

1

Abstract— Web-centric applications can be understood as

middle-size applications where the web container hosts both
presentation and business logic. This kind of structure is
widespread, because it is adequate when the use of more
sophisticated standard component-based solutions (e.g. EJB)
introduces unnecessary overheads in development and runtime.

The aim of this document is to describe our Java framework
and tool (G++) which can be used to develop multi-tier web-
centric Java applications. This developing infrastructure
introduces an architectural reference model that allows design
and programming efforts to be concentrated in the development
of the specific business logic of the system.

Main support is given to user management, session handling,
and request-response cycles. Special support is also offered to
database access through our own middleware that acts as a
bridge between object-oriented programs and relational
databases, hiding major concerns about data storage from
programmer.

Index Terms—Enterprise applications, Business applications,
Three-tier architecture, J2EE, Web-centric application.

I. INTRODUCTION

In recent years there has been notable growth in the
development of enterprise applications, caused by the
confluence of different facts. On the one hand we could
mention the end of the service life of many legacy systems,
which are no longer able to adequately respond to new
business demands. Business managers’ objectives and
interests also play an important role: they are becoming more
aware of the presence of technology as a key factor in a firm’s
health and competitiveness [1,3]. On the other hand, the
evolution of available technology has consolidated certain
standards, such as object-oriented languages (Java); multi-tier
architectures for large-scale systems; the Internet as a support

Davide Brugali is with the School of Engineering of the University of
Bergamo, Italy, email brugali@unibg.it. Giuseppe Menga is with the
Department of Automatic Control at the Politecnico di Torino, Italy,
email menga@polito.it . Franco Guidi-Polanco is a PhD student at the
Politecnico di Torino, email franco.guidi@polito.it .
 The work presented here has been supported by the Centro di
Eccellenza per le Radio Comunicazioni (CERCOM) at the Politecnico di
Torino.

for ubiquitous networking, protocols for transferring,
presenting and exchanges data (HTTP, HTML and XML
respectively), and so on. This “de-facto” standardization has
rapidly been assumed by the software industry, which
continued to integrate most of these elements in the so-called
“enterprise middleware” [7]. Enterprise middleware is
conceived to build applications that support not just the
internal activities of an organization, but also to create the
software infrastructure required to go across their boundaries,
for example to implement large-scale e-commerce activities.

A Web-centric application is one of the possible
configurations that organizes components of an enterprise
middleware. This kind of application is widely spread because
it results adequate when the use of more complex solutions
represent an unnecessary overhead in runtime and
development. Typically these applications are divided in three-
tiers that groups presentation, logic, and data persistence.
They are built around a Web server that controls the user
interaction and performs the transactional logic.

However developers, in spite of the adoption of a specific
configuration, can be in difficult if they don’t handle a clear set
of patterns [2] or best practices guiding the application
architecture. Regarding this, our recent experience in this field
of applications -endorsed by a previous research in patterns,
pattern languages, and frameworks for the automation area [11,
12, 13, 14]- allowed us to recognize in Web-centric applications
recurrent structural elements and behavioural relationships,
which can be encapsulated in a framework of classes for a more
efficient development [1]. Specifically for modeling the
behavioural dimension we consider the adoption of finite state
machines that we already use in automation systems
development [4].

In this paper, we describe the implementation of a framework
for the development of Web-centric applications for the Java 2
Enterprise Edition (J2EE). This work wants to cover three
objectives: first, the definition of an architectural reference,
with concrete components and base classes, for developing
applications; second, the definition of a set of models to
adequately support the application design having finite state
machines as basic representation for the application logic; and
third, the creation of a tool that allows development of those
models, aimed to automatically generate some of the

A Java Framework for Multi-Tier Web-Centric
Applications Development

Davide Brugali, Giuseppe Menga, and Franco Guidi-Polanco

2

application code. As result of the integration of these three
objectives we obtained an innovative approach and tool for
applications development.

