
A well defined factorization
N Vijayarangan, S Kasilingam, Nitin Agarwal

Abstract - In this paper, a factorization method is
properly defined based on square root technique for
cryptographic applications. It is applied and tested
to any n-bits integer factorization, particularly on
RSA algorithm. For product of many primes, RSA
algorithm is modified (called extended RSA).
Further, security issues on RSA and extended RSA
are discussed.

Index Terms - Factorization, Multi - precision
integer, RSA algorithm, Aurifeuillian identity

1. INTRODUCTION

Factorization is a long pending problem in
number theory, theoretical computer science
and cryptography. Methods such as number
field sieve [3,11], Pollard (p-1) [6], Pollard rho
[7], Selfridege [1], Elliptic curve
multiplication [3,9] etc., could factorize
integers into product of powers of primes, but
each method has its own computational
difficulty and weakness (see Table 1). To
overcome this situation, we have studied and
introduced a suitable method and an efficient
algorithm to factor large numbers, which is an
extension of trial division. We have described
the factorization technique into two parts: 32-
bits and multi precision integers and for each
set up, pseudo code and examples are given.
Using the proposed factorization methods, our
interest is shown towards cracking of RSA
algorithm. Further, we extend RSA algorithm
for product of many primes. Then comparison
on security issues is made between RSA and
extended RSA. Also, an Aurifeuillian
factorization [9] is discussed.

2. FACTORIZATION ALGORITHM I

The following algorithm gives factorization
for 32-bits number n. Given an integer n (n >
1), the following procedure gives the factors of
n.

The authors are with the PKI Group, Core R&D,
ITI Limited, Bangalore, India.
E-mail: {vijayrangan_2005, kasilingam_s, nitagl}
@yahoo.com

We require a list called factors to store the
factorization of n in the form of a set
consisting of elements {p,e}, where pe is the
exact power of p appearing in the factorization
of n.
1. Let factors ={ }, e = 0.
2. Compute s = int(√n) (integral part of √n).
3. Find a suitable ks such that 6 ks + ε = s or 6

ks - ε = s, where ε > 0.
4. Construct a sequence S = {2,3,6k±1}

where k = 1 to ks.
5. Choose a number p ∈ S such that q = n/p.

Then n = q and e = e+1. Repeat the
process 5 until p divides n.

6. Print {p,e}.
7. Compare p and q.

7.1 If p > √q, then q is a factor of n.
7.2 If p < √q, then repeat the process 5.

In this process, we can factorize any number
of 32-bit length. Two important steps of this
algorithm are square root of a number and the
sequence S. Step 7.1 concludes that the
number q is prime so that q is also a factor of
n. This algorithm can be used for primality
test. (If n is prime, then the above algorithm
returns n only). Compared to Rabin
probabilistic primality test [8], this method is
relatively slow but not probabilistic. Being
tested in Pentium III 700 MHz, the
computational time analysis on algorithm I
shows difference for composite number and
prime number. Factorization on composite and
prime, it takes 90 µ sec and 11 sec (optimum
time) respectively.

Example: Let us take a 32-bit number n =
99990001. Using Algorithm I, we can find that
n is prime. This n is expressed as 104 – 102 +1,
but not factored.

We have given a sample `C' code comprising
important functions for 32-bit integer
factorization

/* Trial division operation on a number using the pre-stored
contiguous sequence of primes, first 2048 primes are stored in a
file. See Ref. [2]

The following function trialdiv () returns prime divisors of a
number n */

unsigned long trialdiv(unsigned long n)
{
 extern unsigned long primes[2048];
 unsigned long t;
 int i;
 if(n==0)
 return ((unsigned long)0);
 if(n==1)
 return ((unsigned long)1);

 for(i=0;i<2048;i++)
 {
 t= n % primes[i];
 if(t==0)
 {
 return (primes[i]);
 }
 }
 return((unsigned long)0);
}

/* The function factor () is to find the factors for a given
number lying in the sequence {2,3, 6k±1} where k = 1 to int(√n)
*/

unsigned long factor(unsigned long n)
{
 unsigned long k,t=1;
 k=((unsigned long)sqrt(n) -1)/6;
 k++;
 while(t<n)
 {
 t=6*k + 1;
 if(!(n % t))
 return t;
 k++;
 }
 return 0;
}

