that in Shapiro’s EZW algorithm.

Now we are ready to define the algorithm. Let us start
with the encoder part. The quantization process is
performed by two strategies: one coarser and another

finer. The finer one consists on applying a scalar
uniform quantization to the coefficients, and it is
performed before the LTW algorithm. On the other
hand, the coarser one is based on removing bit planes
from the least significant part of the coefficients, and it
belongs to the LTW encoder. We define rplanes as the
number of less significant bits that are going to be
removed in the LTW.

At the initialization of the encoder, it is calculated the
maximum number of bits needed to represent the higher
coefficient (maxplane) and it is output to the decoder.
The rplanes parameter is also output. With these data,
we initialize an adaptive arithmetic encoder that will be
used to transmit the number of bits required to encode
any coefficient. We will only transmit those coefficients
that require more than rplanes bits to be coded, so only
maxplane-rplanes symbols are needed to represent this
information. We also use two extra symbols to
efficiently represent the significance map.

In the next stage the significance map is encoded as
following. All the subbands are scanned in zig-zag order
and for each subband all the coefficients are scanned in
Morton order, as explained previously. Then, for each
coefficient, if it is significant (i.e., it is different to zero
if we discard the first rplanes bits) the number of bits
required to represent that coefficient is encoded with an
adaptive arithmetic encoder. As coefficients in the same
subband have similar magnitude, and due to the order
we have established to scan the coefficients, the adaptive
arithmetic encoder is able to encode very efficiently the
number of bits of the transform coefficients. On the
other hand, if a coefficient is not significant and all its
descendents are not significant (they form a lower-tree),
the symbol LOWER is encoded and this coefficient and
its descendents are marked as not active (initially all
them are active). A not active coefficient is not
processed any more, neither in the first stage nor in the
second one. Finally, if the coefficient is insignificant but
it has at least one significant descendent, the symbol
ISOLATED_LOWER is encoded and only this
coefficient is marked as not active.

The second stage consists on encoding the significant
coefficients discarding the first rplanes bits and their
most significant bit (it can be inferred by the decoder).
In order to speed up the execution time of the algorithm,
we may not use an arithmetic encoder, what results in a
very small lost in performance. The sign is transmitted
in a similar way.

The LTW encoder and decoder algorithms are defined
as follows.

Encoder Algorithm:

(E1) INITIALIZATION

output rplanes
output () { }jiCc

cplane
ji

,2logmaxmax
, ∈∀

=

mark all Cc ji ∈, as active

SSGRR-2003W CONFERENCE, L’AQUILA, ITALY. JANUARY 2003 3

(E2) OUTPUT THE SIGNIFICANCE MAP.
Scan the subbands (zig-zag order). For each jic , in a
subband

if active(jic ,)

() jiji cnbits ,2, log=
if rplanesnbits ji >,

arithmetic_output jinbits ,
else

mark jic , as not active

(){ }jiji cD ,, descendant=


























=

∈∀
yx

Dc
cnmaxdesc

jiyx
,2logmax

,,

if rplanesnmaxdesc >
arithmetic_output ISOLATED_LOWER

else
mark all jiyx Dc ,, ∈ as not active
arithmetic_output LOWER

E3) OUTPUT THE SIGNIFICANT

TRANSFORM COEFFICIENTS. Scan C in an
established order. For each Cc ji ∈,

if active(jic ,)
output

() ()jirplanejinbits cc
ji ,1,1 bitbit
),(+− K

output sign(jic ,)
Note: ()cnbit is a function that returns the nth bit of c.

Decoder Algorithm:

D1) INITIALIZATION

input rplanes, maxplane
mark all Cc ji ∈, as active

D2) INPUT THE SIGNIFICANCE MAP. Scan
the subbands in the same order as in E2). For each

jic , in a subband

if active(jic ,)

arithmetic_input jinbits ,
if jinbits , =ISOLATED_LOWER

mark jic , as not active
if jinbits , = LOWER

(){ }jiji cD ,, descendant=
mark jic , and all jiyx Dc ,, ∈ as not active

D3) INPUT THE SIGNIFICANT

TRANSFORM COEFFICIENTS. Scan C in the
same order as in E3). For each Cji ∈,c

if active(jic ,)

()jinbits c
ji ,),(

setbit

input () ()jirplanejinbits cc
ji ,1,1 bitbit
),(+− K

()jic ,rplanesetbit
input sign(jic ,)

Note: ()cnbit is a function that writes the nth bit of c,
and ()cnsetbit set one the nth bit of c.

