
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—In the Computer Science curriculum, the compilers

course is dying. It has been relegated to a "specialized, optional"
role in the ACM 2001 curriculum. However, some fundamental
topics are covered only in that course, such as syntax analysis,
computer translation with applications outside compilation, and
language specification mechanisms such as regular expressions.
In this paper, we present the outline of a completely reorganized
and modernized course on computer translation. The approach
resembles a spiral: topics are discussed repeatedly and in
increasing depth, accompanied by implementation projects that
illustrate them. We abandon the traditional goal of implementing
a production compiler, as well as other topics that are too
compilation-specific. Applications are discussed in areas such as
data mining and software engineering.

Index Terms—compilers, translation, Computer Science
curriculum.

I. INTRODUCTION
 little more than a decade ago, in Computer Science
curricula at major universities around the world, a course

in compiler construction was considered indispensable to the
formation of the undergraduate student. It was the rare
Computer Science academic program that did not have a
required compiler construction course in its curriculum. It was
considered “embarrassing” to have a graduate of one’s
university, who was ignorant of the issues and techniques
taught in compiler construction courses. This situation has
now changed. For the last decade or so, the compilers course
in the most Computer Science curricula has been in decline.

In this paper we discuss the reasons for this decline, and the
reasons we believe reform is needed. Then we present the
outline of a completely reorganized and modern approach to
the teaching of the topic of Computer Translation. Our
approach is intended to rescue from oblivion topics that we
still believe are fundamental to the formation of fledgling
computer scientists, but that risk falling by the wayside as a
consequence of the demise of the compilers course. At the
same time, we cast away many topics that are too compiler
specific, and whose continued presence (and emphasis) in

Author’s address: Computer and Information Science and Engineering
Department, University of Florida, E301 CSE Building, P.O. Box 116120,
Gainesville, FL 32611-6120, USA. Author’s email: manuel@cise.ufl.edu.
Author’s website: www.cise.ufl.edu/~manuel This work has been supported
in part by a gift from the Microsoft Corporation.

compiler courses contribute to the problem.
The remainder of this paper is organized as follows. In

Section II we discuss the particulars of the decline of the
compilers course. In Section III we discuss the current set of
problems that beset compiler courses everywhere, and justify
our assertion that reform is in order. In Section IV we present
our version of the modern Computer Translation course, and
its novel organization that resembles a spiral. We discuss the
advantages of our approach. In Section V we discuss
applications of our approach, outside of the area of
compilation. Finally, in Section VI, we present conclusions.

II. THE DECLINE OF THE COMPILER COURSE
No one questions that the compilers course is less central to

the Computer Science curriculum today, than it was some
years ago. There are many reasons for this.

First, there is the maturity of the compiler discipline itself.
Compiler construction techniques have evolved at a much
slower pace in recent years, and Computer Science curricula
tend to give higher importance to emerging technologies. The
traditional compilers course was a great opportunity for
exposing the student to a wide variety of data structures: trees,
symbol tables, graphs, etc., but those topics are now
considered sufficiently covered in basic courses such as Data
Structures.
 Another reason for the decline is the proliferation of
languages and paradigms in recent years, prompting CS
departments, curriculum experts, and textbook writers to focus
their efforts on issues of design and implementation of
programming languages, rather than the implementation
techniques traditionally covered in a compilers course. As a
result, CS curricula today are much more likely to require a
Programming Languages course, than a Compilers course.
 Yet another reason is that CS curricula are more aware now
that few CS graduates will make a living either writing or
maintaining compilers, and the skill-set required is considered
highly specialized. Similarly, fewer faculty make compilers
their main area of research, and as new, exciting topics in
Computer Science have made their appearance, such as
computer networking and issues related to the WWW, the
number of faculty willing to teach the compilers course has
diminished.
 Finally, there is the matter of trends in CS Curriculum.
During discussions leading to the 2001 ACM Computer

 A Modern Approach to Teaching Computer
Translation

Manuel E. Bermudez, University of Florida, Gainesville, FL, USA

A

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

Science Curriculum, Professor Mary Shaw of Carnegie-Mellon
University said, “Let’s organize our courses around ideas
rather than around artifacts … Engineering schools don’t
teach boiler design – they teach thermodynamics. Yet two of
the mainstay software courses – compiler construction and
operating systems – are system-artifact dinosaurs” [1]. The
2001 ACM-recommended curriculum addressed this problem
by relegating the compilers course to the status of
“advanced/supplemental” (i.e. elective) material.

