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Abstract - In this paper, a factorization method is 
properly defined based on square root technique for 
cryptographic applications. It is applied and tested 
to any n-bits integer factorization, particularly on 
RSA algorithm. For product of many primes, RSA 
algorithm is modified (called extended RSA). 
Further, security issues on RSA and extended RSA 
are discussed. 
 
Index Terms - Factorization, Multi - precision 
integer, RSA algorithm, Aurifeuillian identity 
 
 
1. INTRODUCTION 
 
Factorization is a long pending problem in 
number theory, theoretical computer science 
and cryptography. Methods such as number 
field sieve [3,11], Pollard (p-1) [6], Pollard rho 
[7], Selfridege [1], Elliptic curve 
multiplication [3,9] etc., could factorize 
integers into product of powers of primes, but 
each method has its own computational 
difficulty and weakness (see Table 1). To 
overcome this situation, we have studied and 
introduced a suitable method and an efficient 
algorithm to factor large numbers, which is an 
extension of trial division. We have described 
the factorization technique into two parts: 32-
bits and multi precision integers and for each 
set up, pseudo code and examples are given.  
Using the proposed factorization methods, our 
interest is shown towards cracking of  RSA 
algorithm. Further, we extend RSA algorithm 
for product of many primes. Then comparison 
on security issues is made between RSA and 
extended RSA. Also, an Aurifeuillian 
factorization [9] is discussed. 
 
2. FACTORIZATION ALGORITHM I 
 
The following algorithm gives factorization 
for 32-bits number n. Given an integer n (n > 
1), the following procedure gives the factors of 
n. 
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We require a list called factors to store the 
factorization of n in the form of a set 
consisting of elements {p,e}, where pe is the 
exact power of p appearing in the factorization 
of n. 
1. Let factors ={ }, e = 0. 
2. Compute s = int(√n) (integral part of √n). 
3. Find a suitable ks such that 6 ks + ε = s or 6 

ks - ε = s, where ε > 0. 
4. Construct a sequence S = {2,3,6k±1} 

where k = 1 to ks. 
5. Choose a number p ∈  S such that q = n/p. 

Then n = q and e = e+1. Repeat the 
process 5 until p divides n. 

6. Print {p,e}. 
7. Compare p and q. 

7.1 If  p > √q, then  q is a factor of n.  
7.2 If p < √q, then repeat the process 5. 

 
In this process, we can factorize any number 
of 32-bit length. Two important steps of this 
algorithm are square root of a number and the 
sequence S. Step 7.1 concludes that the 
number q is prime so that q is also a factor of 
n. This algorithm can be used for primality 
test. (If n is prime, then the above algorithm 
returns n only). Compared to Rabin 
probabilistic primality test [8], this method is 
relatively slow but not probabilistic. Being  
tested in Pentium III 700 MHz, the 
computational time analysis on algorithm I 
shows difference for composite number and 
prime number. Factorization on composite and 
prime, it takes 90 µ sec and 11 sec (optimum 
time) respectively. 
 
Example: Let us take a 32-bit number n = 
99990001. Using Algorithm I, we can find that 
n is prime. This n is expressed as 104 – 102 +1, 
but not factored. 
 
We have given a sample `C' code comprising 
important functions for 32-bit integer 
factorization 
 
/* Trial division operation on a number using the pre-stored 
contiguous sequence of  primes, first 2048 primes are stored in a 
file. See Ref. [2] 
 
The following function trialdiv ( ) returns prime divisors of a 
number n */ 



 
unsigned long trialdiv(unsigned long n) 
{ 
 extern unsigned long primes[2048]; 
 unsigned long t; 
 int i; 
 if(n==0) 
  return ((unsigned long)0); 
 if(n==1) 
  return ((unsigned long)1); 
 
    for(i=0;i<2048;i++) 
 { 
  t= n % primes[i]; 
  if(t==0) 
  { 
    return (primes[i]); 
  } 
 } 
     return((unsigned long)0); 
} 
 
