
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Abstract—This paper shows an introduction to the basic
characteristics of MLAV (Methodology of the Virtual Automation
Laboratory), an object-oriented methodology for the analysis and
modelling of discrete event systems applied to the development of
the control logic based on the IEC 61131-3 standard.

Index Terms— Control of Discrete Event Systems, IEC 61131-
3, Object-Oriented Analysis and Modelling, PLC Control Logic
Development.

I. INTRODUCTION

HERE are two different actors that take part in the
development of the control logic with an automation

project: the customer and the engineer.
The customer indicates the way he wants the process to be
controlled, and the engineer develops the necessary control
logic in order to control the process the way it is intended to.
The problem is that these two actors talk different languages.
The customer express himself in natural language referring to
the components of the process and the way they are expected
to behave. Whereas the engineer writes the control logic in the
formal language of the static and dynamic diagrams that are
difficult to understand by the customer as shown in Figure 1.
This fact leads to a number of misunderstandings [1] that if
they are not corrected will appear as errors in the
commissioning phase of the project where they are very
expensive to correct [2].
On possible solution could be to define a common language
that allows both actors easily understanding each other. It
should be, on one hand, a formal language that allow the
engineer to formally represent the control logic, but at the
same time, it should be a very intuitive language so the

This work was supported in part by the Deparment of Education of the
Principado de Asturias under Grant PC-CIS01-24, and by the University of
Skövde (Swden) under research contract HF 5Kap, 1-7.

Víctor M. is with the Department of Electrical, Electronics, Computer and
Systems Engineering, University of Oviedo, Campus de Viesques, 2.1.2,
33204 – Gijón, Spain (phone: +34 985 18 19 64; fax: +34 985 18 20 68;
email: victor@isa.uniovi.es).

Felipe Mateos is with the Department of Electrical, Electronics, Computer
and Systems Engineering, University of Oviedo, Campus de Viesques, 2.1.2,
33204 – Gijón, Spain (felipe@isa.uniovi.es).

Amos Ng is with the Department of Science Engineering, University of
Skövde, PO Box 408, 541 24 Skövde, Sweden (amos@ite.his.se).

customer is able to read and understand those diagrams in an
easy way.

Client Automation Engineer(s)

I know how the process
 has to be controlled, but

I don’t know how to
write the control program?

I know how to write control
programs, but I don’t know how

the process has to be
controlled

COMMON LANGUAGE

Read and Write Read and Write

Figure 1: Communication Problems

Using this new language, both actors will be able to interact
more thoroughly all along the development of the project,
reducing the number of misunderstandings, and therefor the
number of errors and the final cost of the project.
The proposed language is an object-oriented methodology
called MLAV (Methodology of the Virtual Automation
Laboratory), which has been defined under a PhD thesis ([3])
and whose main characteristics are shown in the following
section.
Finally, the pros and cons are analysed from several points of
view in a reasoned way, in the conclusion section.

II. MLAV

A. Introduction
MLAV is an object-oriented methodology to analysis and

modelling the control logic of discrete event systems. MLAV
is designed to help only with the phase of control logic
development. This phase is one of the number of phases
carried out within the control system design of an automation
project, which includes, as it is stated by [4], several different
phases such as: elaboration of offers, process components
selection, exploitation and supervision components selection,
commissioning, etc.

Following the definition of the term “methodology”
introduced by David Harel [5], MLAV has been built over
four main elements: the concept, the notation language, the
procedural method and the software tool.

MLAV. Object-Oriented Methodology for the
Analysis and Modelling of the Control Logic of

Discrete Event Systems
Víctor M. González, Member, IEEE, Felipe Mateos and Amos Ng

T

mailto:felipe@isa.uniovi.es)
mailto:victor@isa.uniovi.es)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

B. Basic Concept
The basic concept over which MLAV is built is the

simulation of the process. It is demonstrated ([6]) that the
simulation of the process can be the natural meeting point for
the actors that take part in the control logic development to
exchange information about the way the process has to behave
(see Figure 2).