Similarly, we can extend the above algorithm
to multi-precision integers (MPI). The
following algorithm for MPI factorization of
an integer n (n > 32-bit) is given below:

3. FACTORIZATION ALGORITHM II

1. Compute s = int(√n).
2. Find ks = (s + ε)/6 or ks = (s - ε)/6 where ε

> 0.
3. Construct a sequence S = {2,3,6k±1}

where k = 1 to ks.
4. Divide S into intervals such as S1, S2 , …,

St.
5. For each Sj, perform steps 5,6,7 of

Algorithm I in parallel processing
6. Find {p,e} of each Sj.

In this process, any MPI of n can be factored
as product of powers of primes. This method is
particularly efficient for two prime factors.
Ultimately, we can apply this method to break
RSA-algorithm. Before executing this

algorithm, we should have parallel processing
set up.

Example: Let us take n =
2320869986411928544793. It is a 71-bit
number. Compute s = int(√n) = 48175408523 (
36-bit number). Since ks = (s + 1)/6, we obtain
ks = 8029234754. Construct a sequence S =
{2,3, 6k±1} where k = 1 to ks. Divide S into
intervals S1, S2 , … , S9, where S1 = [1, 24-1], S2 =
[24, 28-1],…, S9 = [232, ks]. Executing each
interval Sj, we get p = 67777783 (one of the
factor of n) lying in S6. Further, another factor
of n is q = 34242341423471 so that n = pq.

Example: Let us take n = 80964686104403
(47-bit). Compute s = int(√n) = 8998037 (24-
bit). Since ks = (s + 1)/6 = 1499673, we obtain
a sequence S = {2,3, 6k±1} where k = 1 to ks.
Divide S into intervals S1, S2 , … , S6, where S1 =
[1, 24-1], S2 = [24, 28-1],…, S6 = [220, ks].
Executing each interval Sj, we get p = 8996717
(one of the factor of n) lying in S6. Further,
another factor of n is q = 8999359 so that n =
pq.

Factorization
methods

For all
numbers

Technique
used

Elliptic Curve
Multiplication

Can
Factorize Elliptic curves

Pollard (p-1) Can not
factorize (ak! – 1) mod n

Pollard Rho Can not
facotorize

Periodic
sequences

Number field
Sieve

Can
factorize

Congruent
squares

Selfridge Can not
factorize bn ± 1 form

Factorization
Algorithm I or
II

Can
factorize

Square root
and division of
intervals

Table1: Comparison of some factorization methods

4. ALGORITHM III

Let us consider the extended RSA-algorithm
as follows:

1. Find large composite numbers p1, p2, …,pr

and q1,q2, …,qm and define by n = p1p2
…pr q1q2 …qm .

2. Find a large random integer d that is
relatively prime to φ(n)=(p1 – 1)…(pr –
1)(q1 - 1) … (qm - 1) where φ(n) is Euler’s
phi value of n.

3. Compute the unique integer e in the range
1 < e < φ(n) from the formula ed ≡ 1 (mod
φ(n)).

4. Make known the public key, which
consists of the pair of integer (e,n)

5. Represent M, the message to be
transmitted as an integer in the range
{1,2,…,n} and gcd (M,n)=1.

6. Encrypt M into a cryptosystem C by the
rule, C ≡ Me (mod n).

7. Decrypt by using the private key d and the
formula D ≡ Cd (mod n).

Example: Let us take n = product of three
prime numbers = 39*59*71 = 163371. Then
φ(n) = 154280. Take e= 113 and d = 96937 so
that ed ≡ 1 (mod φ(n)). Choose a message M =
200 such that gcd (M,n)=1. The message M is
encrypted using the public key e, we get C≡
Me (mod n) = 40760. Using the private key d,
we can get M.

