
1

Abstract— In E-business persons and/or institutions may

permanently co-operate in a closed fashion, they may occasionally
meet for a short period of time or a limited transaction; or they
may form an open community with changing roles of participants,
e.g., peer-to-peer, service provider and client, supplier and
customer. It is a demand to provide architectural guidelines for
design with as minimal complexity as possible. We concentrate,
due to its importance, on the latter case – open communities in E-
business–. Thereby consider software architecture topics in the
context of a realization by software components, following a flow
paradigm and hierarchical composition, and emphasize
functional support offered by components through agent
technology, e.g., for E-mail document analysis and workflow
processing. A component development environment, HOTAgent,
is elaborated to demonstrate our approach in component
architecturing. Experience in an ongoing project, HOTxxx, is
shortly reported motivating our approach.

We expect, following our ideas, a more integrated, consistent
approach of software component design enhancing E-business
communities.

Index Terms— Open E-business communities, component
architecture, component composition, functional support offered
through agent technology, E-mail analysis, workflow aspects,
HOTxxx

I. INTRODUCTION

here are various forms of E-business communities:

• Persons and/or institutions may permanently co-operate
in a closed fashion – intranet and private internet –,

• they may occasionally meet for a short period of time or
a limited transaction – surfing in public internet –; or,

• they may form an open community with changing roles
of participants.

D. Handl is with Darmstadt University of Technology, Department of
Computer Science, Wilhelminenstr. 7, 64283 Darmstadt, Germany (e-mail:
handl@pu.informatik.tu-darmstadt.de).

H.-J. Hoffmann is with Darmstadt University of Technology, Department
of Computer Science, Wilhelminenstr. 7, 64283 Darmstadt, Germany (e-mail:
hjhoffmann@informatik.tu-darmstadt.de).

L. Martin is with Darmstadt University of Technology, Department of
Computer Science, Wilhelminenstr. 7, 64283 Darmstadt, Germany (phone:
+49 6151 16 6710 ,e-mail: martin@pu.informatik.tu-darmstadt.de).

In this paper, we concentrate on the latter case – open com-
munities –. Typical occurrences are, to give some examples:

• peer-to-peer – e.g., in a B2B-correspondents´
community –,

• service provider and client – e.g., a commercial
business community –,

• supplier and customer – typically a B2C-trading
community –.

Following established software engineering approaches
components are used to design and implement E-business
systems for open communities. Re-usability of components by
means of some appropriate system partitioning and, later on,
composition techniques is of paramount interest, allowing
realization of E-business systems also by non-professional
application programmers.

What is a good component architecture to achieve these
goals? Szyperski [27] defines: “A component is a unit of
composition with contractually specified interfaces and
explicit context dependencies only. A software component
may be deployed independently and is subject to composition
by third parties.”. Section 2 goes into details. It is important to
be open for components hierarchically architectured by
enclosing further components as needed.

From a functional point of view we consider components,
appropriately partitioned and – may be – composed from
enclosed ones, to realize what we call an agent functionality.
Again, we start with a definition (Hong et al. [13]): “Software
agents are entities that function autonomously and perform
laborious information processing tasks cooperatively.”. To
intentionally decrease design complexity (Hoffmann [9]) we
have to find a good balance between agents´ intelligence and
agents´ simplicity.

In subsections 3.A through 3.D we identify, following some
appropriate partitioning, decomposition, and functional
division strategies for components, architectural attempts for
structuring and mapping components with individually
assigned agent functionality. As a running example, we
consider a repair service system (RSS) for electronic
equipment in a B2C application. E-mail document analysis and
workflow processing are main functionalities of the considered
RSS agent (RSSA). Customers may buy wearing parts from a
catalogue, a rather straightforward transaction. In addition,
there is a diagnosis agent which helps in cases of malfunction
or breakdown to identify the cause and probably the spare part

Enhancing the E-business community by
software component technology

Daniela Handl, Hans-Jürgen Hoffmann, Ludger Martin

T

2

to be replaced. This additional service is subject of interest in
the example at hand. An initial standard scenario – linear
progression – would be as follows:

A customer sends an E-mail document to RSS. The E-mail
contains a description of the faulty behaviour.