PROCESS
SIMULATION

MODEL CLIENT AUTOMATION
ENGINEERING

Express
Requirements

Introduces
Model

Information

Generates

Figure 2 : The Concept

MLAV suggests that the engineer analyse the system from 4
different points of view:

1) Static
From the static point of view, the engineer should think

about the “Who”. “Who are the objects that will make up the
model?” is the basic question the engineer has to ask himself
at this point. Further on, it will be stated how to get those
objects.

2) Functional
From the functional point of view, the engineer should think

about the “What”. “What is the responsibility every object
has to fulfill?” and “What is the functionality (attributes and
services) every object will provide in order to meet this
responsibility?” are the two basic questions the engineer has
to ask himself at this point.

3) Dynamic
From the dynamic point of view, the engineer should think

about the “When”. “When will every service of every object
be activated? This is equivalent to think about how every
object behaves internally and how it interacts with other
objects.

4) Structural
From the structural point of view, the engineer should think

about the “How”. “How to organise the final model in a
coherent way? MLAV suggests a hierarchical, recursive and
scalable way to organise the model as shown in Figure 3.

C. Notation Language
The notation language proposed by MLAV is a combination

of three different ones: UML ([7]), GEMMA ([4]) and
GRAFCET ([8]).

On one hand, MLAV is defined as an object-oriented
methodology. A subset of UML has been chosen to represent
the object-oriented aspects of the model generated using
MLAV, because UML is a broadly accepted standard that can
be used to represent classes, objects and their relationships.
Also the functioning requirements expressed by the customer
can be represented in a very intuitive way.

Process Control Level

Control
Panel Station Y

Control

Process
Control

Elaborated
Object X

Basic
Object 1

Elaborated Object X Control Level

Eleborated
Object X

Control

Basic
Object 3

Basic
Object A

Station Control Level

Plant Control Level?

Figure 3: Model Structure

On the other hand, MLAV is designed to analysis and model
discrete event sequential systems. The modelling languages
that UML provides to represent such information are not very
intuitive and are not broadly accepted by the community of
automation engineers, potential users of MLAV. However,
GRAFCET is a modelling language specially designed to
model sequential systems broadly accepted amongst those
engineers.

Finally, although GEMMA is not widely spread, it is a very
powerful and intuitive tool to help defining the different
possible states at which the process may eventually be during
its life (see Figure 15).

D. The Method
MLAV proposes an iterative and incremental method

divided into several phases as shown in Figure 4.
System

Requirement
Specification

Identification of
Objets

Identification of
Functionalities

Implementation of
Services

Validation

Commissioning

Model
Correct?

MLAV

NO

YES

Figure 4 : Phases of the Method of MLAV

It is proposed to start the analysis and modelling with a
subset of the system requirements expressed by the customer.
After the first iteration is over, the subset can be enlarged with
more requirements that will conduct to a new layer in the
model. When all the requirements have been modelled, the
model is done.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

1) System Requirements Specification
During this phase the dialog between the customer and the

engineer has to be very intense in order to completely allow
this one understanding the way the process has to behave.

MLAV proposes that the model be represented in three
formal languages:

a) GDMMA
GDMMA (Descriptive Graphic of the Modes of Start and

Stop) is a graphical representation of the different states the
process may eventually be in during its life. To build a
GDMMA, MLAV suggests that the engineer take the
GEMMA template and for each of the states depicted in it, ask
the customer if it could be possible that the system be
eventually in it. If this state is not viable, then it can be
removed from the template, and all the lines that connect this
state with the others. (See Figure 16).

b) Use Case Diagram
Additional information can be represented using the use

case diagram language defined in UML. This diagram allows
the engineer to complete the GDMMA with information about
the actors and their interaction with the system.

Defrost

Boil
Potatoes

Roast
Lamb

Pop Corn

Power
Calibration

Microwave Oven

User

Maintenance
Service

Figure 5: Use Case Diagram

c) Event Flows
For each use case in the use case diagram, MLAV proposes

that the engineer represent how would be the sequence of
events that will occur when the use case is executed.