III. REFORMING THE COMPILERS COURSE
The previous discussion regarding the demise of the

compilers course can be summarized in one phrase: times
change. Indeed, whenever times change, there are winners and
losers; there would seem to be little room in the CS
undergraduate curriculum of the future for a compilers course.
However, some of the problems that have made the compilers
course less popular in recent years are due to the organization
of the course material itself. We now enumerate some of
them.
• Most often, the compilers course is oriented towards the

implementation of a compiler. The traditional goal of
making it an exercise in writing “real” compiler is part of
the reason for the course being considered too specialized,
and no longer fundamental in the curriculum.

• The course project often conflicts with the topic sequence
in the course. The project usually consists of
implementing a compiler from scratch, perhaps with the
aid of tools such as lex [2]and yacc [3]. Students
implement the compiler as the term progresses,
developing the various compiler components as the
relevant topics are covered in the course. There is often a
mismatch between the material coverage in the textbook
(and in class) and the project. To design and implement
one compiler phase, it is often necessary to understand
how its design will affect later phases, which have not yet
been covered in the course. Since the size of the project is
prohibitive for a single student, instructors typically assign
teams of students to develop one or more compiler
components. This results in individual students being
exposed to only one part of the compiler, or only one part
of the language being implemented. The student misses
out on the “big picture” of the entire translation process,
until perhaps the very end of the course. For that student,
the course is like a mystery novel: the outcome (and plot)
is not revealed until the very end. In addition, if the
compiler is implemented from scratch, the student does
not see actual results until the very end of the course. If
the implementation effort falls short, or is plagued with
last-minute problems, the student often winds never
having a fully working compiler. Because of this, the
compilers course is often perceived by students as being
“esoteric”, “difficult”, and “frustrating”. All of this tends
to reduce its popularity.

• The classical textbook on Compilers by Aho, Sethi and
Ullman [4], known as the “Red Dragon” book, is not
pedagogically well-suited for an undergraduate course. It
a large, comprehensive book, appropriate for graduate
courses, which the authors themselves recognize is too
large and unwieldy for typical the undergraduate course.
The material is covered very much in depth, and various
compiler instructors have characterized using it in a
course as the “read 10 pages, skip 30” approach. The
second edition of this book was published in 1986, and
given the decline of the compilers course, the authors
themselves doubt there will ever be a third edition.

• Frustration with the Red Dragon book has led many
authors to pen their own versions. However, it is safe to
say that all other textbooks consist of that author’s
favorite subset of the topics in the Red Dragon book, in
the same sequence [5,6,7,8,9,10,11,12,13,14,15,16,17,
18,19]. In the next section, we detail our own completely
different sequence of topics.

• Regardless of textbook, the typical compilers instructor
finds him/herself unable to cover all of the material in one
semester, and with two-semester compiler course
sequences being essentially extinct, the problem of too
much material remains. To solve this problem, instructors
resort to various schemes. They emphasize, de-
emphasize, or flatly leave out topics in a haphazard way,
often based on their familiarity (or unfamiliarity) with the
topics. With fewer and fewer instructors being compiler
experts themselves, the decisions being made are often not
the best pedagogical ones.

The principal problem with compiler courses in the past has
been precisely that – the focus on compilation. The underlying
principles of translation, including syntax recognition and
semantic processing, transcend compilation. In addition, the
decreasing popularity of the compilers course is due, in our
opinion, to the mismatch between the sequence of course
topics, and the sequence of implementation efforts. We now
proceed to describe our solution to this problem.

IV. THE NEW DESIGN
Here we present our new course design. It is based on the

following premises:
• We rename our course design as Computer Translation

with Applications. Although compilation is still one of the
most common (and dominant) applications, we intend to
remove a good number of compiler-specific issues, such
as code generation for an actual processor, code
optimization, register allocation, and floating-point
arithmetic. We will also introduce the application of
translation in other areas of Computer Science, such as
command-line processors and user interfaces.

• The course design revolves around the implementation
project. The project consists of maintaining and

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

extending an “initial” compiler, rather than implementing
a compiler from scratch. The initial compiler is the
implementation of an imperative C-like language that is
minimal. The students extend and maintain the compiler,
adding new constructs as the term progresses.