The RSSA composed of a linked set of minimal components
analyses this description in terms of the defect (the technique
of analyzing natural language is beyond the scope of this
paper; the analysis is therefore reduced to a keyword matching,
see below in subsection 3.A) and thereafter specifies the
broken part.

To design and to implement an E-business system following
our ideas Martin has researched specific design tools (called
HOTAgent, [21]). HOTAgent is a visual component
development environment to construct agents for E-business.
Section 4 shortly presents the tools. In section 5 we relate the
work presented here to the long-range project HOTxxx [10]
where it is a part of.

II. SOFTWARE COMPONENTS FOR E-BUSINESS PROCESSES

A wide range of transactions is handled over the internet. As
more people and companies are participating in E-business,
trade procedures become sophisticated and marketable goods
multifaceted.

In order to attract customers, several add-on services are
popular and often common standard, e.g., providing search
facilities, links to possibly useful sites, and detailed product
information.

As a result, a customer has a huge amount of possible goods
at his disposal and a virtual unmanageable quantity of
connected information. Yet this abundance of – at least in
theory – accessible goods, is what makes E-business
worthwhile.

Software component technology is a possibility to enhance
electronic transactions, as will be shown below.

A. Components
Under the point of view of object-oriented software design a

component consists of several classes which are encapsulated
by a set of well defined interfaces. The interface is the sole
public part of the component. All other classes of the
component are private. The interfaces ensure the
communication between all components. Because of this
reason a component can be regarded as a black box.

To communicate, every component provides entrances and
exits. Lüer and Rosenblum [17, 18] call the entrances requires
ports and the exits provides ports. Communication is based on
an event mechanism, which enables all components to
communicate with each other independently of their task.

Lüer and Rosenblum demand self-documentation of
components. Components need to be well documented to
ensure a proper usage. This documentation, including a
description of the functionality of the component itself as well
as of the respective associated agent(s) which realize their
functional behaviour . The documentation should not be
deployed separately but should be included in the

component(s) themselves.
We speak of top system component, intermediate

component(s), minimal component(s) in order to consider
hierarchically composing components; we don´t restrict to tree
hierarchy only.
top system component: This is a synonym to the “covering”

component of the main program as finally realized and
conceived to be the entry/activation point for the runnable
system.

intermediate components: They (optionally) help to structure
the system into coherent parts each one related to an
identifyable behaviour. In so far they may be related to
subordinate agents. The separation should allow to master
complexity.

minimal components: These are the leaves in the hierarchy
and realize elementary functionality.

B. Software components as a solution
With the depiction of software components in the former

subsection 2.A, let’s have a look at the accruing advantages,
considering some principal tasks of E-business.

One major advantage of E-business are (in theory) the wide
ranges of customers, suppliers and goods. So, there is an
enormous potential of trading people, dealing with even more
trading goods.

Even though in every business process there are universal
tasks to be dealt with, the very way in which to fulfil them
differs among customers as well as suppliers and of course due
to specific properties of goods.

Since components have contractually specified interfaces,
capsulating their algorithms for the assigned task, software
components may be launched independently. In different
businesses there are always similar tasks; so, it is possible to
re-use specific components. There might be components able
to communicate with the trading correspondents’ systems due
to a common protocol or other components meeting the
demands of individual customers’ / suppliers’ businesses.

Communication via the components’ interfaces is
independent of their task, and components should document
themselves, so that they may even be broadly re-used. Because
of this reason it is also possible to buy components of-the-shelf
from third parties. It is not necessary to create all components
on it’s own.