/* The function  factor () is to find the factors for a given 
number lying in the sequence {2,3, 6k±1} where k = 1 to int(√n) 
*/ 
 
unsigned long factor(unsigned long n) 
{ 
 unsigned long k,t=1; 
 k=((unsigned long)sqrt(n) -1)/6; 
 k++; 
 while(t<n) 
 { 
  t=6*k + 1; 
  if(!(n % t)) 
   return t; 
  k++; 
 } 
 return 0; 
} 
 
Similarly, we can extend the above algorithm 
to multi-precision integers (MPI). The 
following algorithm for MPI factorization of 
an integer n (n > 32-bit) is given below: 
 
3. FACTORIZATION ALGORITHM II 
 
1. Compute s = int(√n). 
2. Find ks = (s + ε)/6 or ks  = (s - ε)/6 where ε 

> 0. 
3. Construct a sequence S = {2,3,6k±1} 

where k = 1 to ks. 
4. Divide S into intervals such as S1, S2 , …, 

St. 
5. For each Sj, perform steps 5,6,7 of 

Algorithm I in parallel processing 
6. Find {p,e} of each Sj.  
 
In this process, any MPI of n can be factored 
as product of powers of primes. This method is 
particularly efficient for two prime factors. 
Ultimately, we can apply this method to break 
RSA-algorithm. Before executing this 

algorithm, we should have parallel processing 
set up. 
 
Example: Let us take n = 
2320869986411928544793. It is a 71-bit 
number. Compute s = int(√n) = 48175408523 ( 
36-bit number). Since ks = (s + 1)/6,  we obtain 
ks  = 8029234754. Construct a sequence S = 
{2,3, 6k±1} where k = 1 to ks. Divide S into 
intervals S1, S2 , … , S9, where S1 = [1, 24-1], S2 = 
[24, 28-1],…, S9 = [232, ks]. Executing each 
interval Sj, we get p = 67777783 (one of the 
factor of n ) lying in S6. Further, another factor 
of n is q = 34242341423471 so that n = pq.  
 
Example: Let us take n = 80964686104403 
(47-bit).  Compute s = int(√n) = 8998037 (24-
bit). Since ks = (s + 1)/6 = 1499673, we obtain 
a sequence S = {2,3, 6k±1} where k = 1 to ks. 
Divide S into intervals S1, S2 , … , S6, where S1 = 
[1, 24-1], S2 = [24, 28-1],…, S6 = [220, ks]. 
Executing each interval Sj, we get p = 8996717 
(one of the factor of n ) lying in S6. Further, 
another factor of n is q = 8999359 so that n = 
pq.  
 

Factorization 
methods 

For all 
numbers  

Technique 
used 

Elliptic Curve 
Multiplication 

Can  
Factorize Elliptic curves  

Pollard (p-1) Can not 
factorize (ak! – 1) mod n 

Pollard Rho Can not 
facotorize 

Periodic 
sequences 

Number field 
Sieve 

Can 
factorize 

Congruent 
squares 

Selfridge Can not 
factorize bn ± 1 form 

Factorization 
Algorithm I or 
II 

Can 
factorize 

Square root 
and division of 
intervals 

 
Table1: Comparison of some factorization methods 
 
4. ALGORITHM III 
 
Let us consider the extended RSA-algorithm 
as follows: 
 
1. Find large composite numbers p1, p2, …,pr                            

and q1,q2, …,qm and define by n = p1p2 
…pr q1q2 …qm .  

2. Find a large random integer d that is 
relatively prime to φ(n)=( p1 – 1)…( pr – 
1)( q1 - 1) … (qm   - 1) where φ(n) is Euler’s 
phi value of n. 



