
1

A Minimal Calculus for Situated Multi-Agent Systems ∗

Chrysafis Hartonas
Technological Education Institute of Larissa, Greece

hartonas@teilar.gr

Abstract

We present a process-algebraic approach to situated multi-agent systems which in-
corporates syntax for agent systems as well as for the environments (workspaces) they
live in. Agent states are characterized by (1) a belief state, (2) a goal (desire, need) state
and (3) a capabilities state. Capabilities are determined by a subspace of the workspace
the agent lives in, and they are represented in the agent state as a collection of types
of objects (tools, in the agent’s workspace) the agent has the expertise (or permission)
to use. Action capabilities are then just permissible transformations of workspaces, re-
stricted to the particular capabilities space of the agent. Workspaces (certain kinds of
collections of objects, modelled here as simply typed records of labelled attributes) and
workspace transformations (record update operations) are structured into a transition
system. We use a simple model of objects as records and, therefore, of workspaces
and thus we only deal in this report with deterministic environments. Transitions are
determined by agent actions (modifications of properties of objects in their capabilities
space, modelled as record update operations), thus allowing for a formal account of
agent systems living in an ever changing environment. Beliefs and desires are formulae
of a many-sorted, first-order multi-modal language of properties of workspaces, where
sorts are object types and modalities are indexed by workspace transformations (record
updates). The logical language is kept simple, allowing only for first-order beliefs (beliefs
about properties of workspaces).

We present a language of situated, cooperative, self-interested agent systems, propos-
ing a basic collection of agent behaviors (including ground observation actions, commit-
ments, communication via assertions and requests, recursive behaviors, choice, concur-
rent behaviors etc), we provide an operational semantics for this language and discuss
some examples of useful definable agent behaviors, such as perceiving (performing obser-
vations triggered by a statement). We then present and discuss notions of (behavioral)
agent preorder and equivalence relations. Using the operational semantics and our
notion of behavioral preorder and equivalence we propose an inequational theory for
reasoning about agents. We conclude with presenting and discussing a case study for a
simple agent system.

1 Introduction

Research on agent systems is vastly spread over the whole spectrum of AI and specifi-
cally agent-related issues, investigating decision making algorithms, learning algorithms,

∗Research partially supported by the TEI of Larissa Research Committee
C. Hartonas, hartonas@teilar.gr, http://www.teilar.gr/∼hartonas

distributed planning and problem solving, coordination, cooperation and negotiation mod-
els, knowledge representation and communication language paradigms, diversifying classi-
fications of various types of agent, organizational principles and architectures for agents,
computational logics and reasoning models, implementation issues, often by extension of
some object-oriented language, or by designing specifically agent-oriented languages (after
Shoham’s AGENT0 language) etc. Such interest in theoretical research on multi-agent sys-
tems, and in thereby empowered technologies, is practically very much justifiable, given
the wide range of possible applications, from information management and electronic com-
merce, to air traffic control, telecommunications, manufacturing process control systems,
etc.

Despite the extensive research on the subject, what seems to be largely missing in agent
research is any systematic attempt to provide a clean semantic approach to agent-oriented
computing, analogous to well established results for functional and concurrent program-
ming and, more recently, distributed programming (π-calculus and related research), object
oriented programming (ς-calculus and related research, or the actor model of computation,
for concurrent objects with state).

There are very few exceptions of agent related research that can be thought of as heading
in this direction ([4, 5, 6, 11]), despite the apparent benefits of such an approach, providing
a formal forum for a high-level specification and verification of agent systems.

For example, in [4, 5, 6] the authors advocate a modular approach to a high-level spec-
ification of agent systems, focusing on communication as mere information passing and on
belief revision, following observation actions that bind the agent’s expertise variables to
values they have in the environment. The only mental attitudes considered are beliefs and
agents are viewed as triples 〈x, S,B〉, where B is the belief base, x is a tuple of variables (the
expertise variables of the agent, determining its perception window in the world) and S is a
program generated by a standard syntax from ground behaviors (actions) of observing the
values of the expertise variables, verifying or non-verifying a constraint ϕ (a formula of an
unspecified constraint language), establishing a constraint ϕ on the variables x and sending
or receiving assertions about the environment. The authors present a clean operational
semantics for their language and prove, in [4], a result that belief revision, under the given
operational semantics, maintains consistency of the belief base.

We think of our present work as falling within the same line of research. The main
issue addressed in this report is the construction of a calculus (a process algebra) for multi-
agent systems. This includes a language for the specification of such systems together with
suitable notions of agent behavioral equivalence (that can be further exploited to investigate
inequational theories for reasoning about agent systems).

A distinctive feature of our approach is with our understanding and treatment of agent-
environment interaction. This includes both actions the agent can perform, as well as
perception of the environment.

We view environments as certain collections of objects and regard agent actions strictly
as modifications of properties (attributes) of objects (pushing an object to another location,
changing an object’s color, flipping a switch on or off, appending a string to a file object
etc). Technically, we use a calculus of simply typed records to model objects, we define a
notion of workspace (or environment, a collection of object terms closed under the subterm
relation and under evaluation) and we demonstrate that workspaces and agent actions

2

(record update operations) form a deterministic transition system.
In the view we explore here, what concrete actions an agent can perform is determined

by, first, the environment it finds itself in and, second, its action capabilities. Capabilities
are determined by a subspace of the workspace the agent inhabits and they are represented
in the agent state as a collection of types of objects (tools, in the agent’s workspace),
intuitively the types of objects that the agent has the requisite expertise (or permission) to
use in provoking modifications of the shared workspace. Action capabilities are then just
permissible transformations of workspaces, restricted to the particular capabilities space
of the agent. We view agent systems as concurrently executing agents, sharing a common
workspace, accessible to observation by all, though each one of them has its own capabilities
subspace, which determines the roles the agent can assume in an agent society. Though
the current state of the common workspace is visible to all agents, individual capabilities
limit what “thought experiments” each agent can perform, in the sense that they limit each
agent’s ability to see how the environment can be changed, since the actions (workspace
transformations) each agent can perform are limited by its own individual capabilities.

Workspaces are finitely generated model structures, supporting or failing to support the
agent’s beliefs, desires or commitments and intentions. In attempting to satisfy a desire
or commitment, the agent sets out to modify its workspace so as to construct a model of
the desire or commitment. We put forth a language of properties of workspaces, a many-
sorted, multi-modal, first-order language, where sorts are object types and modalities are
indexed by agent actions (record update operations). This language can be used to designate
agent beliefs, desires etc, as well as persistent (integrity) constraints on the workspace. The
semantics of the logical language is given with respect to the transition system of workspaces.

Beliefs an agent has are a partial representation of its workspace. In the view we follow
here, the observational portion of an agent’s belief base consists of ground sentences about
the values of attributes of objects, such as MyPoint.xpos=3, or MyFile.name=“filename”.
Further beliefs, such as MyPoint.xpos<5, or (∃x)(MyPoint.xpos + x ≥ 12) are derivable
from the basic facts and the agent’s reasoning theory Θ. Observational beliefs are formed
by perception acts (observations). Ground observations are direct observations of the values
of attributes of objects, via a basic behavior obs(Mi : τi)i∈n. More complex observational
behaviors can be then defined and we introduce, by definition, a behavior obs(ϕ) for per-
forming observations triggered by a statement ϕ.

Apart from workspace transforming actions and observation, agent behaviors include
behavior choice, two types of conditional, concurrent and sequenced behaviors as well as
recursively defined behaviors. They also include a belief revision and a goal-updating be-
havior, as well as communication behaviors. For simplicity, we restrict communication to
just two types of speech act, namely assertions and requests.

Intentions, in the framework we explore here, are not part of the agent state. Intentions
can be variably thought of as either a subset of desires (the ones the agent is currently
committed to), leading to a planning behavior, or as a set of concurrently or sequentially
executing plans, aiming at the satisfaction of some of the desires (intentions in the first
sense). Intentions in the latter sense are just behaviors, while we view intentions in the first
sense as commitment behaviors (committing to ψ is the behavior discharged by calling the
planner to supply a plan for bringing it about that ψ). Viewing intentions as commitment
behaviors, we place them in the action queue of the agent, rather than in its state. Intentions

3

appear then organized, sequentially (prioritized), or concurrently. In broad terms, however,
the agent architecture underlying our proposed agent calculus can be thought of as a variant
of the belief-desire-intention architecture.

In the rest of this report we define workspaces, introduce our language of properties of
workspaces and our language of agent systems, we provide operational semantics for the
language of agents, and explore some definable behaviors. Finally, having presented our
language of agent systems together with its operational semantics, we introduce notions of
behavioral preorder and equivalence of agents that can be further exploited to establish an
inequational theory for reasoning about agents.

2 Agent Workspaces and their Properties

We develop here a simple model for a workspace transition system, where workspaces are
certain collections of object terms and the language of objects is that of a simply typed
record calculus. Objects as records may be modified by modifying their properties (updating
their attributes) and these modifications may propagate in the entire workspace. In this
Section, we work out some technical details involved in showing that workspaces form a
deterministic transition system.

2.1 Introducing Workspaces

Agents are situated in some environment or other. Thus, any abstract model of agents
will invariably consider (1) an environment E, viewed as a set of environment states E =
{U1, . . . , Un, . . .} and (2) a set of actions, or environment transformersAct = {α1, . . . , αn, . . .},
where a transition U

α−→ V indicates a state transformation, due to α being performed.
An environment state is what we call here a workspace the agent lives in. Actions α are
not unconditionally applicable to just any environment state, or workspace (you can’t paint
any objects blue if no brush objects are available in your workspace), but we may assume
a (monotone) function act : E −→ P(Act), determining just what actions can be applied
in what particular workspaces. Consistent with the common-sense view that, by and large,
we perceive our macro-environment by reifying it (cutting it up into small discrete chunks,
the objects), we think of environment states (workspaces) as certain kinds of sets of objects
(thus admitting a partial order structure on the set of environment states) and view the
latter as collections of attributes. This is quite meaningful from a computational perspec-
tive, too, as objects (viewed as neatly packed sets of attributes) can be encoded in a variety
of programming languages as structures (Prolog or C structures, for example), or associ-
ation lists (as in Scheme and LISP), or records (explicitly so in languages like ML), or as
class-instances, i.e. objects in the object-oriented programming sense (C++, Java etc).

Real-world environments can be vastly complicated, better modelled as continuous
rather than discrete, with fuzzy rather than clear cut objects, being only partially ac-
cessible to perception, governed by nondeterminism in their transformations, changing at
high speed rather than stationary or slow evolving, with discrete actions concurrently exe-
cuted composing (fusing) to produce results that differ from those produced by each action,
separately executed etc. Thus designing an agent system depends on having an appropriate
model for the type of environment the agents will inhabit.

4

We restrict here to discrete, fully accessible, deterministic environments, with no action
fusion (no compositional interaction between discrete workspace transforming actions). En-
vironments (workspaces) of this kind can be adequately modelled as certain collections of
(simply typed) records (with records modelling objects). In this Section we provide formal
definitions and we work out the technical details needed to establish that workspaces, as
defined, form a deterministic transition system, where transition actions are record updates
(modifications of properties of objects in the workspace).

The framework we propose can be roughly described as follows:

1. We have a typed language (with typed variables x : τ , for each type τ) of expressions
denoting objects. These include ground (or “abstract”) objects such as numbers,
strings etc, as well as composite objects, regarded as clusters of attributes. In our
concrete model of this Section, composite objects are precisely proper record expres-
sions. We write DM : τ to indicate that M can be shown to be of type τ and use ρ as
a type metavariable to stand for types other than those of the ground objects, such as
numbers, strings etc (in our concrete workspace model those are proper record types
(row types) ρ = [`1 : τ1, . . . , `n : τn])

2. There is a partial evaluation function on object expressions, denoted by eval(M) = N
or M ⇓ N (N is the value of M , such as, for example, the color of a colored object,
or its position etc), which is precisely record expression evaluation

3. Workspaces form a partial ordering, under a suitable notion of subspace, indicated
by U � V , and there is a suitable notion of workspaces being generated by a set
of objects (see Definition 2.6, for our concrete workspace model), indicated by U =
〈 {Mi : ρi | i ∈ I} 〉. By a finitely generated workspace we mean a workspace U =
〈M1 : ρ1, . . . ,Mn : ρn〉 where each Mi is provably of some row type ρi.

4. For each workspace U , there is a well-defined set of actions act(U) that can be per-
formed on U . We write U α−→ V to indicate that V results by performing α on U . We
show that workspace transitions are deterministic, so that actions are really partial
functions defined on the set of workspaces. For this reason, we also write U{α} for
the workspace V such that U α−→ V .

2.2 Objects as Records

Record terms M are defined by the syntax

M := x (x ∈ X) | c (c ∈ C) | [`1 = M1, . . . , `n = Mn]n≥0 |M.` |M [`⇐M ′]

where X is a countable set of record variables, C is a set of constants (numbers, strings,
booleans etc) and the labels `i in [`1 = M1, . . . , `n = Mn] are pairwise distinct. M.` is
field selection (extraction of the value of the attribute labelled by `) and M [` ⇐ M ′] is
record update, redefining the field ` to label M ′. The syntax may be extended to include
operations op on ground terms (numbers, strings etc), and we will use such operators in
examples, though we do not explicitly include them in the syntax.