This information can be represented in natural language as
an algorithm or using the more formal notation language
GRAFCET at level I.

2) Identification of Objects
Once the customer and the engineer have reached an

agreement about the way the system has to be controlled, is the
moment to identify the objects that will make up the model of
the control logic.

MLAV suggests that the engineer apply Martin Fabian’s
theories [9] stated in the CHAMP reference architecture [10]
developed at Chalmers University (Sweden).

As it is shown in Figure 6, for every object of the process,
called “External Object”, there must be an object in the
control logic, called “Internal Object”. All these objects will
be coordinated and sequenced by a “Controller” object not

present in the process, in order to fulfill the behavior
requirements stated before.

Process or Simulation Control Logic

External Object

External
Object

External
Object

Internal
Object

Internal
Object

Internal Object

Controller

Figure 6: External/Internal Objects

MLAV establishes two kinds of objects:
� Basic Objects are not divided into more objects. They

carry out primitive actions. Sensors and
preacturators/actuators are examples of such objects.

� Elaborated Objects are made up of basic and/or
elaborated objects. They carry out non-trivial actions.

This information has to be represented by means of two
formal languages:

� Class Diagrams. Using this language taken from UML,
the engineer can represent the different classes of
objects and their relationships.

� CRC Cards, first introduced by Kent Beck and Ward
Cunningham ([11]), is an intuitive technique to
represent the responsibility of a class and its
collaborations with other classes in order to fulfill it.

3) Identification of Functionalities
MLAV defines “functionalities” as the set of attributes that

characterize a class and the services it provides to fulfill its
responsibility.

MLAV suggests that the engineer represent this information
by means of two new formal languages defined within MLAV:

� CRC+F Cards is an extension to the CRC language. It
allows representing in a card the attributes and services
that characterize a class.

� Publication-Subscription Diagrams. This language
allows the engineer to represent the contractual
relationships that exist between two classes. When a
class X needs to use an attribute or service of another
class Y, you can say that the class X is subscribed to
those attributes and services of class Y. To do so, it is
necessary that class Y has previously published those
attributes and services. MLAV suggests that this
relationship be represented using a special symbol as
shown in Figure 7.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

Object 2Object 1

Attribute
Publication
Symbol

Attribute
Subscription
Symbol

Service
Publication
Symbol

Service
Subscription
Symbol

Figure 7: Publication-Subscription Symbols

4) Implementation of Services
MLAV pursues a model that is independent of the

technology and the type of control equipment finally used to
execute the model. Besides, MLAV is focused on the
modeling of discrete event sequential systems.

Finally, GRAFCET is the more widely spread and accepted
modeling language amongst control engineers. It is
independent of the technology and the type of control
equipment, and it has been specially designed to model
sequential systems.

Because of all these reasons, MLAV suggests to use
GRAFCET to implement the services in two phases:
specification of sequences and implementation of sequences.

a) Specification of Sequences
MLAV indicates in this phase to roughly represent the

skeleton of the sequences over the previously developed
publication-subscription diagrams by means of a sequence of
numbers.

This is not a very powerful language but allows the engineer
softly transitioning from an intuitive language (easy to
understand by the customer) to a more formal specification of
sequences in GRAFCET (not so easy to understand by the
customer).

b) Implementation of Sequences
In this phase, MLAV suggests to use GRACET at level II to

fully represent the sequence that implements a service based
on the skeleton previously depicted.

MLAV produces object-oriented models, whereas
GRAFCET is a non object-oriented language. This imposes an
added difficulty. To solve this drawback, MLAV suggests to
extend GRAFCET with the operator “.”. Doing so, it would be
possible to access any attribute or invoke any service of any
object from within an action or transition represented in
GRAFCET as shown in Figure 8.

Xi
Deposit.KeepMaximum

Service “KeepMaximum”

Xj Valve.Open

Xj+1 Valve.Close

LevelSensor.Active?

NO LevelSensor.Active?