This document is structured as follows: Section II presents
an overview of the application domain, giving an operational
and functional description about the nature of the considered
system. Section III describes the model where relies the
architecture of the framework. Section IV describes the
framework implementation, identifying its components and
base classes. Section V presents the tool that we developed for
supporting application development. Finally, in Section VII
some conclusions about the work are given.

II. THE APPLICATION DOMAIN

The framework we propose was created for the development
of business applications using a subset of the technologies
offered by the J2EE. In order to increase the understanding
our work, we will first offer a brief description of relevant
components of J2EE, and the functional characteristics of a
Web-based business application.

A. Overview of the J2EE technology

Sun’s J2EE technology is a platform for multi-tier distributed
applications. The J2EE architecture basically identifies three
tiers in applications, which provide the components and
technologies to be adopted at each tier [7]:

1) Client tier

In this tier the means for user/application interaction are
given. Standard browsers can support this interaction by using
plain HTML pages, dynanic HTML pages generated by
JavaServer Pages (JSP) technology, or Java Applets, wich
communicate with Web-standard protocols (HTTP, HTML
XML). Clients can also interact through a Web-services
interface, or even, stand-alone Java client applications,
communicating through an HTTP or RMI-IIOP protocols.
Exploiting Web-protocols, it is also possible to implement
clients in other programming languages (e.g. C++).

Physically, clients can be located outside or inside of
corporate firewalls.

2) Middle tier

The middle-tier is the host for the application logic. The
application logic is implemented through the definition and
interaction of a set of different components, which are loaded
and executed in containers. Containers are runtime
environments, which provide specific component services.
They act as an interface between a component and the low-
level platform-specific functionality that supports the
component. J2EE specifies two types of containers for the
middle tier:
- Enterprise JavaBeans (EJB) container, which manages

the execution of enterprise beans.
- Web container, which manages the execution of Servlet

and JSP page components.
Enterprise JavaBeans represent a server-side component

model for a distributed component transaction monitor [5].
Servlets correspond to a set of Java classes used to extend

the capabilities of servers that host applications which can be
accessed through a request-response programming model.
Although Servlets are conceived to respond to any type of
request, they are commonly used to extend applications hosted
by Web servers. Specific HTTP-Servlet classes are defined for
such applications [7].

JSP pages are text -based which are documents designed to
provide a declarative, presentation-centric method of
developing Servlets. JSP pages contain two types of code:
static template data, which can be expressed in any text -based
format (HTML, WML or XML), and JSP elements, which
construct dynamic content. Basically, both Servlets and JSP
pages describe how to process a client request to create a
response [10].

3) Backend tier

Enterprise applications usually have to be able to access
applications running on enterprise information systems, which
provide the corporate information infrastructure. Examples of
enterpris e information systems include enterprise resource
planning systems (ERP), mainframe transaction processing
systems, relational database management systems (RDBMS),
and other legacy information systems.

For the backend tier, components derived from the Java
Connector Architecture (JCA) are used to access external
resources. The most common case corresponds to relational
databases accessed through the JDBC connector.

As was presented in the introduction of this article, several

configurations of J2EE components and technologies can be
conceived to implement a business application. Our framework
was developed to cover the configuration represented by
Web-centric applications [8], that is, middle-size systems
organized in three tiers, but restricted to user interfaces

Web containerBrowser

Client tier Middle tier Backend tier

HTML

HTTP

Servlet, JSP

JDBC DBMS

Figure 1: Web-centric appl ication tiers

3

implemented in standard browser, application logic which is
wholly supported by the Servlet technology (no EJB are used).
The presentation is created by JSP pages, and data persistence
is managed by an external relational database system. Figure 1
shows the components and their interactions in the case of a
Web-centric application.

B. Profile of Business Applications

Business applications basically represent systems that hold
mission-critical information within a company. They have
embedded business rules that reflect the natural structure of
the business. They are conceived under the paradigm of
improving exchange of information that results in improved
business efficiencies and more effective customer interactions.