A normal form, or value, is a record term N specified by the syntax

N := x (x ∈ X) | c (c ∈ C) | [`1 = M1, . . . , `n = Mn]n≥05

Adopting a product notation for repeated field selections, M.`1 · · · .`n = M
∏

n=1,...,n `i, or
updates, M [`1 ⇐ M1] · · · [`m ⇐ Mm] = M

∏
i=1,...,m[`i ⇐ Mi], it is clear from the syntax

that any record term has the general form

M = K
∏
i∈r

(
∏
j∈si

`ij)(
∏
k∈ti

[`ik ⇐Mik])

where r, si, ti ∈ ω and K is either a variable, or a constant, in which cases r = 0, or a term
of the form [. . . , ` = M, . . .]. The proof of this claim is immediate, by structural induction
on M .

In the sequel we work with typed records, so that type annotations become part of the
syntax of record terms. Thus the language of typed records includes typed variables x : τ ,
for each type τ , typed constants c : κc, and typed terms

[`1 = M1 : τ1, . . . , `n = Mn : τn] : [k1 : τ ′1, . . . , km : τ ′m]
(M : τ).` : τ1

(M : τ)[`⇐ L : τ ′] : τ1

2.3 Types, Subtyping and Operational Semantics for Records

Assuming some ground types κ (for integers, booleans, perhaps strings etc) the types τ for
the record language we have presented are simple

κ := int | bool | · · ·
τ := κ | ρ
ρ := [`1 : τ1, . . . , `n : τn]n≥0

where the labels `i are pairwise distinct.
We adopt one subtyping axiom

[`1 : τ1, . . . , `n : τn, . . . , `n+m : τn+m] v [`1 : τ1, . . . , `n : τn]

and the usual reflexivity and transitivity rules

τ v τ
τ1 v τ2 τ2 v τ3

τ1 v τ3

Terms are proven well-typed by the typing rules listed in Table 1. If M is provably of
type ρ, then we say it is of a row type (proper record type).

Mentioning types in contexts where the type annotations are not of significance is rather
awkward and we will omit them when no harm is done.

A big-step operational semantics for the evaluation of well-typed record terms is given
in Table 2. We use the notational convention N [[` = A]] to indicate that the normal form
N is a record with an ` label naming A.

In the update axiom our notation is intended to mean that only the field labelled by `
gets modified.

Proposition 2.1 (Determinacy) If M ⇓ N and M ⇓ K, then N = K.
6

Table 1: Typing Rules

(K) Dc : κc

(R) DMi : τi i = 1, . . . , n (n ≥ 0)
D[`1 = M1 : τ1, . . . , `n = Mn : τn] : [`1 : τ1, . . . , `n : τn]

(Upd) DM : τ D L : τi
D(M : τ)[`i ⇐ Li : τi] : τ (τ = [`1 : τ1, . . . , `n : τn])

(Sel) DM : τ
D(M : τ).`i : τi

(τ = [`1 : τ1, . . . , `n : τn]) (Sub) DM : τ τ v τ ′

DM : τ ′

Table 2: Big-Step Operational Semantics for Records

(Normal Form) N ⇓ N

(Update-1) [. . . , ` = A, . . .][`⇐ B] ⇓ [. . . , ` = B, . . .]

(Update-2) M1 ⇓ N1[[` = A]] N1[`⇐ B] ⇓ N
M1[`⇐ B] ⇓ N

(Selection) M1 ⇓ N1[[` = A]] A ⇓ N
M1.` ⇓ N

Proof: Immediate, by transition induction.
Subject Reduction and Minimal Types theorems for this type system are well-established

in the literature on record calculi.

Theorem 2.2 (Subject Reduction) If DM : τ and M ⇓ N , then DN : τ .

Theorem 2.3 (Minimal Types) If DM : τ , then there is a minimal type σ, in the
v-order, such that DM : σ.

2.4 Workspaces

Roughly put, a workspace is essentially a subset of the full language of objects that is
transitively closed under the subterm relation and under evaluation. The precise definition
follows.

Definition 2.4 (Workspaces) A family W of object terms is a workspace provided that
(1) W includes all the variables and ground object terms (constants and terms of the form
op(M̄), if included in the syntax), and (2) for any M ∈W

• If M = [f1 = K1, . . . , fm = Km] then for each 1 ≤ s ≤ m, M.fs,Ks ∈W

• If M = B.f , then B ∈W and

• If M = B[f ⇐ L] then B,L ∈W .
7

• If M ⇓ N , then N ∈W .

Lemma 2.5 The family of workspaces over the full language of objects is closed under
arbitrary unions and intersections (it is a complete lattice under set-theoretic unions and
intersections).

Given the complete lattice structure of the family of workspaces, we can define workspaces
generated by a fixed set of objects.

Definition 2.6 ((Finitely) Generated Workspaces) Let (Mi)i∈I be an arbitrary fam-
ily of objects. Then the workspace 〈Mi〉i∈I generated by the Mi is the smallest workspace
containing all the Mi, in other words

〈Mi〉i∈I =
⋂
{W |W is a workspace and ∀i ∈ I Mi ∈W}

We say that a workspace W is finitely generated (has a finite base) if there exist Ai ∈ W ,
where i ∈ n, for some natural number n, such that W = 〈Ai〉i∈n. We may sometimes abuse
terminology by saying that W is a finite workspace, meaning that it is finitely generated.

The “empty” workspace 〈 〉 is the space consisting only of abstract entities (variables,
numbers etc). The full language L of objects (modelled here as records) is also a workspace
and it constitutes a bounding universe of action and discourse.

In working with collections of objects (the workspaces), rather than with single objects,
we need to provide an account of changes brought about to the workspace, due to operations
performed on its objects. For a simple example, the workspace may simply be generated by
a rectangle object R = [topLeft = P, bottomRight = Q], where P and Q are point objects
(modelled as records of coordinates), say P = [xpos = 1, ypos = 11] and Q = [xpos =
17, ypos = 0]. The operation P [xpos ⇐ P.xpos + 1] moves the top-left corner P of the
rectangle. Viewing this as an operation on the workspace we need to take into account
the fact that not only the point P , but also the rectangle R, hence the entire workspace,
has been modified. The result of an operation performed on a workspace is not always as
transparent as our simple example indicates. We clarify this issue, from a technical point
of view, in the sequel.

Definition 2.7 For each converging computation M ⇓ N [[` = L]], we define a sequence of
normal forms `M,N , by transition induction, as follows:

Case 1: M = N is a normal form and the reduction is N ⇓ N . We set `M,N =< N >.

Case 2: M = K[`⇐ L] ⇓ N , with K a normal form. We set `M,N =< N,K >.

Case 3: M = M1[` ⇐ A] ⇓ N , where M1 is not a normal form. Then the reduction is by
the rule

M1 ⇓ N1[[` = A]] N1[`⇐ L] ⇓ N
M = M1[`⇐ L] ⇓ N

By induction, `M1,N1
is defined and we set `M,N =< N >_ `M1,N1

.

8

Case 4: M = M1.` ⇓ N and the reduction is by the selection rule

M1 ⇓ N1[[` = L]] L ⇓ N
M = M1.` ⇓ N

By induction the sequence `L,N is defined and we set `M,N = `L,N .

The following theorems will be used in determining workspace transitions.

Theorem 2.8 Let M ⇓ N [[` = L]] and `M,N =< N = N1, N2, . . . , Nn = K > be the se-
quence of Definition 2.7. Then there exists a unique term K1 = K

∏
i∈r[`i ⇐ Ai] such that

K1 ⇓ N and `M,N = `K1,N .

Proof: The proof is by transition induction.

Case 1: M = N ⇓ N . Then `M,N =< N > and the normal form K of the theorem is just
K = N . Taking K1 = K = N and r = 0 the claim becomes trivial.

Case 2: M = K[` ⇐ L] ⇓ N where K is a normal form. Then `M,N =< N,K > and we
may take K1 = M = K[`⇐ L], so that the claim is again trivial.

Case 3: M = M1[` ⇐ L] ⇓ N , where M1 is not a normal form, M1 ⇓ N1[[` = A]] and
`M,N =< N >_ `M1,N1

=< N,N1, . . . ,K >.

By induction let K0 = K
∏

i∈r[`i ⇐ Ai] ⇓ N1, with `M1,N1
= `K0,N1

. Then set
K1 = K0[`⇐ L]. Clearly K1 ⇓ N , by an application of the update rule

K0 ⇓ N1[[` = A]] N1[`⇐ L] ⇓ N
K0[`⇐ L] ⇓ N

Using the definition of the `-sequences and the induction hypothesis it follows that

`M,N =< N >_ `M1,N1
=< N >_ `K0,N1

= `K1,N

Case 4: M = M1.` ⇓ N by the selection rule

M1 ⇓ N1[[` = L]] L ⇓ N
M = M1.` ⇓ N

and `M,N = `L,N =< N, . . . ,K >. By induction, let K1 = K
∏

i∈r[`i ⇐ Ai] ⇓ N , such
that `K1,N = `L,N . Then by definition of `M,N we have `M,N = `K1,N and K1 satisfies
the required property.

Theorem 2.9 If M ⇓ N [[` = L]], then (1) L ∈ 〈M〉 and (2) if `M,N =< N, . . . ,K >, then
K ∈ 〈M〉.

Proof: The proof of (1) is trivial, since by definition N ∈ 〈M〉. For (2), we proceed by
transition induction.

Case 1: M = N ⇓ N [[` = L]], obvious.
9

Case 2: M = K[f ⇐ A] ⇓ N [[` = L]], where K is a normal form. Since `M,N =< N,K >,
the claim is obvious.

Case 3: M = M1[f ⇐ A] ⇓ N [[` = L]], where M1 is not a normal form. We have `M,N =<
N >_ `M1,N1

=< N,N1, . . . ,K > and by induction K ∈ 〈M1〉 ⊆ 〈M〉.

Case 4: M = M1.f ⇓ N [[` = L]] and the reduction is by the selection rule

M1 ⇓ N1[[f = B]] B ⇓ N [[` = L]]
M = M1.f ⇓ N [[` = L]]

We have `M,N = `B,N =< N, . . . ,K >. By induction, K ∈ 〈B〉. By part 1, B ∈ 〈M〉
and so K ∈ 〈M〉.

The meaning and use of the preceding technical clarifications is that when an update
operation M [` ⇐ A] is performed, then if M [` ⇐ A] ⇓ N and `

M [`⇐A],N
=< N, . . . ,K >,

then N (the value of the updated term) results by modifying the normal form K of the
workspace, by an application of finitely many operations of update.

2.5 A Transition System of Workspaces

Agents can interact with their workspaces in two different ways, namely by (1) observing the
value of some attribute of an object, by a field extraction operation, which naturally leaves
the workspace unaffected, even though some side computation may be needed in evaluating
the attribute, and (2) by modifying some object in the workspace. In the latter case, the
effect of the modification may propagate in the entire workspace. Thus, an operation on a
workspace U is merely an update of some member of U . More precisely,

Definition 2.10 1. If M : τ, L : τ ′ ∈ U are closed and well-typed terms and, in addition,
D(M : τ)[` ⇐ L : τ ′] : τ , then (omitting the type annotations, for simplicity of
expression) α

M,`,L
= M [`⇐ L] is an operation of type τ on U . We write act(U) for

the set of operations on the workspace U .

2. If M [` ⇐ L] ⇓ N and `
M [`⇐L],N

=< N, . . . ,K >, then the workspace produced by
applying the operation, denoted by U{α} (omitting the subscripts, for simplicity), is
the space 〈{A[N/K]| A ∈ U}〉, where the replacement operation is defined by

• x[N/K] = x and c[N/K] = c

• [(`i = Ai)i=1,...,n (n≥0)][N/K] = [(`i = Ai[N/K])i=1,...,n (n≥0)]

• (M.`)[N/K] = (M [N/K]).`

• (M [`⇐ B])[N/K] = (M [N/K])[`⇐ B[N/K]]

3. We also write U α−→ V , if V = U{α}.

Note that by Theorem 2.9, the normal form K of the Definition belongs to the workspace
U and that, by Subject Reduction, it is of the same type as N .

Lemma 2.11 If U is a finitely generated workspace and α ∈ act(U), then U{α} is also
finitely generated.

10

Proof: Obvious, from the definition.

Lemma 2.12 Let V be a subspace of U , V � U . If α is an operation on V and V {α} = V ′

is defined, then U{α} = U ′ is defined and V ′ � U ′.

Proof: The hypothesis that α = M [`⇐ L], for some M, `, L, is defined on V means that
M,L ∈ V ⊆ U , hence the operation is also defined on U . The claim that V {α} � U{α}
follows from the way the image of a workspace is defined.

Thus if A = 〈∆, δ, κ〉 is a U -agent, hence κ|U = V � U , and A uses objects M,L
in its capabilities subspace V to perform the operation α = M [` ⇐ L], then A{α}, after
evaluation, becomes a U{α}-agent without apparent effect in its internal state, though its
concrete capabilities κ|U{α} may well be different.