Figure 8: Operator "." in GRAFCET

5) Validation
Once the model is complete, that is, all services of all

objects have been implemented it is necessary to verify if the
control system behaves in the way expressed by the customer.

To do so, MLAV suggests carrying out a visual validation
against the simulation of the process in three phases, before
transitioning into commissioning:

� Virtual Phase. In the first phase, MLAV suggests to
simulate the execution of the model of the control logic,
in a real-time connection to the simulation of the
process. Doing so, the engineer will be able to make
quick modifications to the control logic until it works as
stated by the customer.

� Medium Phase. Secondly, MLAV suggests replacing
the simulation of the execution of the control logic, by a
real programmable control equipment in a real-time
connection to the process simulation. This will allow
the engineer concentrating in adapting the control logic
to the peculiarities of the control equipment, knowing
that the control logic works fine.

� Real Phase. Finally, MLAV suggests substituting the
process simulation by the real process. Doing so, will
allow the engineer to pay attention to the tuning of the
process, knowing that the control logic is correct.

Once these phases are over, you can say the control logic
has been validated and the commissioning has been carried
out.

6) Conclusion
MLAV defines a procedural method that allows the

engineer to automatically generate a model of a control logic
from the specification of the functioning requirements stated
by the customer.

However, it is necessary to define a software tool that
facilitates the systematical application of this method.

E. The Software Tool
MLAV gives the name LAV (Virtual Automation

Laboratory) to the software tool that helps systematically
applying the methodology.

MLAV defines the generic term CACLE (Computer Aided
Control Logic Engineering) to identify those tools that help
developing control logics to control processes.

This CACLE tool is analysed from two points of view in the
following sections.

1) Functional Characteristics
From the functional point of view, LAV has to provide the

engineer with a set of instruments to support the development
of a model of a control logic. More precisely, it has to support
the basic concepts, the notation and the method as shown in
Figure 9.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

System
Requirement
Specification

Identification of
Objets

Identification of
Functionalities

Implementation of
Services

Validation

Commissioning

Model
Correct?

MLAV

NO

YES

IDENTIFICATION OF ACTORS
DEFINITION OF USE CASES
ESPECIFICATION OF USE CASES

BASIC OBJECTS
ELABORATED OBJECTS
COLLABORATIONS

IDENTIFICATION OF ATTRIBUTES

IDENTIFICATION OF SERVICES

• LINEAL SEQUENCES
• PARALLEL SEQUENCES
• ALTERNATIVE SEQUENCES
• CYCLIC SEQUENCES
• ITERATIVE SEQUENCES
• BASIC OPERATIONS
 - LOGIC
 - ARITHMETIC
 - EVENT COUNTERS
 - TIMERS
 - INDEXATION
• DETAILED TRANSITION CONDITIONS
• DETAILED COMMANDS

PROCESS
SIMULATION

CONTROL LOGIC
SIMULATION

Figure 9: Functional Characteristics

This means that LAV should provide with some instrument
to easily allow the engineer:

� identifying which actors will interact with the system,
typically maintenance service operators;

� specifying what are the possible use cases of the system
and their specification in natural language and
GRAFCET level I;

� identifying what are the objects, basic objects,
elaborated objects, and their collaborations;

� defining what attributes and services each object
provide;

� implementing every service’s sequence;
� simulating the process;
� simulating the execution of the control logic by a

programmable controller.
This set of functionalities determines the architecture of the

software tool.

2) Architecture
MLAV suggests that LAV’s architecture be open and

scalable based on a client-server structure as shown in Figure
10.

MLAV focuses on the control logic development phase of
an automation project. Because of that, only the architecture of
those components needed to help with this phase, i. e. the
server, the process simulator and the control equipment
simulator, is defined in the following sections. However, with
such architecture, LAV could become a true VEE (Virtual
Engineering Environment) as defined by Dr. Grübel ([12, 13])
by adding new clients to help with other phases of an
automation project: such as supervisory control and
exploitation, estimates, reports, documentation, cabling
schemes, etc.

a) The Server
The LAV’s server module should provide a set of services

allowing to main objectives:
� The interaction of the different clients of the VAL, e. g.

exchanging signals and events, etc.
� The automation project’s information integrated and

centralized management. This will foster the vision of
an automation project as a “whole” made up of several
different interconnected phases, and not as it is seen
nowadays, as a set of independent tasks, whose results
have to be integrated to fulfill the automation goal.