Today business applications are designed to support many
users who have a common business goal and are connected by
the enterprise intranet in a Local-Area Network (LAN), or use
the Internet when they are outside of the corporate network.
Users can perform different activities, and as result of this
interaction information is given to the user, and/or the state of
the system is updated.

From the point of view of usability, Web-based business
applications adopt a graphical user interface that runs in Web
browsers, and access to business logic is provided through
Web servers. Some business applications are also conceived
to support real-time interaction with customers.

III. THE ARCHITECTURAL MODEL FOR BUSINESS

APPLICATIONS

Our framework is conceived to support the implementation

of the middle tier of a Web-centric application, where all the
logic of the system resides. In this section we offer the
architecture of applications developed under our framework
paradigm, describing first the model of layers in which
application responsibilities are distributed, and then the
functions of their different components.

A. Layers

In our architectural model, middle-tier application
components are organized into three layers of responsibility,
constituting a stack where an underlying layer directly
supports the functions offered by a superior layer (see Figure
2). The layers, we identify, are:
- Interaction layer: it contains the classes in charge of

controlling the interaction with clients. The classes
grouped in this layer are responsible for accepting external
requests, addressing them to the business logic layer, and
presenting the response defined by that layer to the client.

- Business logic layer: it contains the classes that
encapsulate the transactional logic of the application.
Both business rules and entities over the transactional
logic acts reside in these classes. The Business logic layer

receives requests for transactions from the interaction
layer and returns the response to the request to it. This
layer interacts with the Data services layer in order to gain
access to persistence of business data.

- Data services layer: this layer groups those classes used
to manage the persistence of the state of entities which
belong to the business logic layer in an external database.
It also supports preservation of the state of some
structural objects managed directly by the Application
engine.

B. Components

The architectural model we propose is made up of the
following elements:

1) Application engine

It corresponds to the controller component of the
application, and resides in the Interaction layer. Its role is to
accept requests coming from clients, and decides how to map
them into service invocations over specific Behaviour classes
in the underlying Business logic layer. This component also
manages the preparation of the response that the application
should give to the requesting client. Such response is based
on the selection of a suitable Presentation class, and yhis
choice is made by the Behaviour object invoked to execute the
service.

The Application engine is also responsible for storing the
state of interactions between different users and the
application, in separate user sessions. A user session is
conceptualized as a macro-thread where transitions between
different tasks that compound a behaviour are sequentially
performed. Each session has associated a State object that
encapsulates all the states of each interaction of a single user.
This state object enables the reconstruction of the interaction
of a given user, in different instances of a Behaviour class, or
even by different Application engines. This externalization of

Interaction layer

Business logic layer

Data services layer

Application
engine

Presentation
classes

Behaviour
classes

Business
classes

Persistence
management

request response

Data
classes

Middle tier

Figure 2. Layers of the middle-tier

4

the state increases the scalability of the application and makes
it possible to apply load balancing mechanisms through the
replication of their classes in different machines, because a
session started in one server can be continued in another one.
The Data services layer supplies persistence of sessions
directly.

2) Presentation classes

These are classes which also belong to the interaction layer,
and their function is to creation of an input/output interface.
Instances of presentation classes are created and initialized by
the Application engine, after a received request has been
processed by the corresponding Behaviour class instance.

Interfaces created by presentation classes contain three
elements:
- Output data (results)
- Input fields
- Controls (buttons)

Output and Input fields are optional components; controls
instead are always present because they allow event
generation when there is an user interaction. All of these
elements are application specific.

3) Business classes

These are classes which belong to the Business logic layer.
Business classes correspond to entities which have a semantic
value in the application context, and therefore, they are present
in the domain model of the system. They are traditional classes
in the sense of object-oriented programming. Examples of
Business classes, which can be found in common applications,
are: “invoices”, “contracts”, “customers”, “items”, etc.