2.6 Examples

Example 1 Let R be a rectangle object,

R = [topLeft = P, bottomRight = Q, area = (P.ypos−Q.ypos) ∗ (Q.xpos− P.xpos)]

where P,Q are point objects,

P = [xpos = 1, ypos = 14] and Q = [xpos = 7, ypos = 0]

Let U = 〈R〉 be the workspace generated by the rectangle. Then α = P [xpos⇐ P.xpos+3]
is an operation defined on the workspace and which, if executed, results in moving the point
P to the right, by 3 units. This change affects the entire workspace, since the rectangle
object contains a reference to the point P , and so its relative position, size, area and
perimeter also change. Given the computation M = P [xpos ⇐ P.xpos + 3] ⇓ [xpos =
4, ypos = 14] = N , the sequence `M,N is simply < N,P >. By our definition

U{α} = 〈{A[N/P]| A ∈ U}〉

so that if

T = R[N/P] = [topLeft = N, bottomRight = Q, area = (N.ypos−Q.ypos) ∗ (Q.xpos−N.xpos)]

then U{α} = 〈T 〉.

Example 2 Suppose, in the previous example, that the objects are colored, where we
set R.color = Q.color = P.color and the color attribute of P is initially set to “white”.
Repainting P , by the operation P [color ⇐ “blue”], results in the obvious modification of
the colors of all objects in the workspace.

2.7 A Language of Properties of Workspaces

An agent situated in some environment forms beliefs about properties of its environment.
These may be beliefs about properties of objects in its environment, or beliefs about ways
in which the environment can change, as a result of actions performed and affecting this

11

environment. We specify here a language of workspace properties that can be used by an
agent to reason about its environment. This same language can be also used to express
persistent properties (integrity constraints) of the environment (such as, for example, that
no two points can have the same coordinates while being in the same workspace), ones that
limit the actions an agent can perform, while trying to transform its environment in ways
that better suit its own desires.

We define a many-sorted first-order modal language L as follows: Sorts are types and
the set of terms is exactly the set of well-typed object terms. This includes typed variable
terms x : τ , all ground terms, i.e. constants and any terms of the form op(M̄) that may
have been included in the syntax of objects. Atomic statements are built with standard
typed predicates like =,≤, <,>,≥: int × int for numbers and similarly for strings, and
perhaps additional typed predicates depending on the intended application domain. Modal
statements are built with modalities 〈α〉 indexed by actions, where we assume that actions
compose, so that if α1, α2 are actions, then each of 〈α1〉, 〈α2〉 and 〈α1;α2〉 is a valid modality.
Terms and formulae are defined by the recursive scheme

t ::= M : τ
ϕ ::= R(t1 : τ1, . . . , tn : τn) | ¬ϕ | ϕ ∧ ϕ | (∃x : τ)ϕ | 〈α〉ϕ

where R is a typed predicate and α is an operation on workspaces. For example, in our
concrete workspace model of Section 2, (M : τ).f + (K : τ ′).g ≤ 5 : int is an atomic
statement, though we will not always be as pedantic with type annotations.

Definition 2.13 The well-formed formulae of the language are defined as follows

• If R : τ1 × · · · × τn and Dti : τi, then R(t1 : τ1, . . . , tn : τn) is well formed

• If ϕ,ψ are well-formed, then so are ¬ϕ,ϕ ∧ ψ, (∃x : τ)ϕ

• If α is a valid atomic or composite action (workspace transformation) expression and
ϕ is well-formed, then 〈α〉ϕ is also well-formed. In our concrete workspace model
of Section 2, atomic actions α are record update terms and validity of the action
expression α = (M : τ)[` ⇐ L : τ ′] : τ means that no free variables of ground type
(integers, strings etc) occur in α and that D(M : τ)[` ⇐ L : τ ′] : τ (i.e. the object
update expression is well-typed) .

Formulae of the logical language express properties of workspaces. The semantics is
given in a more or less standard compositional way, given an interpretation of predicates
and function symbols and a type respecting interpretation σ of the variables as objects
[[x : τ]]σ = σ(x) : τ and [[c]]σ = c for the constants. Operators on ground terms (function
symbols), such as integer addition or multiplication, string concatenation etc, are interpreted
in the standard way. If R is a predicate, then we let its interpretation in a workspace U be
simply denoted by R|U .

U |=σ R(t1, . . . , tn) iff ([[t1]]σ, . . . , [[tn]]σ) ∈ R|U
U |=σ ¬ϕ iff U 6|=σ ϕ
U |=σ ϕ ∧ ψ iff U |=σ ϕ and U |=σ ψ
U |=σ (∃x : τ)ϕ iff (∃M : τ ∈ U)(U |=σ ϕ[M/x])

U |=σ 〈α〉ϕ iff (∃V)(U
α[σ]−→ V and V |=σ ϕ)12

In our concrete workspace model, actions α are terms of the logical language and may
therefore be open (though only closed action terms can be workspace transformations).
This implies that, in (∃x : τ)〈α〉ϕ, quantification can capture a variable in the modality
as well as in ϕ. It also explains the rule for the satisfaction of modal formulae, where the
transition is by the action α[σ], the closure of α by the substitution σ. Disjunctions, the
universal quantifier and “necessity” operators [α] can be introduced in the usual way.

Remark 2.14 Note that, because of our hypothesis that workspace transformations are
functional (if there exists a V such that U α−→ V , then V = U{α} is unique), it follows
that there is a semantic equivalence 〈α〉(ϕ ∧ ψ) ≡ 〈α〉ϕ ∧ 〈α〉ψ.

In addition, because actions compose, every formula of the type 〈α1〉 · · · 〈αn〉ϕ is seman-
tically equivalent to the formula 〈α1; · · · ;αn〉ϕ.

Finally, operators [α] can be defined in the usual way, with resulting semantic clause for
satisfaction

U |=σ [α]ϕ iff (∀V)(U α−→ V =⇒ V |=σ ϕ)

Thus U |=σ [α]ϕ if either α 6∈ act(U), or else U{α} |=σ ϕ. It then follows that if α ∈
act(U), then U |=σ 〈α〉ϕ iff U |=σ [α]ϕ.

3 A Language and Semantics for Situated Agent Systems

It is perhaps fair to say that most researchers would broadly agree today that

1. Agents are the hosts (subjects) of diverse mental (propositional) attitudes (beliefs,
commitments, desires, intentions, obligations, fears, uncertainties etc). Distinct men-
tal attitudes may have the same propositional content but enjoy a different functional
status, affecting the agent’s behavior in different ways

2. Agents are the subjects of actions that they perform and which result in possibly
modifying the environments they live in. What actions an agent performs depends
on what capabilities it has. On the other hand, what agent capabilities are actually
realizable is something that varies with the particular environment the agent finds
itself in.

3. Agents are also centers of perception, they are endowed with perhaps diverse repre-
sentation capabilities that allow them to form representations of both the state the
environment is in and the state they, themselves, are in. The environment is observ-
able via the agent’s sensors. Ground facts about the environment, gathered by direct
observation, form the basis for learning and thus agents as perceivers are thereby also
subjects of learning and of knowledge accumulation

4. Agents are deliberating subjects, they exhibit what can be conceived as logical reason-
ing behavior, which vastly underlies their decision-making

5. Agents and their environment are never in a perfect equilibrium state, there are ten-
sions arising from the fact that what an agent needs (desires) is not automatically
catered for by the environment. Thus agents are, or must be, efficient problem solvers,

13

scrupulously planning solutions for detected (perceived) problems, given their action
capabilities

6. Agents are social beings, they are subjects of communication acts, which includes
both various types of speech act (assertions, queries, requests, confirmations, denials
or rejections etc), as well as various kinds of social exchange, whose content is not
informational but physical (handing over or receiving objects, to be consumed or used
as tools by some other agent)

Some of the features mentioned above are aspects of the agent state, whereas the rest are
distinctive agent behaviors. Mental attitudes (beliefs, desires, fears etc) and capabilities
are aspects of the agent state. Perceiving and learning, deliberating and planning, com-
municating etc are agent behaviors. As in [4, 5, 6], we propose to proceed in a modular
fashion, examining some features of agency and leaving it for further research to examine
other features or compose partial approaches. However, rather than focusing exclusively on
beliefs, as in [4, 5, 6], we propose and study a calculus of agents whose state is determined
by (1) beliefs, (2) desires and (3) capabilities. We regard intentions and commitments as
special agent behaviors, as we explain in the sequel.

Beliefs and desires are expressed by formulae of the language of properties of workspaces
we have presented and which depends on having a formal account of a workspace transition
system. The workspace inhabited by agents is a model-structure that validates or invalidates
their beliefs, desires, intentions or commitments. To satisfy a goal, agents attempt to
reconstruct the workspace so as to obtain a model of the formula expressing the goal. We
view actions as modifications of properties of objects in the environment (pushing an object
to another location, filling in or emptying a container object, painting a colorable object,
turning a switch on or off etc). And we view capabilities as expertise to use certain types
of objects. Thus capabilities are expressed in the agent state as a collection of types (of
objects the agent can use). More precisely, we assume that capabilities always include
ground types (any agent can manipulate numbers, strings and other ground objects) and
if ρ = [`1 : τ1, . . . , `m : τm] is a capability type for agent A, then each of the τi is one, too.
Note that, given capabilities ρ̄, it is the particular environment (workspace) which then
provides, or fails to provide, concrete objects of the given types for the agent to use. If
ρ̄ = ρ1, . . . , ρn are row types and U is a workspace, then the capabilities types ρ̄ determine
a subspace

ρ̄|U = 〈 {M ∈ U | DM : ρi, for some i = 1, . . . , n} 〉

which we refer to as the capabilities subspace of the agent A in the workspace U . Conversely,
too, any finitely generated subspace

K = 〈M1 : ρ1, . . . ,Mn : ρn〉 � U

determines uniquely the capabilities ρ̄ = ρ1, . . . , ρn. Note that, when an agent migrates
from one workspace to another, its concrete capabilities subspaces may be different in the
two distinct environments (an architect at the building site maintains his capabilities to use
drawing equipment to draw a floor plan, though he cannot exercise such capabilities at his
current workspace). Learning a new capability (perhaps by acquiring sufficient information
on a certain type of object) is an issue we will not deal with in this report.

14

3.1 A Language for Agent Systems

Definition 3.1 (Situated Agent Systems) Fix a finitely generated workspace U . Situ-
ated U -agent systems are defined by

Single Agents: A := nil | 〈∆, δ, κ〉 | A{p}
Agent Systems: A := A | A‖A

Situated Systems: A := (U,A)Θ

where

• p is a behavior, defined by the syntax of Table 3

• nil is the nil agent, whose only function is to be a message-holder in asynchronous
communication,

• 〈∆, δ, κ〉 is a basic agent (often denoted in the rest of this paper as simply the agent
∆δκ) with

– belief base ∆ = ϕ1, . . . , ϕn, where we assume that ∆ is consistent

– desires δ = ψ1, . . . , ψn, for some n, where we also assume that δ is consistent
and that its members are deductively independent (i 6= j implies ψi 6` ψj) and

– capabilities κ = ρ̄, determining a subspace κ|U = K � U (a workspace of tools
(objects) the agent can use).

• Finally, A{p} is an agent intending (to behave like) p, as soon as prior behavior
commitments have been discharged. In A{p}, where A = 〈∆, δ, κ〉 is a basic agent, the
behavior p may be a sequence p = p1; · · · ; pn and we think of it as the action queue of
the agent.

• An agent system is either a single agent A, or the concurrent composition A‖A of
two systems.

• A situated agent system is a system of agents A living in a common workspace U .
Θ is a reasoning theory in a language that may extend the logical language we have
presented by the addition of belief B, desire D etc modalities and appropriate reasoning
axioms and rules. We usually leave Θ implicit, writing simply (U,A).

The language of agent behaviors p is specified by the syntax in Table 3, where we assume
a countable stock of recursion constants p, definable by equations of the form p = q(p), or,
making the agent parameter explicit, A{p} = A{q(p)}. We also make the convention to
write ϕ?p and ϕ??p when the else action q is simply skip.

ϕ?p ≡ ϕ?p else skip ϕ??p ≡ ϕ??p else skip

Some more explanations on the syntax of agents follow.
The idle behavior skip is discharged without any effect to the agent state.
The only behaviors modifying the workspace are the workspace operations α. Those are

object update actions, (M : τ)[`⇐ L : τ1] : τ (modifications of properties of objects in the
15

Table 3: Agent Behaviors in a Multi-Agent Environment

p =

∥∥∥

ATOMIC BEHAVIORS
skip, idle action, denoting termination;
α, action transforming the common workspace;
obs(Mi : τi)i∈n, concurrent observations of the values (if any) of objects ;
a![ϕ], assert ϕ on channel a;
r![ϕ], request that action be taken so that ϕ becomes true;
c?(ψ)p, receive a message from channel c, then behave like p;
revise(θ̄), belief revision utility, given fresh observations θ̄;
update(δ), goal updating, replacing old goals with new;

COMPOUND BEHAVIORS
ψ, commitment to bring it about that ψ;
ϕ? p else q, logical query based conditional;
ϕ?? p else q, goal based conditional;
p+ p, choice;
p|p, parallel;
p; p, sequential behavior.

RECURSIVE BEHAVIORS
(A{p} = A{q(p)}), recursive behavior p, with defining equation p = q(p);

agent’s environment, discussed in Section 2). What actions can be performed by what agent
depends on the agent’s capabilities, in the sense that the objects involved in the action must
be objects of types that the agent is capable of handling. This restriction is captured in
the operational semantics of our language, see rule (α). As actions are designated by object
expressions, action-patterns can be expressed in our framework by open expressions.