Automation Project’s Information
Management and Integration

Control Equipment
Simulator

Process
Simulator

Integration: LAV Server

SCADA

Client
LAV

Client
LAV

Client
LAV

Miscellany

Miscellaneous
Applications

Client
LAV

Supervisory Control and Exploitation Operative Part

Control Part

Components to Help with the
Control Logic Generation Phase

Virtual Engineering Environment Architecture

Figure 10: Architecture of LAV

b) Process Simulator
MLAV suggests that the process simulator be made up of

three different modules as shown in Figure 11.
� The Edition module should provide the user with the

necessary tools to allow the user specifying the actors,
the use cases and the flow of events for each use case.
Besides, it should also provide with a library of basic
and elaborated objects that will finally make up the
control logic and the plant to be simulated.
This library should be extendable by means of defining
new objects, that is, by defining the attributes and
services that characterize them.

� The Control Logic Generation module should provide
the user with the necessary tools to specify the
collaborations or connections between objects, that is
the way they will exchange information to fulfill their
responsibility. Finally, it should also provide the user
with a way to edit the sequences that will implement
each of the object’s services. (In [3] the Guidance
method is proposed as a way to capture that
information).

� The Execution module should allow the user simulating
the process. This will allow validating the control logic
against the process simulation by means of a real-time
connection provided by the LAV server.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

Process Simulator = LAV Client

Edition

Requirements
Specification

Plant Edition

Use Cases

Collaborations
Edition

Guidance

Collaborations
Diagrams

Control Logic
Generation

Data Base

LAV Server

Controls
Execution
(Start, Stop,
Pause,...)

Edita

Guía

Use Cases
+
Objects

Sequences
In Grafcet

Simulation

Execution

Objects

Sequences +
Signals

Use Cases
+
Objects

Figure 11: Process Simulator Architecture

c) Control Equipment Simulator
PLCs (Programmable Logic Controllers) are the most used

programmable control devices in the process automation
discipline. However, there has been a historical incompatibility
at hardware and software level among these devices that has
seriously fragmented the market. There has been several
intents to standardize those devices ([14], [15] and [16]) from
the hardware and software point of view. The standard
IEC 61131 proposed by the IEC (International
Electrotechnical Commission) is becoming a de-facto
standard. It is made up of several parts. Part III is dedicated to
the programming languages. It defines a set of common
structures as shown in figure Figure 12: Common
ElementsFigure 12, such as: global variables, several different
program organization units, a way to execute those units, etc.,
and five programming languages that must be used to write the
program organization units.

This part of the standard is very well explained by R. Lewis
in his book [17].

ConfiguraciónConfiguration

Task TaskTask Task

RecursoResource

Program Program Program Program

FB FB
FB FB

Global Variables

Access Paths

Communication Function (IEC 61131-5)

F

Figure 12: Common Elements
On one hand, MLAV suggests produces models that are

independent of the technology and the type of control
equipment finally used to control the process.

On the other hand, the PLCs are the most common control
equipment used nowadays in the process automation
discipline, and IEC 61131-3 defines an independent hardware
and software PLC architecture.

So, MLAV suggests that the architecture of the control
equipment simulator be based on the IEC 61131-3 model. To

do so, MLAV suggests that this module have an architecture
like the one shown in Figure 13.

PLC Simulator = LAV Client

Edition

Editor

Compiler

Control
Program

Instructions
Interpreter

Task
Scheduler

Instructions

Execution

Configuration +
Control Program

Data

LAV Server

Memory

Controls
Execution
(Start, Stop,
Pause,...)