5. SECURITY ISSUES

It is clear that Algorithm III works for
encryption and decryption on large bit
numbers. Factorization on extended RSA is
computed easily compared to RSA. Since n is
shared by more than 2 primes. If we apply
factorization algorithm I or II on extended
RSA, we can obtain factors of n in a collection
of intervals S1, S2 , …, St. Using these
algorithms, we can prove that breaking time
on RSA –1024 bits (where n= p1 p2, p1 = p2
=512-bits) takes more than extended RSA-
1024 bits (where n= p1 p2 p3 p4, p1 = p2 = p3 =
p4 = 256-bits). The reason is that more division
of intervals and computational processes are
involved in between 500 and 512 bits
compared to 250 and 256 bits. So it is (almost)
equivalent to choose n=2048-bits (where n =
p1 p2 p3 p4, p1 = p2 = p3 = p4 = 512-bits) in
extended RSA, while comparing with RSA-
1024 bits (where n= p1 p2, p1 = p2 = 512-bits).
The weakness lies in RSA when one of the
factors is broken.

On the other hand, there are some numbers
behaving like an Aurifeuillian Identity 24n+2 +
1 = (22n+1 – 2n+1 +1) (22n+1 + 2n+1 + 1). Factors
of this identity are either primes or composites
or both (see Table 2).

n 22n+1 – 2n+1 +1 22n+1 + 2n+1 + 1 24n+2 + 1
1 5(prime) 13(prime) 65
2 25(composite) 41(prime) 1025
3 113(prime) 145(composite) 16385

9 523265
(composite)

525313
(prime)

2748779069
45

16 8589803521
(composite)

8590065665
(composite)

7378697629
4838206465

Table2: Examples of Aurifeuillian identity

In the extended RSA-algorithm, n can be
factored easily if n falls in the Aurifeuillian
identity. Selection of n should not be arbitrary
and it should not be equal to 24n+2 + 1.
Therefore, it is always good to choose n =
1024/2048/4096-bits, which will be away from
Aurifeuillian identity.

In RSA, the relationship between n and φ(n) is
given by p2 - p(n+1-φ(n)) + n = 0 or q2 -
q(n+1-φ(n)) + n = 0, whereas in the extended
RSA no such relationship can be found.

6. CONCLUSION

For e-commerce applications, our choice is to
take either RSA or extended RSA algorithm.
But, one should be very circumspect in setting
the value of n as well as cracking time of the
resulting algorithm chosen. Fig.2 gives a clear
view on RSA algorithms.

RSA-1024
bits
p = q = 512-
bits

Extended RSA-
2048 bits
p = q = r = s =
512-bits

Equivalent

Fig1: Relation between RSA and Extended RSA

512-bits prime
number generation
library

User’s choice

RSA-1024 bits
with p = q = 512-
bits

Extended RSA-
2048 bits with
p = q = r = s = 512-
bits

Passed into
Factorization
Algorithm II

RSA-1024 ≅ Extended
 RSA-2048

Fig2: View on RSA algorithms

7. REFERENCES

[1] J. Brillhart, D. Lehmer, J. Selfridge, B.
Tuckerman, and S. Wagstaff Jr.,
"Factorizations of bn±1, b=2,3,5,6,7,10,11,12
upto high powers", Second edition, vol. 22 of
Contemporary Mathematics, Amer. Math.
Soc., 1988.

[2] C. Caldwell, Website for prime numbers,
1999.
http://www.utm.edu/research/primes.

[3] R. Crandall and C. Pomerance, "Prime
Numbers a computational perspective",
Springer-Verlag, 2001.

[4] R. Crandall, "Parallelization of Pollard-rho
factorization", 1999.
http://www.perfsci.com.

[5] R. Lehman, "Factoring large integers",
Math.Comp., Vol. 28, pp.637-647, 1974.

[6] J. Pollard, "Theorems on factorization and
primality testing", Proc. Cambridge Philos.
Soc., Vol. 76, pp.521-528, 1974.

[7] J. Pollard, "Monte Carlo methods for index
computation (mod p)",Math. Comp., Vol. 32,
pp.918-924, 1978.

[8] M. Rabin, "Probabilistic algorithms for
testing primality", J. Number Theory, Vol. 12,
pp.128-138, 1980.

[9] Ramanujachary Kumanduri and C.
Romero, "Number Theory with Computer
Applications", Prentice Hall, New Jersey,
1998.

[10] R. Rivest, A. Shamir, and L. Adleman, "A
method for obtaining digital signatures and
public-key cryptosystems", Comm. ACM,
21:120-126, 1978.

[11] H. Williams and J. Shallit, "Factoring
integers before computers", In W. Gautschi,
editor, Mathematics of Computation.