We say that an agent of the form A{p;ψ} intends to bring it about that ψ. After the
behavior p is discharged, leading to a possibly revised agent state A′, the agent A′{ψ}
becomes committed to bringing it about that ψ.

This distinction between intentions and commitments (intentions refer to the future,
whereas commitments are for now) is not sharp, since intentions may appear as delayed
(conditional) commitments. For example, the behavior p = ϕ?ψ else p is an intention to
(try and) bring it about that ψ, as soon as some condition ϕ is believed to hold. Thus A{p}
is the agent committed to bringing it about that ψ, as soon as the precondition ϕ holds,
which is hardly different from intending that ψ, provided that ϕ (being now committed to
entertaining my child, provided he is back from school, is no different from intending to
entertain him, when he comes back from school).

Incidentally, an intention expressed with a recurrent behavior like p above is uncondi-
tionally persistent. However, if the agent ever comes to the conclusion that the condition
will never get satisfied, or that it is too costly to pursue it, or that its significance, given

16

new circumstances, is not great, it is rational that it should drop the intention. This is
better captured with a behavior of the form

p = ϕ?ψ else (skip + p)

For example, if I intend to spend my next vacations in Hawai, provided I have saved enough
money for the expenses, then I should persist with my intention until I do indeed have
enough money saved for it. If, however, I ever become convinced that there will always
come up a more urgent need, devoring my savings, or if it so happens that Trans-Atlantic
airlines offers me a vacation in Tenerife, then it is rational that I should drop my intention
to spend my next vacations in Hawai.

Intentions or commitments are handled by invoking the reasoning module, which at-
tempts to elaborate a plan for satisfying the intention. A plan is a sequence of atomic
actions α1; · · · ;αn such that, if U = U1 is the current workspace of the agent and if κ are
its capabilities, then κ|Ui = Ki

αi−→ Ki+1, and Ui
αi−→ Ui+1, for i = 1, . . . , n. We will not

endeavor in this report on how the planner actually works.
In defining rules for the operational semantics of our language we assume a belief revision

utility revise(∆, θ̄), revising an old belief base ∆, given fresh observations θ̄. In the
subsequent discussion of the rules we give a detailed discussion of how the belief base
is revised.

Goal selection and updating is a utility very much depending on the design objectives
and application details, though some general principles for goal updating (e.g. maximizing
a utility function) have been proposed and investigated. We think that, in the context of
our approach in this report, we may simply assume some update utility, revising the agent’s
desires, without going into any details on the subject.

For communication, we restrict to only two types of communication acts, assertions
and requests, and we use, for simplicity, two different types of communication channel,
ranged over by channel names a, a′, ai etc (for assertions) and r, r′, rj etc (for requests),
thus avoiding to have to devise an extension of our logical language to a communication
language, with explicit speech act operators. We use c for a communication channel when
it is not relevant whether assertions or requests are meant.

Compound agent behaviors include recursively defined behaviors. Since a behavior,
from a denotational point of view, is merely a function from agent states to agent states,
recursively defined behaviors are simply recursively defined functions on agent states, de-
finable by equations of the form A{p} = A{q(p)}. We make the usual assumption that p is
guarded in q, thus disallowing “definitions” of recursive behaviors with equations of the form
A{p} = A{p}. The guardedness assumption in our context is simply that q(p) 6= p, while
any other behavior context is allowed for q. With recursive behaviors available, familiar
constructs such as while loops can be easily defined, in a standard way.

Note that we have allowed for extended parallelism in our language, both at the level
of concurrently executing behaviors and at the level of concurrently executing agents. The
former is given an operational semantics by interleaving basic (atomic) behaviors.

3.2 Operational Semantics

Axioms and rules of the operational semantics are presented in Tables 4 and 5. Com-
ments and explanations for each axiom or rule follow. The general form of a transition

17

is (U,A) e−→ (V,B), where e is empty (a silent transition) or an observable action (a
workspace transformation α, or a message-send action c![ϑ]), U, V are workspaces and A,B
are agent systems. Most of the rules refer to single-agent transformations.

Discharging Behavior Commitments: First, behavior commitments are discharged
and fulfilled as soon as any prior behavior commitment has been discharged. Given that we
view behaviors as functions on agent states, this simply means that to evaluate ∆δκ{p; q},
one first needs to evaluate ∆δκ{p} = ∆′δ′κ′ and then feed this as an argument to the subse-
quent behavior q, as in ∆′δ′κ′{q}. Reduction to basic agents before a behavior commitment
is fulfilled follows the rules (D1)-(D3).

In all of the following cases A = 〈∆, δ, κ〉 is a basic U -agent, denoted, for transparency
of notation, as ∆δκ.

skip: The action skip is an idle action, (U,∆δκ{skip}) −→ (U,∆δκ)

Workspace Transformations: If the agent performs an operation on the workspace,
then this must be by updating an object in its capabilities space, where the update is
again in the capabilities space κ|U = K � U . The effect of the action, if it is defined on
the capabilities space, is to provoke a transformation of the surrounding workspace of the
agent: (U,∆δκ{α}) −→ (U{α},∆δκ). This transition depends on the possibility of the
transformation of the capabilities space and so it is best expressed as a rule:

κ|U = K
α−→ K ′ U

α−→ U ′

(U,∆δκ{α}) α−→ (U ′,∆δκ)

We also write Dα : κ to indicate that α is a well-typed term and that all the types of objects
in α are in the capabilities space κ.

Intentions, Commitments and Planning: A commitment to a goal, as in ∆δκ{ψ},
is discharged by calling the planner, which returns some plan p. A plan is just a behavior,
which may be simply a sequence of actions, or (if the planning task fails) the idle action
skip for dropping the commitment, or even a request action r![ψ] for requesting help in
establishing ψ. The relevant rule is the rule (int), which presumes an available planning
utility plan, the details of which we shall leave unspecified in this report. We do presume
some normalizing assumptions, however, such as that deductively equivalent goals lead to
the same planning behavior.

Observing Objects: Agents form new beliefs or update existing ones by interacting with
their environment, by perceiving it through their sensors. The behavior obs corresponds to
ground observations where an agent directly observes the value of an object in its workspace
(and not only in its capabilities space). New observations may contradict existing beliefs.
Thus observing gives rise to a belief revision behavior.

Mi ∈ U Mi ⇓ Ni (i ∈ n > 0)
(U,∆δκ{obs(Mi : τi)i∈n}) −→ (U,∆δκ{revise(Mi =τi Ni)i∈n)})18

Table 4: Operational Semantics I: Axioms

(skip) (U,∆δκ{skip} −→ (U,∆δκ)

(α) (U,∆δκ{α}) α−→ (V,∆δκ) Provided Dα : κ and U α−→ V

(obs0) (U,∆δκ{obs(Mi : τi)i∈0}) −→ (U,∆δκ)

(obs) (U,∆δκ{obs(Mi : τi)i∈n>0}) −→ (U,∆δκ{revise(Mi =τi Ni)i∈n>0})
Provided Mi : τi ∈ U and Mi ⇓ Ni, for each i ∈ n > 0

(upd) (U,∆δκ{update(δ′)}) −→ (U,∆δ′κ)

(rev) (U,∆δκ{revise(ϑ̄)}) −→ (U,∆′δκ) Provided revise(∆, ϑ̄) = ∆′

(query1) (U,∆δκ{ϕ?p else q}) −→ (U,∆δκ{p}) Provided ∆ `Θ ϕ

(query2) (U,∆δκ{ϕ?p else q}) −→ (U,∆δκ{q}) Provided ∆ 6`Θ ϕ

(goal1) (U,∆δκ{ϑ??p else q}) −→ (U,∆δκ{p}) Provided ϑ `Θ δi (i=1,or...,or i=n)

(goal2) (U,∆δκ{ϑ??p else q}) −→ (U,∆δκ{q}) Provided ϑ 6`Θ δi (i=1,···,i=n)

(+1) (U,∆δκ{p+ q}) −→ (U,∆δκ{p})

(+2) (U,∆δκ{p+ q}) −→ (U,∆δκ{q})

(Rec) (U,∆δκ{p}) −→ (U,∆δκ{q(p)}) Provided p is defined by p = q(p)

(int1) (U,∆δκ{ψ}) −→ (U,∆δκ) Provided ∆ `Θ ψ

(int) plan(∆, κ, ψ) = p
(U,∆δκ{ψ}) −→ (U,∆δκ{p})

(CAss) (U,∆δκ{a![ϑ]} a![ϑ]−→ (U,∆δκ‖a![ϑ]) Provided ∆ `Θ ϑ

(CReq) (U,∆δκ{r![ϑ]} r![ϑ]−→ (U,∆δκ‖r![ϑ]) Provided ϑ `Θ δi i=1,or···or i=n

(Msg) (U,∆δκ{c?(ψ)p}‖c![ϑ]) −→ (U,∆δκ{p[ϑ/ψ]})

19

Table 5: Operational Semantics II: Rules

(D1)
(U, A) −→ (U, B)

(U, A{p}) −→ (U, B{p}) (D2)
(U, A)

α−→ (V, B)

(U, A{p}) α−→ (V, B{p})

(D3)
(U, A)

c![ϑ]−→ (U, B‖c![ϑ])

(U, A{p}) c![ϑ]−→ (U, B{p}‖c![ϑ])

(Seq1)
(U, A{p}) −→ (U, A′{p′})

(U, A{p; q}) −→ (U, A′{p′; q}) (Seq2)
(U, A{p}) α−→ (U ′, A{p′})

(U, A{p; q}) α−→ (U ′, A{p′; q})

(SeqAt1)
(U, A{p}) −→ (U, ∆δκ)

(U, A{p; q}) −→ (U, ∆δκ{q}) (SeqAt2)
(U, A{p}) α−→ (U ′, ∆δκ)

(U, A{p; q}) α−→ (U ′, ∆δκ{q})

(Seq!)
(U, A{p}) c![ϑ]−→ (U, A′{p′}‖c![ϑ])

(U, A{p; q}) c![ϑ]−→ (U, A′{p′; q}‖c![ϑ])
(Seq!At)

(U, A{p}) c![ϑ]−→ (U, ∆δκ)

(U, A{p; q}) c![ϑ]−→ (U, ∆δκ{q}‖c![ϑ])

(ParL1)
(U, A{p}) −→ (U, A′{p′})

(U, A{p|q}) −→ (U, A′{p′|q}) (ParR1)
(U, A{q}) −→ (U, A′{q′})

(U, A{p|q}) −→ (U, A′{p|q′})

(ParAtL1)
(U, A{p}) −→ (U, ∆δκ)

(U, A{p|q}) −→ (U, ∆δκ{q}) (ParAtR1)
(U, A{q}) −→ (U, ∆δκ)

(U, A{p|q}) −→ (U, ∆δκ{p})

(ParL2)
(U, A{p}) α−→ (U ′, A′{p′})

(U, A{p|q}) α−→ (U ′, A′{p′|q})
(ParR2)

(U, A{q}) α−→ (U ′, A′{q′})
(U, A{p|q}) α−→ (U ′, A′{p|q′})

(ParAtL2)
(U, A{p}) α−→ (U ′, ∆δκ)

(U, A{p|q}) α−→ (U ′, ∆δκ{q})
(ParAtR2)

(U, A{q}) α−→ (U ′, ∆δκ)

(U, A{p|q}) α−→ (U ′, ∆δκ{p})

(Par!L1)
(U, A{p}) c![ϑ]−→ (U, A′{p′}‖c![ϑ])

(U, A{p|q}) c![ϑ]−→ (U, A′{p′|q}‖c![ϑ])
(Par!R1)

(U, A{q}) c![ϑ]−→ (U, A′{q′}‖c![ϑ])

(U, A{p|q}) c![ϑ]−→ (U, A′{p|q′}‖c![ϑ])

(Par!L2)
(U, A{p}) c![ϑ]−→ (U, ∆δκ‖c![ϑ])

(U, A{p|q}) c![ϑ]−→ (U, ∆δκ{q}‖c![ϑ])
(Par!R2)

(U, A{q}) c![ϑ]−→ (U, ∆δκ‖c![ϑ])

(U, A{p|q}) c![ϑ]−→ (U, ∆δκ{p}‖c![ϑ])

(SParL1)
(U,A) −→ (U,A′)

(U,A‖B) −→ (U,A′‖B)
(SParR1)

(U,B) −→ (U,B′)
(U,A‖B) −→ (U,A‖B′)

(SParL2)
(U,A)

α−→ (U ′,A′)

(U,A‖B)
α−→ (U ′,A′‖B)

(SParR2)
(U,B)

α−→ (U ′,B′)

(U,A‖B)
α−→ (U ′,A‖B′)

(SPar!L)
(U,A)

c![ϑ]−→ (U,A′‖c![ϑ])

(U,A‖B)
c![ϑ]−→ (U,A′‖c![ϑ]‖B)

(SPar!R)
(U,B)

c![ϑ]−→ (U,B′‖c![ϑ])

(U,A‖B)
c![ϑ]−→ (U,A‖B′‖c![ϑ])

20

and when n = 0
obs(Mi)i∈0 = skip

In Section 3.3.1 we generalize the observing behavior, allowing for observations triggered
by any formula (the definition is by structural induction on the formula), thus obtaining a
more complete account of perception.