• In the new course design, we cover only the topics that are
fundamental to translation, such as parsing, symbol
management, and generation of code for a simple stack-
based abstract machine.

• We specifically eliminate the traditional goal of having
the students implement a “real” compiler.

Table 1 shows a side-by-side comparison of the old and new
topic sequences.

In the old approach, the topics are covered in the order in
which the compiler itself proceeds with its work. This order
happens to match the order in which an experienced compiler
write might go about his/her implementation task, which (by
the way) is one reason this order has rarely, if at all, been
questioned in the past.
 In the new approach, the students are given a complete
working compiler for a minimal, imperative, C-style language.
 The language has variables of data type integer and boolean,
and the ability to declare them. The language contains an
assignment statement, a while statement, an if statement,
and a print statement. The initial compiler implements
only the unary minus operator, and the binary addition and ≤
operators. An intrinsic read function is used for input.
 The implementation of the compiler will use yacc (or
similar software for Java and C#), with a preprocessor
program that translates regular right-part grammars into the
pure context-free descriptions typically required by those
software packages. Figure 1 shows the syntax of the initial
language, which we call Tiny.
Tiny -> 'program' Name ':' Dclns Block '.'
Dclns -> 'var' (Dcln ';')+

->
Dcln -> Name list ',' ':' Type
Type -> 'integer'

-> 'boolean'
Block -> '{' Statement list ';' '}'

Statement -> Name '=' Expression
-> 'output' '(' Expression ')'
-> 'if' '(' Expression ')' Statement

'else' Statement
-> 'while' '(' Expression ')' Statement
-> Block

Expression -> Term
-> Term '<=' Term

Term -> Term '+' Primary
-> Term

Primary -> '-' Primary
-> 'read'
-> Name
-> '<integer>'
-> '(' Expression ')'

Name -> '<identifier>'

 Figure 1. The syntax of Tiny.

 The initial compiler will have a highly extensible and
modifiable design. Implementations are under construction in
C++, Java, and C#, to maximize the flexibility of the
instructor.
 The new approach resembles a spiral: students repeatedly
visit every component of the compiler (scanner, parser,
contextual constrainer, code generator), to add new constructs
or features. With each visit, the student gains deeper
understanding of the translator’s architecture, components, and
structure. Thus, we progress from the simple concepts to the
complex, rather than from “front” to “back” of the compiler.
 The differences between the two approaches are described
in the Tables 2 and 3.

 The disadvantage of the traditional approach is quite

evident: each topic, say, syntax analysis, must be understood
by the student in its entirety in order to implement the various
constructs in the language. Furthermore, the implementation
of the lexical analyzer is done all at one time, for the entire
language, before moving on to the next compiler component.

Table 1. Compilers/Translation Course Design

 Old Design New Design

1. Introduction Introduction
2. Language description Initial Language Description

3. Lexical Analysis Initial compiler Description
4. Syntax Analysis Translation of Operators
5. Semantic Analysis Translation of Statements
6. Code Generation Translation of Data Types
7. Code Optimization Translation of Subprograms
8. Run-time Structures Translation of Arrays
9. Final Code Emission Translation of Structures
10. Applications

Table 2. Traditional Compiler Course Design

 Lexical
Analysis

Syntax
Analysis

Static
Semantics

Code Gen-
eration

Operators

Statements

Data
Types

Functions

Arrays

Structures

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

In contrast, in the new approach, the entire translation

process of, say, operators, is discussed and implemented,
before moving on to the next (more complex) language
construct. This involves modifying the entire compiler, from
front to back. Early on in the course, e.g. for operators, the
student mimics what he/she sees already implemented in the
compiler. Later in the process, when the student’s
understanding and mastery of the workings of the compiler
have improved, the student will be ready to handle the more
complex constructs. Perhaps the biggest advantage is that the
student experiences a working, functional compiler from the
first day, and the successful student project keeps it that way.
 The architecture of the compiler writing system is shown in
Figure 2.

Figure 2. Architecture of the Translator Writing System

The current version of the system, written in C, utilizes lex
and yacc. The grammar for Tiny, shown in Figure 1, allows
regular expressions in the right-hand-sides of the production
rules. This grammar is transformed into a pure context-free
grammar, in the (arcane) notation suitable for yacc, by a
preprocessor program called pgen. This program also
generates, automatically, the C code necessary for construction
of the parse tree.