III. PARTITIONING

After describing the basics of component technology
applied in our work and presenting our running example it is
interesting how to divide the RSS top system component and
its associated agent up into intermediate and minimal software
components. We investigate some architectural attempts which
are presented in the following text.

A. Linear processing
In our first, initial attempt (see Clausius [4]; no top

component put out, please wait for section 3.C / 3.D) all (here)
intermediate components are connected in a linear order to

3

construct the RSS. The first component receives the initial
data, processes these, and forwards results to the next
component. This works according to the fixed pattern until the
last component processed the data and provided the results.

Using this attempt the components are very special. The
components are created only for this purpose and may not be
re-used easily. An other disadvantage is, that all data need to
be forwarded from the first to the last component in the chain,
e.g., the E-mail addressing data are received by the receive E-
mail component and must be forwarded to the send E-mail
component.

The RSSA (actually four independent, subordinate
components as no top component is provided) may be divided
in the following components (see Figure 1a):
receive E-mail: This component accepts an electronic mail

with a request for repair service in the guarantee period
following purchase of an equipment. After receiving a mail
it activates the complete processing of the document. The
component forwards the E-mail addressing data and the
letter text.

analyse E-mail: The agent needs to analyze the document for
a description of the faulty behaviour. To do this, this
component is provided. To simplify the agent as mentioned
earlier, this components searches only keywords and does
not use intelligent algorithms to find symptoms; details of
text analysis are beyond the scope of the paper. It forwards
the symptoms of the faulty behaviour and the E-mail
addressing data.

find broken part: Using found symptoms the broken part can
be found in a data base. This component forwards the
broken part and also the E-mail addressing data of the
customer.

send E-mail: The last task to do is preparing the answer E-
mail. The answer must explain the broken part. In the end
the E-mail needs to be returned to the customer.

B. Looping and transactions’ archiving
Linear processing is not sufficient in considering serial

activities in E-business. There has to be an component for
starting the process explicitly; in our running RSS example we

call it the purchase component (see Figure 1b; we still don´t
put out a top component):
purchase: The customer buys the considered equipment.

There are different sequencing paradigms available for
structuring in process models, e.g., control flow, data flow,
and, most appropriate in the context of E-business, workflow.
Parallel processing (which we do not consider in detail here)
encompasses the same paradigms in the threads. In all cases
branching to form conditionals and loops may occur.
Following this we modify RSS (Figure 1a) as shown in Figure
1b.:
guarantee: If the guarantee period expired RSS processing is

finished.
Now we have a looping structure. In the RSS example there

has also to be a wait component:
wait: The component stops treatment of the process till a new

repair request arrives.
And note, in Figure 1a there is no state-conserving archiving

involved; any further request by the same customer is handled
without re-access to any previously received E-mail. A variant
of this architectural attempt includes state-conserving
archiving with either
1. An additional “centralized”, semi-hidden/permanent

intermediate component archive initialized, e.g., when the
customer buys an equipment and alive till end of the RSS
service guarantee period – see Figure 1b), or

2. specific archiving information bound to all RSS events
originating from the customer relating to the considered
equipment in one mutually exchanged document (see
Figure 1c; details of this variant in a more typical context
see section 5).

archive: This component realizes a sequential data set
archiving all E-mail inqueries and replies for the
considered transaction by the resp. customer (belongs to
Figure 1b).

... + archive update: These components replace the cor-
responding components shown in Figures 1a/1b as needed
for case (ii) illustrated in Figure 1c.

Figure 1a: RSS agent with linear processing

Figure 1b: RSS agent with linear processing in a loop involving initialisation at time of purchase, sending request,
answering, and eventually finishing (guarantee period ended), central archiving

4

C. Service and control components
Another possibility is to introduce and then to decompose a

top RSS system component into service and control
components (see Clausius [4]) to bring the respective
functionality and behaviour into sharper focus. Every RSS has
one control component as an intermediate component in the
architectural hierarchy. This component, essantially, realizes
the main behaviour of the RSSA and is used to control the
activities of the service components on the next lower level
(which may be intermediate or minimal), see especially Figure
2. Service components have a good re-usability.