Revising Beliefs: An agent may be activated with a minimal set of beliefs, including
no observational facts, or communicated assertions, at all. The belief base of the agent is
informed by (1) observe actions, or (2) assertions made by other agents. According to the
operational semantics of our agent language, revisions due to observations attempt to assert
into the belief base just two kinds of positive fact, namely (a) conjunctions of ground facts,
of the form

∧
i∈r(Mi = vi) (where vi are values) and (b) conjunctions of modal ground facts∧

i〈α〉(Mi = vi). Facts of type (a) and (b) constitute the observational core of the belief
base. Thus, a more refined representation of the belief base would be to distinguish

• Ground observational beliefs ∆o =
∧

k∈s(Mk = vk),

• Ground modal observational beliefs ∆αi , for each workspace transforming action αi

for which there are any relevant beliefs, ∆αi =
∧

j∈r〈αi〉(Mj = vj)

• Communication beliefs ∆c

where the semantics of belief revision should guarantee that ∆o ∧ (
∧

i∈n ∆αi) ∧ ∆c = ∆
remains consistent.

In the view we are presenting here, beliefs in the belief base ∆ are to be restricted to
the above forms alone and any other belief is a result of deduction. For example, an agent
may believe that the color of this ball is not red, just because there is a ground belief in
the belief base that thisBall.color = blue. Or the agent may believe that there is a
colored object in its environment, i.e. that (∃x : [color : str])(∃y : str)(x.color = y),
just because the ground belief thisBall.color = blue is in its belief base. Or, still, the
agent may believe that colinear objects A,B are closer together than objects C,D, just
because there are ground beliefs in the belief base, for example A.pos = 2, B.pos = 3 and
C.pos = 1, D.pos = 12, so that ∆ `Θ B.pos− A.pos < D.pos− C.pos.

Revising observational beliefs in this context is relatively straightforward, since we are
here letting any beliefs about rules (implicational connections) be thrown into the non-
revisable reasoning theory Θ. Learning new constraints, such as implicational connections,
and revising the reasoning theory is an issue we do not deal with in this report.

In our restricted context, belief revision is then a rather straightforward matter. If we
represent conjunctions set-theoretically, i.e. let {θ1, . . . , θn}n≥0 stand for (θ1 ∧ · · · ∧ θn)n≥0,
then we can define

revise(∆o,M = v) = {M = v} ∪ (∆o \ {(Mi = vi) ∈ ∆o|Mi = M})

and
revise(∆o,M = v, M̄ = v̄) = revise(revise(∆o,M = v), M̄ = v̄)

21

Similarly, for ground modal observations

revise(∆α, 〈α〉(M = v)) = {〈α〉(M = v)} ∪ (∆α \ {〈α〉(Mi = vi) ∈ ∆α|Mi = M})

and

revise(∆α, 〈α〉(M = v), 〈α〉(M̄ = v̄)) = revise(revise(∆α, 〈α〉(M = v)), 〈α〉(M̄ = v̄))

Once ground observational beliefs and/or ground modal beliefs are revised, due to fresh
observations θ̄, the agent will proceed to revise its communication beliefs ∆c = ϑ1, . . . , ϑk,
rejecting ϑj if it conflicts with the revised observational belief base augmented with any ϑi,
with i < j, already accepted, and accepting ϑj otherwise .

Assuming such a background belief revision utility revise(∆, θ̄), which revises the belief
base ∆ given fresh observations θ̄, we add the rule

revise(∆, ϑ̄) = ∆′

(U,∆δκ{revise(ϑ̄)}) −→ (U,∆′δκ)

Goal Updating: For goal updating we assume the axiom

(U,∆δκ{update(δ′)}) −→ (U,∆δ′κ)

without going into the modalities of goal-selection.

Queries and Conditional: For the conditional ϑ? p else q, if the agent A = ∆δκ
believes that ϑ is the case (i.e. if ∆ `Θ ϑ), then it will behave like p, else like q.

Satisfiability of Desires and Conditional: The conditional ϑ??p else q tests whether
satisfying ϑ would further satisfaction of some goal ψi of the agent A = ∆δκ, where δ =
ψ1, . . . , ψn, and selects a behavior appropriately.

ϑ `Θ ψi (i=1,or...,or i=n)

(U,∆δκ{ϑ??p else q}) −→ (U,∆δκ{p})
ϑ 6`Θ ψi (i=1,···,i=n)

(U,∆δκ{ϑ??p else q}) −→ (U,∆δκ{q})

Behavior Choice: Internal choice of behaviors can be resolved in either direction,
nondeterministically and at run time.

(U,A{p+ q}) −→ (U,A{p}) (U,A{p+ q}) −→ (U,A{q})

Recursive Behaviors: If p is a recursive behavior defined by the equation B{p} =
B{q(p)}, then for any agent A we have the corresponding unfolding axiom

(U,A{p}) −→ (U,A{q(p)})

While loops, such as
While ϕ do q endWhile

can be easily defined as the behavior

p = ϕ? (q; p) else skip
22

Sequenced Behaviors: For sequencing, the following natural rules apply

(Seq1)
(U, A{p}) −→ (U, A′{p′})

(U, A{p; q}) −→ (U, A′{p′; q}) (Seq2)
(U, A{p}) α−→ (U ′, A{p′})

(U, A{p; q}) α−→ (U ′, A{p′; q})

(SeqAt1)
(U, A{p}) −→ (U, ∆δκ)

(U, A{p; q}) −→ (U, ∆δκ{q}) (SeqAt2)
(U, A{p}) α−→ (U ′, ∆δκ)

(U, A{p; q}) α−→ (U ′, ∆δκ{q})

(Seq!)
(U, A{p}) c![ϑ]−→ (U, A′{p′}‖c![ϑ])

(U, A{p; q}) c![ϑ]−→ (U, A′{p′; q}‖c![ϑ])
(Seq!At)

(U, A{p}) c![ϑ]−→ (U, ∆δκ)

(U, A{p; q}) c![ϑ]−→ (U, ∆δκ{q}‖c![ϑ])

In the first two rules the behavior p may be discharged by provoking some changes to
the agent state or to the workspace, while leaving behind some residual behavior p′. The
next two rules refer to the case where no residual behavior is left. Both possible cases need
to be treated again for the case of output (the last two rules).

Concurrent Behaviors: Table 5 provides rules for reductions of concurrent behaviors,
as well as for concurrent systems of agents. Both cases mentioned for sequencing may occur
and for each of the left or right behaviors in p|q, hence the rather large number of needed
rules.

Asynchronous Message Exchange: Communication is by asynchronous message pass-
ing, where messages are either assertions (information exchange) or requests (collaboration).
A message, when passed asynchronously by an agent, is held by the message holder nil.
Thus a sent message is represented by the agent nil{c![ϑ]}, which we typically write, as is
usual practice, as merely c![θ]. Thus, if A = ∆δκ and a, r are, respectively, assertion and
request channels, then we have the rules

∆ `Θ ϑ

(U,∆δκ{a![ϑ]} a![ϑ]−→ (U,∆δκ‖a![ϑ])

ϑ `Θ,∆

∨
δ

(U,∆δκ{r![ϑ]} r![ϑ]−→ (U,∆δκ‖r![ϑ])

The first rule means that agents are assumed to be truthful, as they never assert anything
they do not believe to be true. By the second rule, agents never make random requests,
they only request something that may increase the chances of satisfying their own desires.

A message can be consumed by any basic agent listening on the same channel

(U,∆δκ{c?(ψ)p}‖c![ϑ]) −→ (U,∆δκ{p[ϑ/m]})

To be more precise, writing messages in their full notation (making the message-holder
explicit) we would have

(U,∆δκ{c?(ψ)p}‖nil{c![θ]} −→ (U,∆δκ{p[ϑ/m]}‖nil)

However, it is a consequence of our operational semantics that nil‖A and A are essentially
identical (behaviorally equivalent), as we explain in the sequel, and so there is no harm
done by using the abbreviated notation for messages.

Concurrently Executing Agents: Other than the asynchronous communication ax-
iom above, the rules (SPar), presented in Table 5, are the natural rules to adopt for con-
current systems.

23

3.3 Perceiving and Experimenting

Agents often need to decide on a course of action by testing whether some condition holds
(and not merely by querying their belief base on the issue). Testing, or experimenting,
involves the performance of ground observations, determined by the condition in question.
In the sequel, we first generalize the behavior of observing to a behavior of performing
observations triggered by a formula. Subsequently we introduce a testing behavior.

3.3.1 Observations triggered by Formulae

We define reduction rules for the action obs(φ), for a U -agent A = 〈∆, δ, κ〉, by induction
on the structure of φ

1. If φ = Rt̄ is atomic, where t̄ = t1, . . . , tn, for some n > 0, then let obs(Rt̄) = obs(t̄)

2. For conjunction, let obs(φ ∧ ψ) ≡ obs(φ)|obs(ψ)

3. There can be no observation of negative facts, such as, for example, that it is not the
case that the color of this object is red. Rather, an observation of the color of the
object is made and it is then decided by a logical query whether the statement “it is
not the case that the color of this object is red” is supported by observation or not.
Thus we set obs(¬φ) ≡ obs(φ)

4. Observing existential statements is unproblematic if the type of the bound variable
is a row type ρ = [`1 : τ1, . . . , `n : τn]. This is because the observation takes place in
a finitely generated workspace U and thus there can only be finitely many objects of
type ρ in U , so that observation of the existential statement may be safely reduced to
such of a disjunctive statement. Thus, to observe (∃x : [color : str](x.color = red)
one observes colored objects in the workspace in order to ascertain whether one with
red color exists.

By contrast, consider a statement of the form (∃x : int)(x + P.xpos ≤ 12379). The
only pertinent observation in trying to ascertain the truth or falsity of this statement
is obs(P,xpos). Everything else is a matter of logical deduction. Thus it suffices to
obs(P.xpos + x ≤ 12379), which reduces precisely to obs(P, xpos).

With these clarifications, if A = 〈∆, δ, κ〉 is a U -agent, then let

obs((∃x : τ)φ) =
{

obs(φ), If τ = κ is a ground type;
obs(

∨
(M :ρ)∈U φ[M/x]), If τ = ρ is a row type.

5. Finally, if φ ≡ 〈α〉θ then proceed by induction on θ

• If θ = Rt̄ is atomic, then the reduction obeys the rule

(U,A{α}) −→ (V,B) (V,B{obs(Rt̄)}) −→ (V,B{revise(ϑ̄)})
(U,A{obs(〈α〉Rt̄)}) −→ (U,A{revise(〈α〉ϑ̄)})

where if θ̄ = θ1, . . . , θn, then 〈α〉θ̄ = 〈α〉θ1, . . . , 〈α〉θn.
24

• Consistent with our view that there can be no observation of negatives facts, if
θ = ¬φ we set obs(〈α〉¬φ) = obs(〈α〉φ) and so this case is reduced to the other
cases. For further justification of our current definition note that 〈α〉¬φ is se-
mantically equivalent to ¬[α]φ, so that observing 〈α〉¬φ is the same as observing
[α]φ. By the observations we made in Remark 2.14, if α is a performable action
on the workspace U , then U cannot distinguish between [α]φ and 〈α〉φ.

• If θ = θ1 ∧ θ2, so that 〈α〉(θ1 ∧ θ2) ≡ 〈α〉θ1 ∧ 〈α〉θ2, because transition relations
are functions, we may set obs(〈α〉(θ1∧θ2)) ≡ obs(〈α〉θ1∧〈α〉θ2) and so this case
is reduced to the other cases

• If θ = (∃x : κ)χ, where κ is a ground type, then, consistent with our view that
there can be no observation involving abstract entities (numbers) we may set
obs(〈α〉θ) ≡ obs(〈α〉χ) and so this case is also reduced to the other cases

• If θ = (∃x : ρ)χ, where ρ is a row type, then we let obs(〈α〉(∃x : ρ)χ) ≡
obs(〈α〉

∨
(M :ρ)∈U{α} χ[M/x]) and so this case reduces to the other cases as well.

6. If φ ≡ 〈α〉θ, where x : ρ occurs free in α, then set obs(〈α〉θ) = obs(
∨

(M :ρ)∈U 〈α[M/x]〉θ.

3.3.2 Testing

Testing whether a property ψ holds in the current workspace, we propose, is answered by
a logical query on a belief base first revised by ground observations triggered by ψ. Thus
we simply define

test(ψ)? p else q ≡ obs(ψ); (ψ? p else q)

For example, and where P = [xpos = 5, ypos = 11] is a point object, to test whether
P.xpos ≤ P.ypos − 1, the observation obs((P, xpos), (P, ypos)) is made, the belief base is
appropriately informed (and revised if necessary), and the truth or falsity of the tested
statement is decided by a logical query on the revised belief base.

3.4 Some Example Definable Agent Behaviors

Using the basic agent behaviors so far presented we can define more complex ones, as in
the following examples.

3.4.1 Satisfying Goals

We define a compound behavior satG, for goal satisfaction, where goals are tested and if
they currently fail to hold, a plan for modifying the agent’s workspace is elaborated and
executed, the goal list is updated by simply dropping the satisfied goal and a recursive call
is made to satG. We may assume that ground routines for testing whether a list is null
or not, or for extracting the head of a list are available and we will not care to explicitly
present them. For example, we could have incorporated a basic behavior null? p else q,
for doing p if the goal list is empty and doing q otherwise. Then the behavior satG can be
defined by the following equation, where A = 〈∆, δ,K〉 and δ is either empty or of the form
ψ; δ1.