3. Compute the unique integer e in the range 
1 < e < φ(n) from the formula ed ≡ 1 (mod 
φ(n) ). 

4. Make known the public key, which  
consists of the pair of integer (e,n) 

5. Represent M, the message to be 
transmitted as an integer in the range 
{1,2,…,n} and gcd (M,n)=1. 

6. Encrypt M into a cryptosystem C by the 
rule, C ≡ Me (mod n). 

7. Decrypt by using the private key d and the       
formula D ≡ Cd (mod n). 

 
Example: Let us take n = product of three 
prime numbers = 39*59*71 = 163371. Then 
φ(n) = 154280. Take e= 113 and d = 96937 so 
that ed ≡ 1 (mod φ(n)). Choose a message M = 
200 such that gcd (M,n)=1. The message M is 
encrypted using the public key e, we get C≡ 
Me (mod n) = 40760. Using the private key d, 
we can get M. 
 
5. SECURITY ISSUES 
 
It is clear that Algorithm III works for 
encryption and decryption on large bit 
numbers. Factorization on extended RSA is 
computed easily compared to RSA. Since n is 
shared by more than 2 primes. If we apply 
factorization algorithm I or II on extended 
RSA, we can obtain factors of n in a collection 
of intervals S1, S2 , …, St. Using these 
algorithms, we can prove that breaking time 
on RSA –1024 bits (where n= p1 p2, p1 = p2 
=512-bits) takes more than extended RSA-
1024 bits (where n= p1 p2 p3 p4, p1 =  p2  = p3 = 
p4 = 256-bits). The reason is that more division 
of intervals and computational processes are 
involved in between 500 and 512 bits 
compared to 250 and 256 bits. So it is (almost) 
equivalent to choose n=2048-bits (where n = 
p1 p2 p3 p4, p1 = p2 = p3 = p4 = 512-bits) in 
extended RSA, while comparing with RSA-
1024 bits (where n= p1 p2, p1 = p2 = 512-bits). 
The weakness lies in RSA when one of the 
factors is broken.  
     
     
     
     
     
     
      
 

On the other hand, there are some numbers 
behaving like an Aurifeuillian Identity 24n+2 + 
1 = (22n+1 – 2n+1 +1) (22n+1 + 2n+1 + 1). Factors 
of this identity are either primes or composites 
or both (see Table 2).  
 
n  22n+1 – 2n+1 +1 22n+1 + 2n+1 + 1 24n+2 + 1 
1 5(prime) 13(prime) 65 
2 25(composite) 41(prime) 1025 
3 113(prime) 145(composite) 16385 

9 523265  
(composite) 

525313 
(prime) 

2748779069
45 

16 8589803521 
(composite) 

8590065665 
(composite) 

7378697629
4838206465 

 
Table2: Examples of Aurifeuillian identity 

 
In the extended RSA-algorithm, n can be 
factored easily if n falls in the Aurifeuillian 
identity. Selection of n should not be arbitrary 
and it should not be equal to 24n+2 + 1. 
Therefore, it is always good to choose n =  
1024/2048/4096-bits, which will be away from 
Aurifeuillian identity. 
 
In RSA, the relationship between n and φ(n) is 
given by p2  - p(n+1-φ(n)) + n = 0 or q2  - 
q(n+1-φ(n)) + n = 0, whereas in the extended 
RSA no such relationship can be found. 
 
6. CONCLUSION 
 
For e-commerce applications, our choice is to 
take either RSA or extended RSA algorithm. 
But, one should be very circumspect in setting 
the value of n as well as cracking time of the 
resulting algorithm chosen. Fig.2 gives a clear 
view on RSA algorithms. 
 

RSA-1024 
bits 
p = q = 512-
bits 

Extended RSA-
2048 bits 
p = q = r = s = 
512-bits 

Equivalent 

Fig1: Relation between RSA and Extended RSA 

512-bits prime 
number generation 
library 

User’s choice 

RSA-1024 bits 
with p = q = 512-
bits  

Extended RSA-
2048 bits with 
p = q = r = s = 512-
bits 

Passed into  
Factorization 
Algorithm II 

RSA-1024 ≅  Extended      
                      RSA-2048 

Fig2: View on RSA algorithms 
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