The control component of the RSSA is responsible for the
following task:
control: This component represents the state of the agent. Its

task is to coordinate several work steps. The control
component uses several service components and assigns
small working steps to them. To do this the control
component has requires and provides ports to communicate
with service components. The control component is
designed specially for the needs of the RSSA. Because of
this the component needs to be created manually using a
textual programming language.

Beside the control component the agent needs service
components as described below:
... data base/set: This component can store any data. Stored

data can be identified with a key. The data base supports
inserting and deleting data. In addition it supports also data
base queries with user defined criteria.
The data base component may be used on two places in the
RSSA. In part data base the possible symptoms with the

parts are stored. The transaction data set is used to store
data about customers and transactions.

text analysis: The agent needs to analyze electronic
documents. To do this in our running example it is only
necessary to recognize key words in a text. To simplify the
agent, as mentioned earlier, this component searches only
key words. If the RSSA is used in a real environment it is
no problem to replace this component using a more
powerful one.

communication: This component is used to handle the
communication between the business
partner/correspondent and the agent.

D. Composed control components
As mentioned before every control component needs to be

constructed specifically for every component. This is done
(textually) in a normal programming language. It would be
better to architecture such a component also using predefined
components. Giesl [6] describes how to compose (top or
intermediate) components using (lower level) intermediate or
minimal components. We show it in our RSS example by
composing the control component introduced above (Figure
3). It is architectured using other, minimal components. These
minimal components are, e.g., distributor, selector, condition,
or repeat components. Here, software design patterns may be
introduced into the design.

In the following two sections we present a component
development environment, HOTAgent, realizing the concepts
as discussed above – section 4 –, and its project surrounding
where it is part of, the HOTxxx project – section 5 –.

Figure 1c: RSS agent with linear processing in a loop involving initialisation, sending request, answering, and eventually finishing
(guarantee period ended), archiving all transaction data in exchanged E-mail document

Figure 2: Service and control components

5

IV. HOTAGENT TOOLS

The HOTAgent [21] development environment is presented
more elaborated in [20]. It is a component framework to
construct agents for electronic commerce. The framework
provides a special set of pre-fabricated components to
facilitate the construction of agents. The agents could
undertake the task of doing routine work, as described above.
The HOTAgent development environment offers different tools
to develop components, to test components, and to compose
agents using components. During the development of
HOTAgent the concept of component technology is
consistently used. All developed tools have a similar GUI
(Graphic User Interface) to ensure that the developer feels
familiar with all tools if he knows one. The different tools are
all integrated in each other; so it is, e.g., possible to create a
test case while creating a new component.

The simplest way to create new GUI components is to use
the HOTAgent PATTERN COMPONENT editor (under
development). The first step is to place graphical elements into
a workspace. The elements have different shapes and colors.
The second step is to assign behavioural patterns to the
elements, e.g., an element may be moved on a line or plane.
The editor creates all necessary classes for the new component
on its own. Using this editor, new control mechanisms for a
user interface may be created.

The HOTAgent COMPONENT editor [22] is an all-purpose
editor. It is good for constructing components. It supports the
programmer by creating new components using other existing
components. They may be placed on a workspace and may be
connected with each other and new component requires and

provides ports. Using this editor, a programmer may construct
components without knowing very much about the underlying
component model.

Using the constructed components, it is possible to build
complete applications. This is done with the HOTAgent
ASSEMBLY editor [22, 23]. New applications may be created
using existing components similar to the method in the
HOTAgent COMPONENT editor. HOTAgent ASSEMBLY allows
easy and clear composition of agents for E-business. It is also
possible to maintain composed agents by replacing whole
components or changing connections between components.