A{satG} = A{null? skip else (test(ψ)? (update(δ1); satG) else ψ; update(δ1); satG))}

25

However, in the sequel, we will not care to make such ground routines explicit and we
will give relevant definitions in the following style, for A = 〈∆, δ,K〉:

A{satG} =
{
A, if δ = 〈 〉
test(ψ)? (update(δ1); satG) else (ψ; update(δ1); satG), if δ = ψ; δ1

3.4.2 Recurrent Behavior

As a standard application of recursive definitions we can define recurrent behaviors by
setting, for each behavior p, !p = p|!p, or, making the agent parameter explicit, A{!p} =
A{p|!p}.

3.4.3 Continuous Monitoring of the Environment

With the replication operator of the previous example we can easily define a U -agent A =
〈∆, δ, κ〉 that continuously monitors its environment (observes the values of attributes of
the objects in its environment), while also executing, concurrently, some program p, as

A{!obs(M)(M :ρ)∈U | p}

3.4.4 Persistent (Vital) Goals

There are vital needs an agent must make sure to satisfy at all times, while also executing
other actions. Because the environment may change as a result of the agent’s own behavior
and in a way that the vital goals become temporarily unsatisfied, an agent with persistent
goals ϑ̄ will have to recurrently modify the environment so as to re-establish satisfiability
of its persistent (vital) goals ϑ̄.

There is the option of prescribing that the desires δ mentioned in an agent’s state are
precisely its vital goals. Or we can simply define a new behavior pers(ϑ̄), as we do below.

A{pers(ϑ; ϑ̄1)} = A{test(ϑ)? pers(ϑ̄1;ϑ) else ϑ; pers(ϑ̄1;ϑ)}

so that satisfying persistent goals while also behaving like p can be defined byA{pers(ϑ̄) | p}.

3.5 Constrained Agent Systems

In what we have said up to now, actions transforming the workspace can be unconditionally
executed. This, however, is rarely (if ever) the case. By a global constraint (for any action α
transforming a workspace) we mean a precondition-postcondition pair (ϕ,ψ) . A constrained
action will typically have the form

test(ϕ ∧ 〈α〉ψ)?α else skip

so that the agent itself will have to decide whether the precondition and post-condition of
the action hold in the current workspace. Global constraints (such as that the capacity of
a receptor type of object should not be exceeded, or that some numerical attribute of some
type of object should only be changed within preset bounds, etc) apply to all workspaces.
Local constraints can be expressed as conditional global constraints ϕ→ (ϑ∧〈α〉ψ). Global

26

constraints can be dressed-up as local ones: true −→ (ϕ ∧ 〈α〉ψ). So that constraints have
the general form χ −→ (ϕ ∧ 〈α〉ψ).

In a constrained system, the rule for a transition of (U,A{α}), where A is a basic agent,
takes the form

κ|U = K
α−→ K ′

U
α−→ V

(U,∆δκ{test(χ→ (ϕ ∧ 〈α〉ψ))?a![true] else a![false]}) −→ (U,∆′δκ{a![true]})
(U,∆δκ{α}) α−→ (V,∆δκ)

4 Behavioral Equivalence of Agents

We define, in this Section, several notions of agent equivalence, and explore the relations
amongst them.

Definition 4.1 (Deductive Equivalence) Let A = ∆δκ and B = ∆′δ′κ′ be U -agents.
Define A ≺U B iff (1) κ|U ⊆ κ′|U , (2) ∆′ `Θ ∆ and (3) ∀j∃i δi `Θ δ′j. We say that A,B
are U -equivalent, denoted by A ≈U B, iff A ≺U B and B ≺U A.

Lemma 4.2 Let A1 = ∆1δ1κ1, A2 = ∆2δ2κ2 and assume A1 ≈U A2. If p is a behavior
such that (U,A1{p}) =⇒ (U,A′

1), where A′
1 = ∆′

1δ
′
1κ

′
1, then (U,A2{p}) =⇒ (U,A′

2), where
A′

2 = ∆′
2δ

′
2κ

′
2 and A′

1 ≈U A′
2.

Proof: We proceed by induction on the syntax of behaviors. If p is an atomic behavior
and given the hypothesis of the lemma, then p is one of the following (the cases α and c![ϑ]
lead to observable actions, which is why they are ommitted.)

skip | obs(Mi)i∈n | revise(θ̄) | update(δ)

The case skip is trivial. Observations obs(Mi)i∈n lead to revision by the same list of
formulae θ̄. Revision of deductively equivalent belief bases by deductively equivalent new
facts leads to deductively equivalent revisions, and so the claim of the lemma holds. The
case for update(δ) is obvious, by the operational semantics.

If the behavior p is compound, then (1) in the case of a recursively defined behavior
p, the first step is a silent unfolding and so this case reduces to non-recursive behaviors.
Similarly, if the behavior is a commitment, then the first step is a silent reduction to a new
behavior and so this case reduces to the other cases. If (2) p is a conditional, then the
hypothesis implies (in both cases of the conditional ϑ?p else q and ϑ??p else q) that the
same choice p or q is made by both agents, and the claim holds by induction. The cases of
(3) summation, (4) concurrent behavior and (4) sequencing are obvious, by induction.

Most behaviors of a situated multi-agent system are silent (internal). The only ob-
servable behaviors in the operational semantics are (1) actions α affecting the common
workspace and (2) message-send actions of the form c![ϑ], where c is an assertion or re-
quest communication channel. If β is an observable behavior, β := α | a![ϑ] | r![ϑ], then

we write (U,A)
β

=⇒ (V,B) if the behavior β is preceded and followed by some (possibly

none) silent moves. We write (U,A) ⇓ β, if there is (V,B) such that (U,A)
β

=⇒ (V,B). If
27

σ = β1 · · ·βn · · · is a sequence of observable actions, then we say that (U,A) converges on
σ, written (U,A) ⇓ σ, just in case there is a computation sequence

(U,A)
β1=⇒ (U1,A1)

β2=⇒ · · · βn=⇒ (Un,An)
βn+1=⇒ · · ·

Note that for a finite sequence σ, (U,A) ⇓ σ, if and only if, for some m ≥ 0, we have
(U,A) σ=⇒ (U ′, A′‖c1![ϑ1]‖ · · · ‖cm![ϑm]).

Corollary 4.3 Let A1 = ∆1δ1κ1, A2 = ∆2δ2κ2 be basic agents and assume A1 ≈U A2. If
(U,A1{p})

σ=⇒ (U ′, A′‖c1![ϑ1]‖ · · · ‖cm![ϑm]), for some m ≥ 0, and where A′ = ∆′
1δ

′
1κ

′
1, then

(U,A2{p})
σ=⇒ (U ′, B′‖c1![ϑ1]‖ · · · ‖cm![ϑm]), for some B′ = ∆′

2δ
′
2κ

′
2 such that A′ ≈U ′ B

′.

Proof: Immediate from Lemma 4.2, from the fact that observable actions do not affect
the state of the agent and from the fact that if κ1|U = κ2|U , then for any state transforma-
tion α ∈ κ1|U = κ2|U , if U α−→ V , then κ1|V = κ2|V . This is because the transformation
α = M [`⇐ L] of the workspace does not affect the types of objects in the workspace (the
effect of the transformation is that an object of some type is being replaced by another
object of the same type).

Next we define behavior-equivalence ∼U of agents and we show that it coincides with
≈U on basic agents. Behavioral equivalence depends on observable behaviors.

Definition 4.4 (Behavioral Equivalence) Let A,B be any U -agents. Define A �U B
if and only if for any behavior p and any observable action β, if (U,A{p}) ⇓ β, then
(U,B{p}) ⇓ β. Define A ∼U B iff A �U B and B �U A.

Theorem 4.5 If A = 〈∆, δ, κ〉 and B = 〈∆′, δ′, κ′〉 are two basic U -agents, then A ∼U B
iff A ≈U B.

Proof: Assume first that A ∼U B. To see that ∆′ ≡Θ ∆ let p = ∆?a![true]. Then
(U,A{p}) ⇓ a![true] and therefore, by A �U B, (U,B{p}) ⇓ a![true]. By the rules of the
operational semantics the latter is only possible if ∆′ `Θ ∆. By similar argument it also
follows that ∆ `Θ ∆′.

For pairwise equivalence of goals, let p = ψi??a![true]. Then clearly (U,A{p}) ⇓ a![true]
and so (U,B{p}) ⇓ a![true]. It follows, by the operational semantics, that ψi `Θ ψ′j , for
some j. By similar argument, there is k such that ψ′j `Θ ψk and, thereby, ψi `Θ ψk. By
our assumption that desires are deductively independent, it follows that ψi ≡Θ ψ′j .

Finally, to see that κ|U = K and κ′|U = K ′ are identical, let τ v [` : τ ′] and M : τ ,
L : τ ′ ∈ K. Let α = M [` ⇐ L]. Then (U,A{α}) ⇓ α and so, by A �U B, it must be that
(U,B{α}) ⇓ α. This means that α = M [` ⇐ L] is an action defined on the capabilities
space K ′ of B, i.e. M,L ∈ K ′ and so K ⊆ K ′. The other direction of the inclusion is proven
similarly. It follows from this that κ = κ′.

Conversely, suppose A ≈U B. We proceed by structural induction on the syntax of
behaviors. If p is an atomic behavior

p := skip | α | θ | obs(Mi)i∈n | a![θ] | r![θ] | revise(θ̄) | update(δ′) | c?(ψ)p

28

then either (1) p does not lead to any observable behavior (cases skip, obs(Mi)i∈n, revise(θ̄),
update(δ′), c?(ψ)p) and the claim is vacuously true, or (2) p is a commitment θ, leading to
execution of a plan p′, or else (3) p is either an output behavior, or a workspace transfor-
mation.

If p = θ is a commitment, then given deductive equivalence of the belief bases it is clear
that ∆ `Θ 〈α〉θ iff ∆′ `Θ 〈α〉θ. The rest follows by observing the rules (int1, int2) for
commitments.

Remains to examine the cases of output and workspace transforming behaviors. In the
latter case, since the agents have the same capabilities spaces, it follows that (U,A{α}) ⇓ α
iff (U,B{α}) ⇓ α.

In the case of output, consider first assertions a![ϑ]. By the operational semantics, agents
are only willing to assert ϑ provided it follows from what they believe. By the hypothesis
that A ≈U B, it then follows that A is willing to assert ϑ iff B is willing to assert it. In
other words, (U,A{a![ϑ]}) ⇓ a![ϑ] iff (U,B{a![ϑ]}) ⇓ a![ϑ].

If the output behavior is a request, then it follows again from the relevant rule of the
operational semantics and from the hypothesis that A ≈U B that A will launch a request ϑ
if and only if B can do the same, since agents communicate requests only when satisfying
them may further satisfaction of their own desires. In other words, (U,A{r![ϑ]}) ⇓ r![ϑ] iff
(U,B{r![ϑ]}) ⇓ r![ϑ]. Hence the claim is true for atomic behaviors.

We now proceed to compound (including recursively defined) behaviors, assuming as
our induction hypothesis that the claim holds for their constituent behaviors. The case of
recursive behaviors is resolved easily since the agents first reduce by unfolding the definition
of the behavior, and so this case resolves into one of the cases of non-recursive behaviors. The
cases of the conditionals ϑ?p else q and ϑ??p else q are immediate, since both agents will
select p, or both will select q, given the rules of the operational semantics and the hypothesis
that A ≈U B. The rest is by induction. The cases of behavior choice and parallel is also
resolved by induction, given the rules of the operational semantics. There only remains the
case where p = p1; p2 is a sequence. If (U,A{p1; p2}) ⇓ β because (U,A{p1}) ⇓ β, then
the claim is true by induction. Otherwise, (U,A{p1}) =⇒ (U,A′), in which case the claim
follows by Lemma 4.2 and the induction hypothesis for p2.

We may then conclude that A ∼U B iff A ≈U B.
A stronger notion than behavioral equivalence is trace equivalence, which we define

below, focusing on sequences of observable actions, rather than single observable actions.
However, it can be shown, as we do in Theorem 4.7, that the two notions coincide on basic
agents.

Definition 4.6 (Trace Equivalence) Let A,B be any U -agents. Define A =
@U B iff for

any behavior p and sequence σ of observable actions, if (U,A{p}) ⇓ σ, then (U,B{p}) ⇓ σ′,
for some σ′ = σ_

0 σ. We say that A,B are trace equivalent, denoted by A ∼=U B, iff A =
@U B

and B =
@U A.

Our next proposition shows that trace and behavioral equivalence coincide on basic
agents.

29

Theorem 4.7 If A = ∆δκ, B = ∆′δ′κ′, then A ∼U B iff A
∼=U B. This equivalence fails

for agents A,B that are not ground. In fact, trace is finer than behavioral equivalence (if
A

∼=U B, then A ∼U B, but not conversely).

Proof: The direction A
∼=U B =⇒ A ∼U B is immediate, by taking sequences σ con-

sisting of a single observable action. For the converse, we may use Theorem 4.5, so that
it suffices to show that A ≈U B =⇒ A

∼=U B. The arguments for atomic behaviors and
for any compound behavior other than a sequence p = p1; p2 are essentially the same as in
the proof of A ≈U B =⇒ A ∼U B, of Theorem 4.5. We examine the case of a sequenced
behavior p = p1; p2 separately.