Notice that, in the decoder at D3), the rplaneth bit of

each significant coefficient is set to one in order to
reduce the error interval of the recovered coefficients.

A. Comparison with other tree-based wavelet

encoders

Like in other tree-based wavelet encoders, in the LTW

algorithm there are two stages, in the first one the
significance map is encoded (it is called dominant pass
in EZW and sorting pass in SPIHT) and in the second
one the significant coefficients are encoded (called
subordinate pass in EZW and refinement pass in
SPIHT). Unlike them, in the LTW the significance map
and the significant coefficients are encoded in only one
iteration, without the need of an iterative loop scanning
the same trees once per bit plane. Moreover, several lists
must be handled in both the EZW and the SPIHT
algorithms, while the LTW does not need the
construction of lists. In fact, implementing this
algorithm is simpler and it has lower temporal
complexity (as shown in section 3).

One disadvantage of the LTW algorithm is that it is
not naturally embedded (unlike EZW and SPIHT).
Instead of it the bit rate is adjusted using two
quantization parameters in the same way as in the
widely used JPEG and MPEG standard.

III. SIMULATION RESULTS
We have implemented the LTW encoder and decoder

algorithm in order to test its performance. It has been
implemented using standard C language, and all the
simulation tests have been performed on a regular
Personal Computer, with an AMD K7 Processor. The
selected image has been the standard Lena
(monochrome, 8 bpp, 512x512). This allows us to
compare the LTW performance with other codecs.

A six-level dyadic wavelet transform has been used,
with biorthogonal 10/18 filter [4], although other filters
like 9/7 [1] have shown similar behaviour, as we will see
in the next section.

Table 1 presents a performance comparison, in terms
of image quality (PSNR) at different bit rates (bpp). It
shows that the proposed codec outperforms the EZW in
approx. 0.8 dB at low bit rates, and others not tree-
oriented codecs, like the stack-run, are also improved.
SPIHT uses a more complex algorithm to group the
coefficients and therefore achieves slightly higher
performance (0.2 dB).

On the other hand, the DCT-based standard JPEG is
widely outperformed by all the wavelet-based
algorithms, what shows the better performance of
wavelet transform compared to discrete cosine transform
used in image compression. In particular, at all bit rates,
LTW is approximately 5 dB higher than JPEG, in terms
of PSNR. This comparison is shown in a subjective way

4 J. OLIVER et al.: A WAVELET-BASED IMAGE CODEC FOR INTERACTIVE NETWORK APPLICATIONS

 a) b)

 c) d)

Fig. 1. Lena image compressed using JPEG a) and b), and using wavelets (LTW) c) and d)
(left column at very low bit rates (0.125 bpp approx.) and right column at low bit rates (0.25 bpp))

in figure 1, that clearly states what objective measures
have revealed.

TABLE I

PSNR (DB) WITH DIFFERENT BIT RATES AND CODECS

codec\bpp JPEG EZW Stack-
run

SPIHT Preliminary
LTW

1 35.70 39.55 n/a 40.41 40.12
0.5 32.87 36.28 36.89 37.21 37.01

0.25 29.12 33.17 33.80 34.11 33.93
0.125 - 30.23 n/a 31.10 31.04

One of the main advantages of the LTW algorithm is

its lower temporal complexity. In order to perform a
practical comparison between LTW and EZW, we have

implemented a version of the EZW. This program runs
the EZW in an efficient way. For instance, in the
initialization section of the algorithm, the highest
descendent of every coefficient is efficiently calculated
(cost O(n2) for a nxn image), therefore there is no need
to explore the trees in the dominant pass to know if a
coefficient is encoded as zero-tree root or as isolated
zero (see [3]). Figure 2 shows as our algorithm greatly
outperforms the EZW in terms of execution time (the
encoder is over 3.5 times faster and the decoder about
2.5). On the other hand, the LTW encoder and decoder
are much more symmetric than the EZW. Notice that,
except at very low bit rates, the execution time for the
LTW encoder is very similar to the execution time for
the decoder. The exploration of the trees (i.e., looking
for significant descendents) is only performed on the

SSGRR-2003W CONFERENCE, L’AQUILA, ITALY. JANUARY 2003 5

encoder side, and its temporal complexity is the same at
any rate, that is what makes the LTW really asymmetric
at very low bit rates (lower than 0.25 bpp).