Business classes are characterized by their attributes that
own a persistent state. Persistence is achieved indirectly by
the support of Data objects, which belong to the data services
layer. Instances of Business classes also have links to other
instances, so that they can represent the associations,
creations or relations of use, that exist in the real system.

Methods of Business classes are grouped in two sets:
- Methods used to access and update the state, and to

perform object services within the context of the
application domain (e.g. methods set and get attributes).

- Methods used to create and manage instances and their
access to the database.

Finally, another characteristic of Business classes is the
possibility of having shared accesses to their instances from
different user sessions.

4) Behaviour classes

Behaviour classes represent the dynamic aspect of the
system, and they are modeled in the Business logic layer. Each
Behaviour class corresponds to a logical partition of the entire
business application function, as a result of grouping together
those activities performed over a common core of Business
classes.

Behaviour classes encapsulate tasks that correspond to the
set of steps required to port a Business object or a set of them,
from one meaningful state to another meaningful state in the
business domain. Tasks are built by combining the low-level
behaviours offered by Business Objects into a single
Behaviour class’s method. For example, in a sales application a
Behaviour class can implement the “Order management”
function and some of the tasks can be “prepare order” or
“dispatch order”.

Collaboration relationships can exist between Behaviour
classes. This means that tasks which belong to one Behaviour
class can require the execution of tasks belonging to other
Behaviour classes. For example, the task “dispatch order”
pertaining to the “Order management” Behaviour class can
invoke the execution of the task “create invoice”, which
belongs to the “Invoice management” Behaviour class, before
the latter is completed.

In our view, tasks are subsets of the general behavior of the
application that can be described by finite state machines.
Each state of the finite state machine is in direct
correspondence with a presentation class, in other words, each
state has an associated Presentation class that provides a
client interface. Because states represent phases of user
interaction, events necessary to port the system to a new state
correspond to a submitted request coming from clients. These
requests are the result of user selections regarding the next
state to be reached, but they are offered to the user in a
comprehensible way (e.g. as option menu).

 Behaviour classes don’t have attributes. When a task is
executed the state is loaded from an external Session object,
and after completion, is saved in the same object.

5) Persistence management

The development of object-oriented enterprise applications
requires external resources of data to be accessed. However,
such resources don’t usually offer an object-oriented high-
level interface, as is the common case for relational databases.

Under the Persistence management concept we include a set
of base classes that allows general object-oriented-like
accesses of application components to an external enterprise
data repository.

6) Data classes

Data classes are specific application classes derived and
collaborating with the Persistence management subsystem.
These classes belong to the data services layer, and they are
used to support the persistence of attributes of Business
classes. Data classes are associated to tables, records or fields
depending on the granularity of the data object they represent.

IV. THE FRAMEWORK IMPLEMENTATION

We implement our framework using a subset of J2EE
technology. The main component element used is the Web

5

container in which runs all the transaction logic. This
component corresponds to the middle tier in the general
application architecture.

1) The BAFServlet

The BAFServlet class implements the Application Engine
component logic directly. It corresponds to a concrete
extension of the javax.servlet.http.HttpServlet
class [10]. This Servlet implements the doGet and doPost
methods used to accept HTTP requests sent by clients. These
methods extract parameters from the request containing
identifiers (unique in the application context) of the type of
event associated to the request, and using this value the
BAFServlet instantiates the suitable Behavior object
responsible for dealing with the request, and invokes the
service that carries it out. As a result of this invocation, the
BAFServlet receives the necessary data from the Behaviour
object to provide as a response to the client, referring to a JSP
that should be used to present the response.

Some infrastructure services are provided directly by the
BAFservlet class. The BAFServlet encapsulates
services for session and user login management, and in these
cases no extra Behaviour classes are required.