Suppose (U,A{p1; p2} ⇓ σ and let σ1, σ2 be subsequences so that σ = σ_
1 σ2 (where any

of σ1, σ2 may be the empty sequence ε) and (U,A{p1}) ⇓ σ1.
If σ1 = ε, then the result follows by Lemma 4.2 and by the inductive hypothesis applied

to the sub-behavior p2. If σ2 = ε, then the result follows by the inductive hypothesis applied
to the sub-behavior p1. Hence we may assume that σ1 6= ε 6= σ2. This implies that σ1 is
finite (since σ = σ_

1 σ2 and σ2 6= ε). Let

(U,A{p1})
σ1=⇒ (V,A′‖c1![ϑ1]‖ · · · ‖ck![ϑk])

The hypothesis A ≈U B implies that A,B can execute exactly the same workspace trans-
formations α and, since they execute the same behavior p1 it follows, by the inductive
hypothesis on the sub-behavior p1, that

(U,B{p1})
σ1=⇒ (V,B′‖c1![ϑ1]‖ · · · ‖ck![ϑk])

By Corollary 4.3, it follows that A′ ≈V B′. Now apply the inductive hypothesis for the
sub-behavior p2 to the basic agents A′, B′.

Now if A,B are not ground agents, then this equivalence of the two behavioral relations
fails. For example, let

A = ∆δκ{(α;α′)|(α1;α′1)} and B = ∆δκ{(α;α′); (α1;α′1) + (α1;α′1); (α;α′)}

Then it can be easily seen that A ∼U B. However, A 6∼=U B. This is because B has only
two possible traces, α;α′;α1;α′1 and α1;α′1;α;α′, whereas any interleaving of the α actions
(such as, for example, α;α1;α′1;α

′) is a possible trace for A.
It is easily seen that trace equivalence is finer than behavioral equivalence, by restricting

sequences to single actions.
Next, we examine bisimulations and bisimilarity and compare with the notions of agent

equivalence we have presented so far.

Definition 4.8 (Bisimulation) A relation R on U -agents is a simulation, provided that
R(A,B) implies that

• For any behavior p and any observable action β, if

(U,A{p}) β
=⇒ (V,A′‖c1![ϑ1]‖ · · · ‖ck![ϑk])

30

for some k ≥ 0, then there exists an agent B′ such that

(U,B{p}) β
=⇒ (V,B′‖c1![ϑ1]‖ · · · ‖ck![ϑk])

and R(A′, B′).

The relation R is a bisimulation if both R and R−1 are simulations. Bisimilarity A =∼U B
is defined as the largest bisimulation relation on U -agents.

Theorem 4.9 Bisimilarity and deductive equivalence coincide on basic agents. In other
words, if A = ∆δκ, B = ∆′δ′κ′, then A ≈U B iff A

=∼U B.

Proof: From the definition of deductive equivalence in Definition 4.1 and by Corollary
4.3 it follows that ≈U is a bisimulation on basic agents and thus A ≈U B implies A =∼U B.
The proof of the converse is the same as that of A ∼U B =⇒ A ≈U B of Theorem 4.5.

Corollary 4.10 Let A,B be any agents. Then

1. If A,B are bisimilar, then they are trace equivalent

2. If A,B are trace equivalent, then they are behaviorally equivalent

3. If A,B are ground agents, then the three notions of equivalence coincide.

Proof: Parts 2 and 3 have been already proven in the previous theorems. For the first
part, if A,B are bisimilar and σ = β1 · · ·βn · · · is a trace for A, and A′ is the descendant of
A after execution of the action β1, then B can do β1 with a descendant B′ that is bisimilar
to A′. By induction, any finite initial segment of σ is a trace for B, and therefore σ is a
trace for B, which establishes trace equivalence of A and B.

Thus we have =∼U ⊆ ∼=U ⊆ ∼U , i.e.

A
=∼U B =⇒ A

∼=U B =⇒ A ∼U B

In the sequel, we focus only on behavioral equivalence and preorder. Our next definition
generalizes behavioral equivalence to agent systems. As a notational convention we write
A{p} for A1{p}‖ · · · ‖An{p}, when A = A1‖ · · · ‖An.

Definition 4.11 (Behavioral Equivalence of Agent Systems) Let A,B be any U -agent
systems. Define A �U B if and only if for any behavior p and any observable action β, if
(U,A{p}) ⇓ β, then (U,B{p}) ⇓ β. Define A ∼U B iff A �U B and B �U A.

As we comment in the sequel, our definition validates some natural identities, like

nil‖A ∼U A A‖B ∼U B‖A (A‖B)‖C ∼U A‖(B‖C)

Note that the notion of agent (system) equivalence we have explored will identify agent
terms if no behavior can distinguish between them. In particular, it will identify any message
with the nil agent, since we get, in general, nil ∼U nil{p}, for any behavior p. This is
perhaps unproblematic, since messages are really not agents. However, a stronger notion is
needed if we wish to distinguish messages nil{c![ϑ]} as well.

31

Definition 4.12 (Refined Behavioral Equivalence of Agents) Let A,B be any agents
and define A ∼@U B if and only if

∀p∀C∀β ((U,A{p}‖C) ⇓ β implies (U,B{p}‖C) ⇓ β)

Let then A ∼=U B iff A ∼@U B and B ∼@U A. Similarly for agent systems.

Theorem 4.13 1. If A,B are any agents, then A ∼=U B implies A ∼U B, but not
conversely.

2. If A,B are not messages, then A ∼=U B iff A ∼U B.

3. If A,B are messages A = nil{c![ϑ]} and B = nil{c̄![ψ]}, then A ∼=U B iff (a) c = c̄
and ϑ ≡Θ ψ.

Proof: For the first part, assume the hypothesis and take the agent C of the definition to
be nil to see that A ∼U B follows. The converse fails because nil{c1![ϑ1]} ∼U nil{c2![ϑ2]}.
The relation ∼@U distinguishes between the two, by choosing C of an appropriate form
D{c1?(ψ)p}.

Now assume that A,B are not messages. Given the first part, proven above, we only need
to show that if A ∼U B, then A ∼=U B. Assuming the hypothesis, let p be any behavior
and C any agent. We need to show that for any observable action β, (U,A{p}‖C) ⇓
β iff (U,B{p}‖C) ⇓ β. If the justification of the action β is either that (U,C) ⇓ β or
that (U,A{p}) ⇓ β, then by A ∼U B the claim follows. There only remains the case of
communication, where C = c![ϑ] and p = c?(ψ)q. Then both agents evolve to A{q[ϑ/m]}
and B{q[ϑ/m]}, respectively, and the conclusion follows by A ∼U B. These are the only
possible cases and therefore the two notions of agent equivalence coincide for agents that
are not messages.

For messages, it is clear that if their communication channels are distinct then they
are discriminated by an agent performing input on one of the channels. So suppose that
A = nil{c![ϑ]} and B = nil{c![ψ]}, where we treat both cases c = a, r at the same time.
If the agent C in the definition of ∼@U can perform no input on c, then it cannot distinguish
between the two, so we may assume C = D{c?(ψ)p}. The only behaviors p that may depend
on the input are

p = revise(ψ) | update(ψ) | ψ | d![ψ] | ψ?p1 else p2 | ψ??p1 else p2

If ϑ ≡Θ ψ, then none of these behaviors can distinguish between the two messages and
A ∼=U B. Conversely, if ϑ 6≡Θ ψ, then either belief revision, revise(ϑ), revise(ψ), or
update, update(ϑ), update(ψ), will distinguish between the two messages. Thus messages
as agents are equivalent just in case they share the same communication channel and their
message contents are deductively equivalent.

Corollary 4.14 (Context Lemma) A ∼@U B iff for any behavior p, any observable ac-
tion β and any agent C of the form C = ∆1δ1κ1{c?(ψ)q}, if (U,A{p}‖C) ⇓ β, then
(U,B{p}‖C) ⇓ β.

Proof: By the proof of the previous theorem, the only agents C relevant in detecting
differences in the behavior of A,B are precisely the agents C mentioned in the statement
of this Corollary.

32

Table 6: An Equational Base Theory for Record Terms

M =τ M
M =τ M

′

M ′ =τ M
M =τ M

′ M ′ =τ M
′′

M =τ M
′′

[. . . , ` = A : τ1, . . .][`⇐ B : τ1] =[...,`:τ1,...] [. . . , ` = B : τ1, . . .]

M1 =[`:τ] N1 N1[`⇐ B : τ] =[`:τ] N

M1[`⇐ B : τ] =[`:τ] N

M1 =[`:τ] N1 N1.` =τ N
M1.` =τ N

5 An (In)Equational Theory for Reasoning about Agents

Based on our operational semantics we propose axioms and rules for an inequational theory,
for reasoning about agents and agent systems. The axioms and rules we propose make
reference to record term identities and to derivability results in the language of properties
of workspaces. Identities of record terms are established in a theory containing the axioms
and rules in Table 6.

Axioms and rules for an inequational theory of agent systems are presented in Table 7.
In the sequel, we show that the theory is sound with respect to refined behavioral

preorder and equivalence of agents .

Theorem 5.1 The inequational axioms and rules of Table 7 are valid with respect to behav-
ioral preorder and equivalence, in the sense of Definition 4.12. In other words, if A ≤U B,
then A ∼@U B and if A =U B, then A ∼=U B.

Proof: The relation ∼@U is a preorder and ∼=U is defined by A ∼=U B iff A ∼@U B and
B ∼@U A, from which it follows that the partial order axiom and rules (≤1, ≤2, ≤3) are
sound.

Soundness for (def) is immediate. For (seq), to show that A{p; q} ∼=U (A{p}){q} let r
be any behavior and assume that (U, (A{p; q}){r}) ⇓ β. If this follows from (U,A{p}) ⇓ β,
by the (seq) rules of the operational semantics, then using the rules (D1)-(D3) it follows
that (U, ((A{p}){q}){r}) ⇓ β. The converse is similar, going from the (D)-rules to the
(seq)-rules. Otherwise, (U,A{p}) =⇒ (U,∆δκ), so that by the (seq) rules we have both

(U, (A{p; q}){r}) =⇒ (U, (∆δκ{q}){r}) and (U, ((A{p}){q}){r}) =⇒ (U, (∆δκ{q}){r})

and thus one agent converges on β iff the other does.
The case for (skip) is straightforward.
For (p1), suppose A ∼@U B and let q be any behavior. By (seq), (A{p}){q} = A{p; q},

and similarly for B. Letting p1 = p; q, the conclusion A{p} ∼@U B{p} follows now directly
from the hypothesis.

For (p2), assume that for any behavior p it holds that A{p} ∼@U B{p}. Then in particular
we obtain A ∼=U A{skip} ∼@U B{skip} ∼=U B and so we obtain A ∼@U B.

The cases for (∆δκ), (upd), (rev), (obs0), (obs), (ϕ?1), (ϕ?2), ϕ??1), (ϕ??2) and (def)
are immediate and we leave them to the interested reader.

Soundness of the axioms (+L), (+R) for behavior choice is straightforward and we thus
only deal with the rule (+). Assume then that A{p} ∼@U B and A{q} ∼@U B, let r be any

33

Table 7: Axioms and Rules

(≤ 1) A ≤U A (≤ 2) A ≤U B B ≤U A
A =U B

(≤ 3) A ≤U B B ≤U C
A ≤U C (def) p =def q

A{r} =U A{r[q/p]}

(seq) A{p; q} =U (A{p}){q} (skip) A{skip} =U A

(p1) A ≤U B
A{p} ≤U B{p} (p2) A{p} ≤U B{p}

A ≤U B

(∆δκ)
∆′ `Θ ∆, ∀j∃i δi `Θ δ′j κ|U � κ′|U

∆δκ ≤U ∆′δ′κ′

(upd) ∆δκ{update(δ′)} =U ∆δ′κ (rev) revise(∆, θ̄) = ∆′

∆δκ{revise(θ̄)} =U ∆′δκ

(obs0) A{obs(Mi)i∈0} =U A

(obs) Mi ∈ U `Mi =τi Ni (i ∈ n > 0)
A{obs(Mi)i∈n>0} =U A{revise(Mi =τi Ni)i∈n>0}

(ϕ?1) ∆ `Θ ϕ
∆δκ{ϕ?p else q} =U ∆δκ{p} (ϕ?2) ∆ 6`Θ ϕ

∆δκ{ϕ?p else q} =U ∆δκ{q}

(ϕ??1) ∃i ϕ `Θ δi
∆δκ{ϕ??p else q} =U ∆δκ{p} (ϕ??2) ∀i ϕ 6`Θ δi

∆δκ{ϕ??p else q} =U ∆δκ{q}

(def) A{p} =U A{q(p)} If p is defined by p = q(p)

(+L) A{p} ≤U A{p+ q} (+R) A{q} ≤U A{p+ q}

(+) A{p} ≤U B A{q} ≤U B
A{p+ q} ≤U B

(pskip) A{skip|p} =U A{p}

(pcom) A{p|q} =U A{q|p} (pass) A{(p|q)|r} =U A{p|(q|r)}

(pseq) A{p; (q|r)} ≤U A{(p; q)|r} (p+) A{(p+ q)|r} =U A{p|r + q|r}

(pϕ?1) ∆ `Θ ϕ
∆δκ{(ϕ?p else q)|r} =U ∆δκ{p|r}

(pϕ?2) ∆ 6`Θ ϕ
∆δκ{(ϕ?p else q)|r} =U ∆δκ{q|r}

(pϕ??1) ∃i ϕ `Θ δi
∆δκ{(ϕ??p else q)|r} =U ∆δκ{p|r}

(pϕ??2) ∀i ϕ 6`Θ δi
∆δκ{(ϕ??p else q)|r} =U ∆δκ{q|r}

(inter) p, q atomic
A{(p; p′)|(q; q′)} =U A{p; (p′|q; q′) + q; (p; p′|q′)}

34

behavior and suppose, further, that (U, (A{p + q}){r}) ⇓ β. By the operational semantics
and by the (seq) axiom, this is either by a computation of the form

(U, (A{p+ q}){r}) −→ (U,A{p; r}) ⇓ β

or by a computation of the form

(U, (A{p+ q}){r}) −→ (U,A{q; r}) ⇓ β

If either (U,A{p}) ⇓ β or (U,A{q}) ⇓ β, then the hypothesis implies that (U,B{r}) ⇓ β.
Otherwise, if (U,A{p; r}) ⇓ β while (U,A{p}) 6⇓ β, then (U,A{p}) =⇒ (U,∆δκ), so that
the computation has the form

(U, (A{p+ q}){r}) −→ (U,A{p; r}) =⇒ (U,∆δκ{r}) ⇓ β

and since we assume A{p} ∼@U B it follows that (U,B{r}) ⇓ β. Similarly if the choice is
resolved in favor of q. This shows that A{p+ q} ∼@U B.