0

200

400

600

800

1000

1200

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
(M

ill
io

n
of

 C
PU

 c
yc

le
s)

Rate (bpp)

EZW encoder
EZW decoder
LTW encoder
LTW decoder

Fig. 2. Execution time comparison (EZW and LTW)

IV. SOME DESIGN CONSIDERATIONS IN LTW
During the development of a wavelet image encoder,

many design options appear. Some of them involve the
wavelet transform process (filter used, number of
wavelet decomposition) and others the encoding
process.

A. Basic options
Choosing a good filter set is crucial in order to achieve

good compactness of the image in the LL band, in this
way, the amount of nonzero coefficients and its
magnitude are reduced, and therefore the image entropy.
Shapiro’s EZW uses an Adelson 9-tap QMF bank filter,
however, it has been proved that biorthogonal filters,
like B9/7 and Villasenor 10/18, provide better results.
These filters make better energy compaction and are
symmetric, what results in lower magnitude of the
coefficients on the border of the image on the condition
that a symmetric extension of the image is applied.
Therefore, biorthogonal Villasenor 10/18 filter [4] will
be used, although other biorthogonal filters like B9/7
have shown similar behavior.

Another important aspect in wavelet processing is the
number of decomposition levels performed. It mainly
depends on the image size and the number of filter taps.
With our image, which is 512x512, a six level dyadic
decomposition is suitable, resulting in a final 8x8 LL
subband.

Let us focus on the quantization process. In section 2 it
has been explained how the bit rate and its
corresponding distortion factor can be modified by
means of two quantization parameters, one finer and
another coarser (rplanes). LTW is not naturally
embedded, it is the price that we have to pay for the
lower temporal complexity. Instead of it, the bit rate is
adjusted using two quantization parameters in a similar
way as in the widely used JPEG standard.

In fact, the finer quantization parameter is used to
adjust the bit rate in an extremely accurately way. This
parameter is actually a scaling factor, rather than a
quantization factor. So, if q is any real number
representing the finer quantization (typically within the

interval [0, 1]), it is easy to see that the quantization
process involving the algorithm is equivalent to multiply
all the wavelet transform coefficients by q and then
perform an integer division by rplanes2 . In this sense,
two different rplanes values may represent the same
global quantization whenever we choose the suitable q
value, i.e. if rplanes is decreased in one q should be
divided by two whereas if rplanes is increased in one q
should be doubled.

Figure 3 shows the relation between the quantization
parameters and the final bit rate achieved. In these
curves it can be easily seen the equivalence previously
mentioned. The bit rate corresponding to q=0.2 and
rplanes=6 is roughly 0.5 bpp. If we decrease rplanes in
one, the same bit rate is achieved with q=0.4, and if we
decrease it again it is achieved with q=0.8.

The same effect can be observed in figure 4, where the
image quality (PSNR) is evaluated in function of the
quantization parameters.

Fig. 3: Relation between quantization parameters and bit rate

Fig. 4: Relation between quantization parameters and PSNR

B. Analyzing the adaptive arithmetic encoder
As coefficients in the same subband have similar

magnitude, and due to the order we have established to
scan the coefficients, an adaptive arithmetic encoder [6]
is able to encode very efficiently the number of bits of

25

30

35

40

45

50

55

0 0.2 0.4 0.6 0.8 1

PS
N

R
(d

B
)

Finer quantization parameter

rplanes=2
rplanes=3
rplanes=4
rplanes=5
rplanes=6

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

B
it

ra
te

 (
bp

p)

Finer quantization parameter

rplanes=2
rplanes=3
rplanes=4
rplanes=5
rplanes=6

6 J. OLIVER et al.: A WAVELET-BASED IMAGE CODEC FOR INTERACTIVE NETWORK APPLICATIONS

the transform coefficients (i.e. the significance map used
by the LTW algorithm). That is why this mechanism is
essential in the R/D performance of the encoder.

A regular adaptive arithmetic encoder uses one
dynamic histogram in order to estimate the current
probability of a symbol. To improve this estimation we
can use a different histogram depending on the
decomposition level of the wavelet subband. It makes
sense because coefficients in different subbands tend to
have different magnitude, whereas those in the same
decomposition level have similar magnitude.