The HOTAgent TEST [24] tool tests components. The tool
supports the component developer and component assembler
by testing components as black boxes using defined requires
and provides ports. HOTAgent TEST is suitable for component
integration testing. The test tool enables the tester to specify a
test case in a visual way. In addition, HOTAgent REGRESSION

supports regression tests. The tool allows the execution of
several test cases at the same time and the inspection of a
possibly faulty test case.

The HOTAgent VISUALIZE tool [25] provides a three-
dimensional visualization of component programs’ runtime
behaviour based on dynamic analysis. Communication
between components is dynamically analyzed and gathered
data may be filtered. The visualization is three dimensional
and the focus may be chosen: either the whole program
execution may be viewed at the same time or the developer
may zoom into special regions. HOTAgent VISUALIZE is also
useful for testing component programs.

Figure 3: Composed control component

6

V. ABOUT THE HOTXXX PROJECTS

The research described here is part of the ongoing HOTxxx
project ([10, 12]), started early in 1995. Considering its
development it will be possible to motivate the research
reported here.

Originally, the work started in research and development of
a flexible document management system, HOTDoc ([2, 3]). At
first, Buchner´s work was intended as a study advancing
OpenDoc, OLE, and OOE. The basic idea was to have an
automated electronic document folder into which a variety of
document parts may be inserted, even hierarchically nested,
viz., editable text, multimedia contributions, a running clock,
an operable spreadsheet (HOTCalc), a linking mechanism
between parts (HOTScript) allowing, e.g., to connect
spreadsheet data with a business graphic (HOTDraw), an
interaction facility with buttoned parts, to mention some initial
and, in our opinion, interesting features. The system was
architectured and realized in form of a Smalltalk framework.

1998 it became obvious that the framework architecture is a
limiting factor for further extensions (although, in principle,
Smalltalk provides powerful dynamic extension capabilities).
Insertion of HOTScript instantiations – in its application cases
really considered to be individual “components” – and early
Internet access extensions exhibited difficulties for integration,
especially due to its origin in simultaneous development in
students´ thesis work. Further, powerful and complex HOTxxx
components recently completed (HOTSimple – a simulation
and planning tool in form of a rather advanced spreadsheet –
[15]) and presently under work (HOTFlow – an Internet-based
workflow control system – [7]; and HOTAgent – a routine
processing extension, see section 4 –), again, supported this
unsatisfactory observation.

During the E-business ad-hoc hype, 1998 – 2001, HOTDoc,
with these components included, also became a part of
MALL2000 – commercial name WEST-EAST TRADE – ([8,
11, 19]) with specific extension for a XML-based
communication component for Internet access [16] to support
a B2B community of business correspondents.

Component technology in general became a promise to
overcome integration difficulties. Under the same basic idea of
HOTDoc, parts (now components) should be possibly
hierarchically nested. Research on hierarchical composition
facilities with an adequate concept to master complexity by
system partitioning down from the top to minimal components
as discussed in this paper shows up to be a solution.

The approach we are presently looking for in further
development of HOTxxx is already sketched in Figure 1c;
archiving information, under the metaphor of a folder, is
bound to a document exchanged under workflow control
between B2B-correspondents; one business activity covered in
one folder with, for the situation being, a specifically and for a
limited period of time established E-business community,
organized for activities as, e.g., negotiation of as business
opportunity, treatment of an unique business event, etc.

VI. RELATED WORK

Now back to the general discussion of software components
as a means to enhance E-business communities!

A short notice of Sandholm [26] gives some ideas of
components and negotiation techniques in a different
application context. He reviews six techniques to make
interaction between agents and their components more
efficient. He only talks about communication and not how to
partition agents into components.