The implemented user session management (see Section III)
provides a flexible mechanism to suspend and resume working
sessions, independently of the location of the machine where
the session is restored, or where the instance of
BAFServlet called to deal with the session runs. This
enables replication of web-containers and application classes
for scalability, fault tolerance and load balancing of the system,
because successive states of sessions can be executed in a
transparent way by different servers.

The BAFServlet is responsible for moving through the
different pages that make up an application. The implemented
mechanism includes the control of the stack of the
presentation pages, allowing the creation of a navigation
structure that emulates traditional systems organized around
hierarchical menus.

Because the BAFServlet is the core component, it is also
responsible for initializing and destroying classes which
belong to the data services layer, and in particular, those
classes which maintain the connection to the database.

2) The RequestHandler class

This is the base class for the implementation of all Behaviour
classes. The RequestHandler class offers a single public
method, handleRequest, which is invoked by the
BAFServlet when a client request is received. First this
method initializes the Behavior class instance with the
corresponding user session; afterwards it invokes the methods
which the subclasses should implement with the logic of each
task.

The RequestHandler class implements the forward

method used to communicate to the BAFServlet the name
of the JSP to be displayed as a response to the client request.

3) Java Server Pages (JSP)

In our model presentation is executed through the definition
of JSP which build each page offered to the client tier. JSP are
selected by Behaviour classes and invoked by the
BAFServlet, using the “JSP model 2” approach [10].

JSP are application-specific, and in order for them to be
implemented the framework offers blocks of scripts to include
in each page. The framework also specifies the structure of the
requests, in terms of certain parameters and values to be
submitted and how they correspond to available events on the
displayed page.

4) The “Persit” framework

Persist is a framework we have developed to manage the
mapping between objects which belong to object-oriented Java
programs and the persistence of their states in relational
databases. It is built over the JDBC connector architecture, and
offers an objectified high-level interface to data stored in the
database. From the architectural point of view, classes from
Persist are grouped in two levels:
- The meta-level, where the Data Definition Language

(DDL) resides. This language allows the database schema
to be specified. At this level the conversion between SQL
types to specific database vendor types is also specified.
The management of object identifiers and their mapping to
table keys in the relational schema are also dealt here.

- The operative level, which implements the Data
Manipulation Language (DML). In this way the
application can manage tables, as if they were object
collections. It handles records as concrete objects, and
fields as their attributes. This enables the programmer to
build simple database queries (select, update, delete), as
well as sophisticated ones (i.e. selections with nested join
of tables). The DML implemented in Persist supports
transaction management which guarantee data integrity in
complex update operations.

5) The BusinessObject class
BusinessObject is the base class for the

implementation of Business classes. Basically the
BusinessObject class encapsulates the persistence
mechanism which keeps the state of instances of Business
classes. The BusinessObject class enables the Business
classes state to be mapped over one or more tables, and it
provides mechanisms for restoring the state using simple
queries, in the former case, and queries with JOINs, in the latter
case. Subclasess of BusinessObject inherit methods for
instance management.

6) The Session class

Session class instances are used to preserve the state of

6

interaction of the user session. The session class provides the
BAFServlet with methods to update and retrieve the
session state, as for example the “valid” or “expired” states.

The session class is implemented as an extension of
BusinessObject class, allowing it to manage the
persistence of the state of the user session.

7) Other classes

The framework includes several minor service classes used
to handle errors, to carry out tracing, and other structural
internal functions.

V. SUPPORTING TOOL

In order to support the development of applications
according to our framework, our G++ development
environment [4] has been extended in two ways: first, the
framework’s component and base classes described above has
been added to its library of classes; second, and as innovative
aspect, a new diagram to model for modeling business logic in
web applications, which is called “Interaction Tree Diagram”, is
introduced.