Table II, column a) shows the performance of the
preliminary LTW in terms of image quality (PSNR) for
different bit rates (bpp). In column b) we can see the
results of using a different histogram on every
decomposition level. It results clearly beneficial with no
penalty in temporal complexity.

In section 2 we have defined maxplane as the
maximum number of bits needed to represent the higher
coefficient in the wavelet decomposition, and it is the
value used to initialize the arithmetic encoder. At this
point, we can define maxplaneL as the maximum
number of bits needed to represent the higher coefficient
in the level L. So these values can be used to adjust the
initialization of every arithmetic encoder, provided all
maxplaneL symbols are output to the decoder. The
drawback introduced by encoding these symbols is
manifestly compensated by the improvements achieved,
just as column c) in table II shows.

Last column in this table presents the very little
advantage attained by removing the possibility of
appearance of a ISOLATED_LOWER symbol in the last
level of the wavelet transform.

Several other actions can be tackled directly on the
adaptive arithmetic encoder. On the one hand, the
maximum frequency count (see more details in [6])
proposed by the authors is 16384 (when using 16 bits for
coding). Practical experiences led Shapiro to reduce this
value to 1024, and in LTW a value of 512 has been
shown more adequate. On the other hand, another
parameter that can be adjusted is how many the
histogram is increased with every symbol. If this value
is greater than one, the adaptive arithmetic encoder may
converge faster to local image features, but increasing it
too high may turn the model (pdf estimation)
inappropriate, leading to poorer performance.

TABLE II

PSNR(DB) WITH DIFFERENT OPTIONS IN THE ARITH. ENCODER

opt/bpp a) b) c) d)
1 40.12 40.19 40.25 40.26

0.5 37.01 37.06 37.11 37.12
0.25 33.93 34.00 34.07 34.07
0.125 31.04 31.10 31.17 31.17

TABLE III

PSNR (DB) WITH DIFFERENT BIT RATES AND THE FINAL LTW CODEC

codec\bpp JPEG EZW Stack-run SPIHT Final LTW
1 35.70 39.55 n/a 40.41 40.26

0.5 32.87 36.28 36.89 37.21 37.12
0.25 29.12 33.17 33.80 34.11 34.07
0.125 - 30.23 n/a 31.10 31.17

V. CONCLUSIONS
In this paper, we have presented the LTW encoder, a

wavelet still-image encoder based on the construction
and efficient coding of wavelet coefficient trees. Due to
its higher symmetry and lower temporal complexity, we
think that the LTW is a good candidate for real-time
interactive multimedia communications.

We have evaluated our proposal, comparing its
performance in terms of rate/distortion with the JPEG,
EZW, SPIHT and stack-run algorithms. According to
table III, results show that LTW improves EZW and
stack-run in 0.9 and 0.25 dB respectively, and show
similar performance to SPIHT algorithm. However, we
have shown that the main contribution of this algorithm
is its lower temporal complexity. In particular, LTW is
able to code the standard Lena image up to 3.5 times
faster than EZW.

As future work, we are planning to optimize the LTW
encoder and include it in a Motion Wavelet video
encoder, testing its performance using common video
sequences.

VI. REFERENCES
[1] M. Antonini, M. Barlaud, P. Mathieu, I. Daubechies.
“Image coding using wavelet transform,” IEEE Trans Image
Processing, vol 1. nº 2. pp. 205-220, 1992

[2] A. Said, A. Pearlman. “A new, fast, and efficient image
codec based on set partitioning in hierarchical trees,” IEEE
Transactions on circuits and systems for video technology, vol.
6, nº 3, June 1996

[3] J.M. Shapiro, “Embedded Image Coding Using Zerotrees
of Wavelet Coefficients,” IEEE Transactions on Signal
Processing, vol. 41, pp. 3445-3462, December 1993.

[4] M.J. Tsai, J. Villasenor, F. Chen. “Stack-run image
coding,” IEEE Trans. on Circuits and Systems for Video
Technology, vol 6, nº 10, pp. 519-521, Oct. 1996

[5] Z. Xiong, K. Ramchandran, M.T. Orchard. “Space-
frequency quantization for wavelet image coding,” IEEE
Trans. on image processing, vol.6, nº5, pp.677-693, May 1997

[6] I.H. Witten, R.M. Neal, J.G. Cleary, “Arithmetic coding for
compression,” Commun. ACM, vol 30. pp. 520-540, 1986.