Baster et al. [1] describe the process of building a
component end-user computing architecture to bridge the gap
between domain expertise and technology skills. They propose
to construct a component framework with six layers for task
specific components: presentation layer, business process,
business components, foundation components, persistent data,
and computing infrastructure. One of the main problems is to
identify a component candidate. Therefore development
experience and sophisticated tools are required. HOTAgent
supports the user by finding components. Furthermore Buster
et al. explain, components need to work consistently which
must be guaranteed by the component framework. It is also
necessary to leverage the skills of business and technology
groups to create good applications.

Hong et al. [13] describe an architecture for software agents
using four different types of components: sensing components,
communicating components, executing components, and
control components. They define a grammar how to combine
these types of components. Our approach, HOTAgent, is more
easy because we have only service components, which include
the first three component types of Hong et al., and control
components. The structure of control components is similar
complex as our control components.

Kinikoglu and Yudav [14] give some more motivating
arguments for our work. Their architecture proposal includes
involvement of agents dscribing some more general,
interesting service components. What they call Software
Components Agents Mediator SWCAM is related to our
control component, however not so clearly distinguished from
service components and not the central connection point for
them.

“... there will be thousands of open-market components
available ...” is a central remark in a paper by Erdur and
Dikanelli [5]. We think that our software engineering oriented
research will help to master the complexity on partitioning and
decomposing components supported by appropriate tools.

VII. SUMMARY

Component technology still lacks some guidance for
appropriate structuring, partitioning, and composing of
involved components. In the scope of the HOTxxx project we
discuss some architectural attempts for enhanced solutions
useful to support E-business communities. One guiding
principle for component-based development may be found in
the workflow process of an E-business application, i.e., a form
of linear processing as discussed in subsections 3.A and 3.B.

7

Another guiding principle may be differentiating between
service and control components (subsection 3.C). To master
complexity hierarchical composition of components may be
useful (subsection 3.D).

In the development environment HOTAgent (section 4;
described in more details elsewhere [20 - 25]) a set of
development tools and pre-fabricated components are made
available for the construction of E-business agents, i.e.,
software artifacts to achieve business transactions between
communicating persons/institution.

In a running example, Repair Service System RSS, we
demonstrated our architectural approach in an application
following our guiding principles for component system design.

REFERENCES

[1] Greeg Baster, Prabhudev Konana, and Judy E. Scott. Business
components: a case study of bankers trust Australia limited.
Communication of the ACM, May 2001.

[2] Jürgen Buchner. HotDoc, ein flexibles System für den kooperativen
Aufbau zusammengesetzter Dokumentstrukturen. Doctoral thesis,
Department of Computer Science, Darmstadt University of Technology,
March 1998.

[3] Jürgen Buchner. HotDoc, a framework for compound documents. ACM
Computing Surveys, vol. 32, number 1, March 2000 (access through
ACM Digital Library).

[4] Thorsten Clausius. Komponenten zur Konstruktion von Agenten.
Diploma thesis, Department of Computer Science, Chair Programming
Languages and Compilers, Darmstadt University of Technology, Juli
2001.

[5] Riza Cenk Erdur and Oguz Dikenelli. A Multi-Agent System
Infrastructure for Software Component Market-Place: An Ontological
Perspective. ACM SIGMOD Record, Vol. 31, No. 1, pages 55-60,
March 2002.

[6] Anke Giesl. Entwicklung von Komponenten-Entwicklungsumgebungen.
Diploma thesis, Department of Computer Science, Chair Programming
Languages and Compilers, Darmstadt University of Technology,
November Januar 2001.

[7] Daniela Handl. HotFlow: E-Commerce processes from a
language/action perspective. In: Dilip Patel et al (Eds): OOIS 2000. 6th
International Conference on Object Oriented Information Systems
(Proceedings), pages 95 – 101. 2001.

[8] Hans-Jürgen Hoffmann. MALL2000+, a vision for a virtual marketplace
for businessmen. In J.-Y. Roger et al. (eds.): Advances in Information
Technologies, The Business Challenge, IOS Press, pages 247-254, 1998.