Soundness for each of ((pskip), (pcom), (pass), (p+), (pϕ?1), (pϕ?2), (pϕ??1), (pϕ??2)
and (pseq) is immediate.

Finally, soundness of the interleaving law (int), for atomic p, q, is immediate given the
rules of the operational semantics

Remark 5.2 If p1, . . . , pn, q1, . . . , qm are atomic actions, then

A{(p1; · · · ; pn)|(q1; · · · ; qm)} =U A{
j=n+m∑

j=1

rj1 ; · · · ; rjn+m}

where

• For each 1 ≤ js ≤ n + m, either rjs = pi, for some 1 ≤ i ≤ n, or rjs = qk, for some
1 ≤ k ≤ m

• If rjs = pi, then for each i < i′ ≤ n there exists an index js < js′ ≤ n+m such that
rjs′ = pi′ , and

• If rjs = qk, then for each k < k′ ≤ m there exists an index js < js′ ≤ n+m such that
rjs′ = qk′

For example

A{(α1;α2)|(β1;β2)} =U A{(α1;α2;β1;β2)+

(α1;β1;β2;α2)+

(α1;β1;α2;β2)+

(β1;β2;α1α2)+

(β1;α1;α2;β2)+

(β1;α1;β2;α2)}.
35

6 A Simple Case Study

In this Section we present a simple two-agent system, used as an example in [4], and which
we describe in the agent language we have developed in this report.

The system consists of a two-room building, a waiting room and an examination room.
Only one person can be in the examination room at each particular time. Several persons
are initially waiting in the waiting room. Our two agents (with shared workspace the
building) are a physician and a secretary. The physician observes the number of persons
in his examination room, examines the person currently in, and then sends her out. If the
examination room becomes empty, the physician notifies the secretary, trying to get all the
patients in for examination. The secretary observes the waiting room and his goal is to
send all waiting persons, one by one, in the examination room. If he ever comes to believe
that the examination room is empty and there are more patients waiting, he notifies the
physician that it is possible to send one patient in for examination, and does indeed send one
person out of the waiting room. Having received the secretary’s notification, the physician
admits the patient into the examination room and begins examination. The system will
terminate when all patients from the waiting room have gone into and then out of the
examination room.

First, we describe the objects and workspaces involved. There are only three objects,
the building, whose two attributes are the two rooms, each of which has only one attribute,
the number of people currently in. The building is the two agents’ shared workspace. But
they have distinct capabilities spaces as the secretary can only modify the number of people
in the waiting room, but it is the physician’s role to admit a person in the examination
room.

Thus we have some initial situation

BLDG := [w = WR, e = ER]
WR := [inW = 32]
ER := [inE = 0]

Our two BLDG-agents are, first, the physician A, who comes into the examination room
with no observational beliefs (he only has the trivial belief true), whose goals are to keep
the examination room full, as long as there are people in the waiting room

ψ = WR.inW = 0 ∨ ER.inE = 1

and whose capabilities space is the examination room ER, determined by the capabilities
κE = [inE : int], so that the initial state of the physician A is

A := 〈true, ψ, κE〉

And second, the secretary B, also with trivial initial beliefs true, whose capabilities space
is the waiting room WR, determined by the capabilities κW = [inW : int], and whose goal
is to empty the waiting room,

ψ′ := WR.inW = 0

36

by sending the patients into the examination room, one by one. The constraint for not just
sending everybody away (!) is

ϑα := (WR.inW = x) ∧ (x > 0) ∧ (ER.inE = 0) ∧ 〈α〉(WR.inW = x− 1)

so that any modification α = WR[inW ⇐ k] is really a constrained action ϑα?α. Thus the
initial state of the secretary B is

B := 〈true, ψ′, κW 〉

The system is controlled by recursive behaviors pA and pB for the two agents

pB= a1?(ψ)revise(ψ); test(WR.inW > 0)?
(ER.inE = 0)?

WR[inW ⇐WR.inW − 1];
a2![〈WR[inW ⇐WR.inW − 1]〉(WR.inW ≥ 0)];
pB

else pB

else a2![WR.inW = 0]

pA= test(ER.inE = 1)?
skip10;
ER[inE ⇐ ER.inE − 1]
revise(ER.inE = 0);
a1![ER.inE = 0];
q

else a1![ER.inE = 0];
q

where q is the behavior

q= a2?(ψ)revise(ψ);
〈WR[inW ⇐WR.inW − 1]〉(WR.inW ≥ 0)? ER[inE ⇐ ER.inE + 1]; pA

else skip

The system is then (BLDG,A{pA}‖B{pB}). To see how the system works, observe that
initially it has the form

(BLDG,A{test(ER.inE = 1)?p1 else p2}‖B{a1?(ψ)revise(ψ); p3}) (1)

Given the initial state of the workspace

BLDG = [w = WR, e = ER] WR = [inW = 32] ER = [inE = 0]

and the operational semantics for the (definable) behavior for testing, an observation
obs(ER.inE) is made, the belief base (initially trivial) of agent A is revised to ∆A =
(ER.inE = 0), the test fails and the system evolves to the state

(BLDG,A1{a1![ER.inE = 0]; q}‖B{a1?(ψ)revise(ψ); p3}) (2)
37

where
A1 = 〈∆A, ψ, κE〉

A message is then sent

(BLDG,A1{a2?(ψ)revise(ψ); q1}‖nil{a1![ER.inE = 0]}‖B{a1?(ψ)revise(ψ); p3}) (3)

The message is consumed by the secretary (agent B), its belief base is appropriately revised
to ∆1

B = (ER.inE = 0), a test to find out if there are any patients in WR is performed
by B, it succeeds, the belief base of B is revised by asserting the fact (WR.inW = 32),
transforming the state of B to

B1 = 〈(ER.inE = 0) ∧ (WR.inW = 32), ψ′, κW 〉

whence the query (ER.inE = 0) succeeds and the system evolves to

(BLDG,A1{a2?(ψ)revise(ψ); q1}‖B1{WR[inW ⇐WR.inW − 1]; a2![θ]; p3}) (4)

Agent B1 then sends a patient for admission into the examination room and notifies the
physician (the message θ is 〈WR[inW ⇐WR.inW − 1]〉(WR.inW ≥ 0)). The message is
consumed by agent A (the physician), leading to revising A’s belief base so that the query

〈WR[inW ⇐WR.inW − 1]〉(WR.inW ≥ 0)

succeeds, following which the physician admits the person in the examination room. The
capabilities spaces and the workspace have now changed to

BLDG1 = [w = WR1, e = ER1] WR1 = [inW = 31] ER1 = [inE = 1]

The physician then observes that there is a patient in the examination room, examines
her (indicated by 10 successive skip actions), sends the person out, thus transforming the
workspace to the state BLDG2 = [w = WR1, e = ER] and the system gets to the state

(BLDG2, A2{a1![ER.inE = 0]; q}‖B2{a1?(ψ)revise(ψ); p3}) (5)

following which the secretary becomes informed that a new patient can be moved from the
waiting room to the examination room etc.

The process will continue until all patients are moved out of the building, having been
examined.

7 Conclusions and Further Research

This report has focused on proposing a process algebraic approach to agent systems, rather
than investigating partial aspects such as planning, belief revision, goal updating or com-
munication languages and agent coordination. Particular solutions to partial issues such
as those mentioned above can be incorporated in the framework explored here, by suitable
additions or extensions and this task constitutes the substance of further research. We
have provided an account of agent systems by incorporating a calculus of the environments

38

agents live in, which has allowed us to provide a simple account of perception (performing
observations triggered by a formula) and action (modification of object properties in the
agent environment). We have kept the language of properties of workspaces (language of
beliefs and desires) simple, in the context of this report, but it would certainly be worth
extending the framework we have proposed here by investigating more complex logical lan-
guages, such as fixpoint logics or logics allowing for the representation of time and temporal
properties, as well as for higher-order beliefs (beliefs about beliefs of self or of other agents).
We leave issues such as these to further research.

Acknowledgements: This research has been made possible by partial financial support
from the Research Office of the Technological Education Institute of Larissa, Greece.

References

[1] Amandi, A., Iturregui, R., Zunino, A., “Object-Agent Oriented Programming”, Tech-
nical Report, 1997?

[2] Barwise, J., Gabbay, D., and Hartonas, C., “Information Flow and the Lambek Cal-
culus”, in Logic, Language and Computation, J. Selligman and D. Westerstahl (eds),
Proceedings: Information-Oriented Approaches to Logic, Language and Computation,
Moraga, California, 1994. CSLI Lecture Notes, No. 58, Stanford (1996), pp 49-64.

[3] Barwise, J., Gabbay, D., and Hartonas, C., “On the Logic of Information Flow”,
Bulletin of the IGPL , vol 3, No 1, 1995, pp 7-49

[4] van Eijk, R., de Boer, F., van der Hoek, W. and Meyer, J.-J. Ch., “Information Passing
and Belief Revision in Multi-Agent Systems”, pp. 29-47, in Müller, J.P., Singh, M. P.,
Rao, A.S. (eds), Intelligent Agents V, LNAI 1555, Springer, 1999.

[5] van Eijk, R.M., de Boer, F.S., van der Hoek, W., Meyer, J.-J. Ch., “Generalized Object-
Oriented Concepts for Inter-Agent Communication”, in Castelfranchi, C., Lespérance,
Y., (eds) Intelligent Agents VII, LNAI, Springer, 2001.

[6] van Eijk, R.M., de Boer, F.S., van der Hoek, W., Meyer, J.-J. Ch., “A Language for
Modular Information-Passing Agents”, in K.R.Apt (ed), CWI Quarterly, Special Issue
on Constraint Programming, vol 11, pp 273-297, CWI, Amsterdam, 1998.

[7] Guessoum, Z., Briot, J.-P., “From Active Objects to Autonomous Agents”, in IEEE
Concurrency, vol 7-3, pp. 68-76, 1999.

[8] Hartonas, C., and Hennessy, M., “Full Abstractness for a Functional-Concurrent Lan-
guage with Higher-Order Value-Passing”, Information and Computation vol 145, pp.
64-106, 1998.

39

[9] Hartonas, C., “Duality for Modal µ-Logics”, Theoretical Computer Science, vol 202
(1-2), 1998, pp 193-222.

[10] van der Hoek, W., “Logical Foundations of Agent-Based Computing”, Technical Re-
port, Institute of Informatics and Computing Sciences, Utrecht University, 2001?

[11] Kinny, D., “The Ψ Calculus: An Algebraic Agent Language”, in Intelligent Agents
VIII, LNAI 2333, pp. 32-50, Springer-Verlag, 2002.

[12] Meyer, J.-J. Ch. and Schobbens, P.-Y. (eds), Formal Models of Agents, LNAI 1760,
Springer, 1999.

[13] Sadri, F., Toni, F., “Computational Logic and Multi-Agent Systems: A Roadmap”,
Technical Report, Department of Computing, Imperial College, London, 1999.

[14] Shoham, Y., “Agent-Oriented Programming”, Artificial Intelligence, vol 60-1, pp 51-92,
1993.

[15] Shoham, Y., “AGENT0: A Simple Agent Language and its Interpreter”, in Proceed-
ings of the 9th National Conference on Artificial Intelligence, AAAI-91, pp. 26-41,
Eindhoven, The Netherlands, 1996, Springer LNAI 1038.

[16] Wooldridge, M., Lomuscio, A., “A Computationally Grounded Logic of Visibility, Per-
ception and Knowledge”, in Logic Journal of the IGPL, vol 9-2, pp. 257-272, 2001.

[17] Wooldridge, M.J., and Jennings, N.R, “Agent Theories, Architectures and Languages:
A Survey”, in M. Wooldridge and N. R. Jennings, editors: Intelligent Agents - Theo-
ries, Architectures, and Languages I. Springer-Verlag Lecture Notes in AI Volume 890,
February 1995.

40