Edits the
Control
Program

Figure 13: PLC Simulator Architecture

MLAV suggests that the PLC simulator be made up pof two
different modules:

� The Edition module should provide the user with the
standard mechanisms present in any common editor
such as copy, past, save,... for the five languages of the
standard IEC 61131-3. This module should also
provide the user with a compiler that will allow him
checking the code for errors and generating an
intermediate code that finally will be executed by the
execution module.

� The Execution module will interpret the instructions
that make up the different task in the way the user has
specified they should be executed. This will eventually
produce an interaction with any external components
that is a LAV’s client.
This architecture will allow validating the control logic
against the simulation of the process by means of the
real-time connection provided by the LAV’s server.

d) Conclusion
The LAV provides a CACLE tool that helps systematically

applying the MLAV methodology by providing a set of tools
that supports all the phases of its method, its notation language
and its concepts.

III. CONCLUSION

MLAV defines a methodology that allows the engineer to
automatically generate a model of a control logic from the
specification of the functioning requirements stated by the
customer.

Using MLAV has some pros and cons that can be analyzed
from several points of view:

1) Models Assimilation
Because MLAV produces object-oriented models organized

in a hierarchical manner, this leads to a kind of standardization
of the models what helps understanding them by third
engineers that didn’t participate in their development, as the
number of models studied increases, as shown in Figure 14.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

Time Time

Number of Models Studied

1 2 3 N 1 2 3 N... ...

(a)
PROGRAMATION

WITHOUT METHODOLOGY

(b)
PROGRAMATION
WITH MLAV

Number of Models Studied

Figure 14: Models Assimilation

However, and because of the number of characteristics of
MLAV, it could be more difficult to understand the models
produced by MLAV than those obtained when no
methodology is used.

2) Control Programs Generation
MLAV allows reducing the development costs by:
� Improving and facilitating the dialog between client and

engineers, what leads to a reduction of
misunderstandings and errors;

� Systematizing the development of control programs
because of the procedural method and the CACLE tool.

However, one thing is true. The toll to pay is the generation
of more documentation and the fact that a simulation of the
process has to be built.

3) MLAV Main Drawbacks
Because MLAV is an object-oriented methodology users

will find two problems:
� On one hand, programs will be bigger than if they were

built without using any methodology. This is a problem
when the final control equipment to be used is a PLC.
These devices usually have few Kbytes of memory.
On possible solution could be to use some other kind of
programmable devices with more memory such as
industrial PCs.

� On the other hand, programs will be object-oriented,
but PLC programming languages usually are not object-
oriented.
This problem could be solved using the languages and
data structures provided by the standard IEC 61131-3
as indicated in [3]. The price to pay is a more
complicated code that could make it harder to
understand.

REFERENCES

[1] Emerson, D., {What does a Procedure Look Like?}. 1999, World Batch
Forum. p. 9.

[2] Bonfe, M. and C. Fantuzzi, {Mechatronic Objects encapsulation in IEC
61131-3 Norm}. IEEE International Conference on Control
Applications, 2000: p. 598-603.

[3] González, V.M., {"Object-Oriented Methodology for the Analysis and
Modelling of Discrete Event Systems. Application to the Generation of
the Control Logic based on IEC 61131-3"}, in Department of
Electrical, electronics, Computers and Systems Engineering. 2002,
University of Oviedo: Gijón. p. 324.

[4] Moreno, S. and E. Peulot, {Le GEMMA}. 1997, París: Casteilla.

[5] Harel, D. and M. Politi, {Modeling Reactive Systems with Statecharts:
the Statemate Approach}. 1998: McGraw-Hill. 258.

[6] Maclay, D., {Simulation Gets into the Loop}. IEE Review, 1997. 43(3):
p. 109-112.

[7] Powel Douglass, B., {Real-time UML}. 2º ed. Addison-Wesley Object
Technology Series, ed. Addison-Wesley. 1998: Addison Wesley
Longman Inc. 365.