V. APPLICATIONS
Although compilation is the principal example of computer

translation, there are many situations outside of compilers in
which the central principles of translation are useful.
Examples of this include data mining, command-line
processors, translation of various markup languages such as
XML, and both graphical and non-graphical user interfaces.

Part of the on-going research reported here involves seeking
out prime examples of such applications, and incorporating
their discussion into the design of the course.

Pedagogically, there is a potential additional windfall. It is
well known that Computer Science graduates often leave the
university without ever having implemented a truly large piece
of software, say, with more than 20,000 lines of code. The
reason is simple: no course or even course sequence can
reasonably make such demands on a student's time. Still, a
recurring theme among Computer Science educators is the
question of where to obtain the practicum, i.e. how to expose
the student to a well-written, well-structured, maintainable,
good quality, large piece of software.

I believe a properly structured translators course can be a
vehicle through which students acquire their first experience
with a truly large program, by performing an extensive amount
of maintenance on it, and by addressing the issues of redesign
and software reuse in a large program.

VI. CONCLUSIONS
We have presented our new design of a computer translation

course for Computer Science undergraduates. The new design
is a radical departure from the traditional design. Rather than
discussing the topics in the order in which the compiler does
its job, we discuss the topics in increasing order of complexity.
We also intend to keep only those topics that are fundamental
to CS, such as syntax recognition, and discard most highly
specialized, compiler-specific topics.

REFERENCES
[1] ACM Computing Curricula, Final Draft, December 15, 2001,

www.computer.org/education/cc2001/final
[2] M.E. Lesk and E Schmidt, Lex - Lexical Analyzer generator,

http://dinosaur.compilertools.net
[3] Stephen C. Johnson, Yacc – Yet Another Compiler-Compiler,

http://dinosaur.compilertools.net
[4] Aho, A. Sethi, R., and J. Ullman, Compilers – Principles, techniques

and Tools, second edition, Addison-Wesley, Reading, Massachussetss,
1986.

 Lexical
Analysis

Syntax
Analysis

Static
Semantics

Code Gen-
eration

Operators

Statements

Data
Types

Functions

Arrays

Structures

Table 3. New Compiler Course Design

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

[5] Steven John Metsker, Building Parsers With Java, Addison Wesley,
2001.

[6] Watt, D., and Deryck Brown, Programming Language Processors in
Java, Prentice Hall, 2000.

[7] James Holmes, Building Your Own Compiler with C++, Prentice Hall,
1995.

[8] Fraser, C., and David Hanson, A Retargetable C compiler: Design and
Implementation, Benjamin Cummings, Redwood City, California, 1995.

[9] Jim Holmes, Object-Oriented Compiler Construction, Prentice Hall,
Englewood Cliffs, New Jersey, 1995.

[10] Pittman, T., and James Peters, The Art of Compiler Design: Theory and
Practice, Prentice Hall, 1992.

[11] Fischer, C., and Richard Leblanc, Crafting a Compiler with C,
Benjamin Cummings, Redwood City, California, 1991.

[12] Allen Holub, Compiler Design in C, Prentice Hall, Englewood Cliffs,
New Jersey, 1990.

[13] Peter Rochenberg, A Compiler Generator for a Microcomputer,
Prentice Hall, Englewood Cliffs, New Jersey, 1989.

[14] Peter Lee, Realistic Compiler Generation, MIT Press, Cambridge,
Massachusetts, 1989.

[15] Fischer, C., and Richard Leblanc, Crafting a Compiler, Benjamin
Cummings, Menlo Park, California, 1988.

[16] Peter C. Capon, Compiler Engineering Using Pascal, Macmillan, 1988.
[17] Tremblay, J., and Paul Sorenson, The theory and Practice of Compiler

Writing, McGraw-Hill, New York, New York, 1985.
[18] Arthur Pyster, Compiler Design and Construction, PWS Publishers,

Boston, Massachusetts, 1980.
[19] Barret, W., Bates, R., Gustafson, D., and John Couch, Compiler

Construction, Theory and Practice, second edition, Science Research
Associates, Chicago, Illinois, 1979.

	INTRODUCTION
	The Decline of the Compiler Course
	Reforming the Compilers Course
	The New Design
	Applications
	Conclusions