[9] Hans-Jürgen Hoffmann. “Less is more” in B2B. In Proc. SSGRR 2001,
Intl. Conf. Advances in Infrastructure for Electronic Business, Science,
and Education on the Internet, L`Aquila, Italy, August 2001, CD-ROM.

[10] Hans-Jürgen Hoffmann. Unterstützen elektronischer Geschäftsprozesse:
Das HOTxxx-Projekt. In P. Horster (ed.) – Elektronische
Geschäftsprozesse, it-Verlag, pages 227-241, 2001.

[11] Hans-Jürgen Hoffmann and Daniela Handl. Document exchange as a
basis for business-to-business co-operation. In J.-Y. Roger et al. (eds.) –
Business and Work in the Information Society: New Technologies and
Applications, IOS Press, pages 325 – 331, 1999.

[12] Hans-Jürgen Hoffmann et al. Mall2000 Home page. http://www.
informatik.tu-darmstadt.de/PU/projekte/MALL2000, accessed August
24, 2002.

[13] Liu Hong, Zeng Guanghou, and Lin Zongkai. A Construction Approach
for Software Agents Using Components. ACM SIGSOFT Software
Engineering Notes, 24(3): pages 76 – 79, May 1999.

[14] Pinar Kinikoglu and Surya B. Yadav. An Agent Based Architecture for
Componet-Based Software Development, undated: http://hsb.baylor.
edu/ramsower/acis/papers/kinikogl.htm, accessed August 13, 2002.

[15] Thomas Kunstmann. Rechnergestützte Simulation und Planung auf der
Grundlage von Tabellenkalkulation. Doctoral thesis, Department of
Computer Science, Darmstadt University of Technology, February
2002; ISSN 1435-6260.

[16] Stefanie Levasier. Ein XML-Standard für dynamische
Arbeitsablaufsteuerungen. Diploma thesis, Department of Computer
Science, Chair Programming Languages and Compilers, Darmstadt
University of Technology, April 2001.

[17] Chris Lüer and David S. Rosenblum. Wren - An Environment for
Component-Based Development. Technical report, Department of
Information and Computer Science, University of California, Irvine,
September 2000.

[18] Chris Lüer and David S. Rosenblum. Wren - An Environment for
Component-Based Development. In Proceedings of the Joint 8th
European Software Engineering Conference and 9th ACM SIGSOFT
Symposium on the Foundations of Software Engineering, pages 207 –
217, September 2001.

[19] Mall2000 project consortium, EU project INCO 977041. Home page.
http://www.we-trade.org, accessed August 16, 2002.

[20] Ludger Martin. Visual Development Environment Based on Component
Technique. In Proceedings IEEE Symposia on Human-Centric
Computing Languages and Environments, pages 346 – 347, September
2001.

[21] Ludger Martin. HOTAgent homepage. http://www.gkec.informatik.
tu-darmstadt.de/HotAgent/ accessed November 2002.

[22] Ludger Martin. Visual Composition of Components. The 6th IASTED
International Conference Software Engineering and Applications, pages
501 - 508, November 2002.

[23] Ludger Martin. HotAgent Component Assembly Editor. In Schneider,
Jean-Guy and Markus Lumpe (editor): Proceedings Workshop on
Component Composition Languages, page 25 – 32, September 2001.

[24] Ludger Martin. Visual Component Integration and Regression Test.
ICSR7 2002 Workshop on Component-based Software Development
Processes, April 2002.

[25] Ludger Martin, Anke Giesl, and Johannes Martin. Dynamic Component
Program Visualization Working Conference on Reverse Engineering,
pages 289 - 298, October 2002.

[26] Tuomas Sandholm. Agents in Electronic Commerce: Component
Technologies for Automated Negotiation and Coalition Formation. In
Proceedings of the Third International Conference on Multi Agent
Systems, 1998.

[27] Clemens Szyperski. Component Software: Beyond Object-Oriented
Programming. Addison-Wesley, 1998.