An interaction tree diagram is conceptually a state transition
diagram specialized so that the interactive behavior of a
session can be described. In this diagram each elemental state
is associated to a presentation class (a single page presented
to the user), and transitions between states correspond to
events coming from user actions in the client tier (i.e. submitted
requests). For convenience of implementation the whole
interaction is split up into three hierarchical layers:

The Project layer – representing the whole session and
collecting all the Java Behaviour classes of the application;

The Context layer – representing one Behaviour class with
its methods;

The Task layer – one method specification of a Behaviour
class in terms of an elemental state transition diagram (where
states are in association with pages to be displayed to the

user).
The interaction tree diagram is conceived so as to approach

systems modeling in terms of a top-down functional
breakdown (see Figure 3). Each diagram is described below.

A. Project editor

The Project editor allows high-level functions recognized in
the application domain to be modeled. Each function is
represented as a box and oriented arcs represent relationships
of access between these functions. Events porting from one
function to another function are identified as labels over the
arcs.

In all project models the special “Login” function is
defined, because it corresponds to the entry point for the users
who access the system.

Figure 4 shows an example of a project diagram built as a
part of a model developed for a real estate system. In the case
of this example “Home” is the function the system activates
when the user logs-in for the first time. The diagram of the
example also shows three other boxes, “Contracts”,
“Customers”, and “Estates”, which are main functions
identified in the system, and in which the business logic of the
entire application is distributed.

Each high-level function presented in the Project model can
be further described in low-level specifications. At this point
the following two possibilities exist: i) the breakdown of the
function into the different tasks (using the Context editor) and
then, the specification of each task (using the Task editor); ii)
the specification of a single JSP associated to that function, in
the case in which the function has a single task with a single
state.

The transitions indicated in the diagram represent events
that allow navigation between functions. It is worth noting, for
example, that the event “AccessContract” is used to port the
system from the “Home” to the “Contract” function, and
there is a “Back” event that makes it possible to return to the

Behaviour
class

Behaviour
class

Behaviour
class

Project model

Context model

Task1 Task3
Task2

Task model

StateA

StateB

ConcreteBehaviour

handleTask1()
handleTask2()
hendleTask3()

RequestHandler

JSP_A

JSP_B

if(State = A)
load JSP_A

else
load JSP_B

JavaServer Pages

Behaviour class

Figure 3: Relationships between models and classes

Figure 4: The Project editor

7

“Home” function.

B. Context editor

Each function identified in the Project diagram can be
described at a second level of refinement using Context
diagrams in the Context editor. A Context diagram offers an
internal view of a function, where its tasks are made explicit. In
the Context diagram tasks are represented as rounded boxes,
and in the same way as in the Project editor, arcs, containing
the name of the event that triggers the interaction, represent
interactions between tasks.

Figure 5 shows the Context editor window exposing tasks
associated to the “Contracts” function. This diagram
contains a task called “Home” that corresponds to the entry
point to the function, which is the task that will be performed
when the user accesses the context function. The name of the
task used as entry-point can be customized in the Context
editor for each single function. There are other tasks –Create,
Search, Visualize, Modify, Terminate- which contain the logic
necessary to create a new Contract, to search searching
existing contracts, to display the contents of a single contract
(once found) or to modify and terminate those contracts.

The Context editor provides automatic Java code generation
of Behavior classes in correspondence to one context diagram
of one Behaviour class.

The Context editor is associated to two other editors:
- The Task editor, which describes the internal logic of each

single task.
- The Class editor, which is used to visualize or edit the

Java Behaviour classes, generated by the Context model.

C. Task editor

As was described in Section III, each task identified in the
Context can be internally described as a finite state machine.

The Task editor, shown in Figure 6, associates each page
presented to the user to single states, required to perform the

lower level activity. The states are linked between transitions
that represent events the system should recognize. Once
transitions become specified, the Task editor can be used to
generate the code of JSP templates automatically. These
templates contain portions of code that implement the logic of
navigation, in the form of buttons offered to the user. For
example, the JSP code produced for the “Estate” state is the
following:

<%@include file = "../baf/MenuHeader.jsp"%>

 <!-- getButton(classStyleName,eventToSendOnPress,labelOfButton); -->
 <tr><td><%=getButton("ButtonLarge","Amount","Amount")%></td></tr>
 <tr><td><%=getButton("ButtonLarge","Main","Main")%></td></tr>
 <tr><td><%=getButton("ButtonLarge","Customer","Customer")%></td></tr>

<%@include file = "../baf/MenuTailer.jsp"%>

Further development of the JSP page requires filling the form

with the data and visual controls to present in the page, and
this can be accomplished by integrating an external JSP/HTML
editor on to the system.