[8] IEC, {Preparation of Function Charts for Control Systems. Nº 848}.
1988, International Electrotechnical Commission: Geneva.

[9] Fabian, M., {On Object-Oriented Non-deterministic Supervisory
Control}, in Control Engineering Laboratory. 1995, Chalmers
University of Technology: Göteborg.

[10] Adlemo, A., et al., {Models for Specification and Control of Flexible
Manufacturing Systems}. 1997, Chalmers University of Technology:
Göteborg. p. 179.

[11] Beck, K. and W. Cunningham, {A laboratory for teaching object
oriented thinking}. ACM SIGPLAN Notices, 1989(10).

[12] Grübel, G. {Perspectives of CACSD: Embedding the Control System
Design Process Into a Virtual Engineering Environment}. in IEEE
International Symposium on Computer Aided Control System Design.
1999. Kohala Coast - Island of Hawai'i, USA.: IEEE.

[13] Grübel, G., {Email conversation. (Conversación por correo
electrónico).}, V. González, Editor. 2002: Gijón.

[14] OSACA, {Open System Architecture for Controls within Automation
Systems. Osaca I AND II Final Report.}. 1996, OSACA Association:
Stuttgart. Germany. p. 96.

[15] Sousa, M.D., {Linux-based PLC for Industrial Control}. Embedded
Linux Journal, 2001(3).

[16] IEC, {Programmable Controllers - Part 3: Programming Languages}.
1993, International Electrotechnical Commission: Geneva.

[17] Lewis, R., {Programming Industrial Control Systems using IEC 1131-
3}. IEE Control Engineering Series 50, ed. P.P.J. Antsaklis, P.D.P.
Atherton, and P.G.W. Irwin. 1995, Herts, U.K.: The Institution of
Electrical Engineers, London. 293.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 8

 F1 <Normal production>

 F4

<No sequence
test>

 F5

<Sequence test
or manual
mode>

 F6

<Manteinance,
calibration and
tuning>

 A3 <Requested
stop at
determined
state>

 A2
<Requested
Stop at the end
of cycle>

 A1 <Stop in initial
state>

A7 <Prepositioning>

 A5 <Settling up
start after failure>

 D1 <Start or Stop to
guarantee safety>

 D3 <Keep producing with
failure>

 D2 <Diagnostic
and/or failure
treatment>

 PZ

 F2

<Preparing to
Start>

F3

 <Preparing
to Stop>

 A4 <Stop in
intermediate state>

 A6 <Initialization OP>

Figure 15: GEMMA Template

 F1 <Normal production>

 F5

<Sequence test
or manual
mode>

 A1 <Stop in initial
state>

 A5 <Settling up
start after failure>

 D1 <Start or Stop to
guarantee safety>

 PZ

 F2

<Preparing to
Start>

F3

 <Preparing
to Stop>

 A6 <Initialization OP>

E
n
erg

y ·
C
o
n
tro

l P
art

E
n
ab

led
C
o
n
tro

l
·In
itia

l
C
o
n
d
itio

n
s (I. C

.)

N
o
 E
n
erg

y +

C
o
n
tro

l P
art D

isa
b
led

C. I.

Start Production Requested

End Production Granted

Start Production Granted End Production
Requested

Emergency Stop Requested

Recover After Failure
Requested

Operative Part
Initialization Requested

Manual Mode
Requested

End Production Requested

Figure 16: GDMMA Example

	INTRODUCTION
	MLAV
	Introduction
	Basic Concept
	Static
	Functional
	Dynamic
	Structural

	Notation Language
	The Method
	System Requirements Specification
	GDMMA
	Use Case Diagram
	Event Flows

	Identification of Objects
	Identification of Functionalities
	Implementation of Services
	Specification of Sequences
	Implementation of Sequences

	Validation
	Conclusion

	The Software Tool
	Functional Characteristics
	Architecture
	The Server
	Process Simulator
	Control Equipment Simulator
	Conclusion

	Conclusion
	Models Assimilation
	Control Programs Generation
	MLAV Main Drawbacks