D. Class diagram and class editor

The class diagram editor, and the class editor are the tools
the G++ environment supports from earlier versions.

The class diagram offers UML [9] notation so as to model
structural relationships between Business classes. The class
editor offers a graphical representation of single Java classes,
and can be used to edit Business classes and Behaviour
classes.

VI. CONCLUSION

Development of Business applications is possible thanks to
the existence of enterprise middleware that offers the
underlying technology to create middle- and large-size
systems. In fact, J2EE offers a set of components that can be

Figure 5: The Context editor

Figure 6: The Task editor

8

selected to implement configurable solutions according to
variable business requirements.

However, developers who use these technologies for the
first time should adopt or create it own implementation
reference, so as to define the architecture of the application.
Using this framework we suggest that developers interested in
the creation of web-centric business applications can benefit
from structured and reusable know how, which is reflected in
patterns of interactions, and a library of components and
classes, and can be used to support their work.

In our experience, applying this framework to professional
projects, we notice that software productivity is increased and
the process of system design and development is speeded up.

REFERENCES

[1] M. Fayad, D. Schmidt, and R. Johnson. Implementing Application
Frameworks. New York: 1999.

[2] E. Gamma, R. Helm, R. Johnson, and J. Villisides. Design Patterns.
Addison Wesley, 1995.

[3] S. Helal, S. Su, J. Meng, R. Krithivasan, and A. Jagatheesan. “The
Internet Enterprise”, in Proc. Symposium on Applications and the
Internet, SAINT’02,2002.

[4] G. Menga, G. Elia, and M. Mancin “G++: An environment for
object oriented design and prototyping of Manufacturing systems”.
Intelligent Manufacturing: Programming Environments for CIM.
Springer-Verlag Ltd., 1993

[5] R. Monson-Haefel, Enterprise JavaBeans. Milano: O’Reilly &
Associates, Inc., 2001.

[6] P. Pramongkit, T. Shawyun, “Strategic IT Framework for Modern
Enterprise by Using Information Technology Capabilities”, IEEE
Trans. Neural Networks, vol. 4, pp. 570–578, July 1993.

[7] The J2EE Tutorial. Sun Microsystems. [Online] Available:
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html.

[8] Designing Enterprise Applications with the J2EE Platform. Sun
Microsystems [Online] Available:
http://java.sun.com/blueprints/guidelines/designing_enterprise_appli
cations/index.html

[9] OMG, “OMG Unified Modeling Language Specification”, Version
1.4, 2001.

[10] T. Loton et al. Professional Java Servlets 2.3. Birmingham: Wrox
Press Ltd., 2002.

[11] D. Brugali, G. Menga, and A. Aarsten, “The framework lifespan”,
Communications of the ACM, vol 40, no 10, pp. 65-68, Oct 1997.

[12] D. Brugali, G. Menga, and S. Gallaraga, “Intercompany supply
chains integration via mobile agents”, in Globalization of
manufacturing in the Digital Communication Era of the 21st
Century. Norwell, MA: Kluwer, 1998.

[13] M.E. Fayad, D. Hamu, and D. Brugali, “Enterprise frameworks
characteruistics, criteria, and challenges” Communications of the
ACM, vol 43, no 10, pp. 39-46, Oct 2000.

[14] D. Brugali, G. Menga, “Architectural models for global automation
systems”, IEEE Transactions on Robotics and Automation, vol 18
no. 4 pp 487 –493, Aug 2002.

