Secure Group Browsing

R Jain, N Jain

Department of Computer Science and Engineering
Indian Institute of Technology Guwahati

India - 781039

Abstract— This paper presents a model of a system that
enhances the current features of the Net by providing the
users a facility to securely browse the Internet together.
It thus provides the ‘feeling of togetherness’ on the Internet.
The proposed system is generic and thus can be used to
‘group enable’ any existing and running site. It is a module
that can be plugged onto existing systems without affecting
their normal behavior. It would thus make concepts such
as group shopping, group Medicare centers, group e-study
centers etc., on the Internet a reality.

I. INTRODUCTION

The horizon of Internet is broadening everyday. In its
effort to simulate the existing activities on the Net, be it
banking, or stock sales, shopping or bill-payments, their
counter parts are present on the Internet in the form
of On-line Banking [10], On-line Stock Market [11], e-
shopping [11], Electronic Bill Payment Systems [4-9], On-
line Schools, On-line Medicare Centers and similar applica-
tions add new dimensions to the Net. E-mails and chat pro-
vide a medium to share our views and communicate with
others. Facilities like audio or video conferencing brings
people face to face thereby overthrowing the geographical
distances.

With the advent of more and more such applications we
are heading towards the concept of Internet Life wherein
most of our needs would be satisfied on the Net. Apart
from emulating the current systems, one of the greatest
strengths of the Internet lies in its inherent nature of being
wide spread and within reach of almost all parts of the
globe. Group activities, connecting people from all over
the globe, thus becomes a logical possibility. This concept
of ‘group activities and togetherness’ on the Net has not
been explored completely.

Presently, group activities on the Internet are limited
to audio/video conferencing [2] and various chatting sites,
but that limits the scope of interaction only through au-
dio/visual means or by exchanging ideas through chatting.

If a group of people in different geographically locations,
want to take part in various activities like shopping or ed-
ucation, in a group, then they are left with no solution.
An ad hoc solution to this could be that the entire activity
is performed as isolated users (i.e. www.fabmart.com) and
then communicate with each other via chat or phone while
browsing the site. This solution however, is not tailored to

This work has been carried out at Indian Institute of Technology
Guwahati, Guwahati -781039, India.

S Nandi
School of Computer Engineering
Nanyang Technological University
Singapore - 639798
E-mail: assukumar@ntu.edu.sg

the problem and furthermore, does not use the capabilities
of the Internet to its apogee.

To make group activities possible on the net, using exist-
ing infrastructure, we propose in this paper a new horizon
in-group activities on the net viz. ‘Secure Group Browsing’.
This concept enhances the capability of the existing sys-
tems by making them accessible by groups of users. It ame-
liorates the systems without modifying them and tamper-
ing with their integrity. This paper contains the details of a
system, which can group enable already existing sites. Thus
if a site provides applications/facilities like e-shopping, e-
banking, information sites etc., by making use of the pro-
posed system users would be able to access all these facil-
ities in a group or otherwise. The proposed system could
hence make possible facilities such as, ‘group e-shopping’,
‘group e-education’ or ‘group e-banking’. The system takes
care of various issues of group formation, group manage-
ment, authentication, and transmission of response to all
group members and security of the transactions.

This paper is organized as follows - Section II describes
the system from a users point of view. Section IIT discusses
various design constraints to be considered. Section IV de-
scribes in details the architecture of the proposed system.
This is followed by a detailed discussion on the working of
the system in section V. Section VI deals with various se-
curity aspects of the proposed system. Section VII contains
an analysis of the performance of the said system.

II. USER INTERFACE

To make it possible for all members of a group to see
what the others are viewing and to give them the feel of
being in a group;

1. Each member should be able to view what the other
members are viewing.

2. Each of them should also be able to browse indepen-
dently.

3. There should be a communication channel through
which group members can interact with each other. This
would enable them to share their comments, advises and
suggestions about the various things they view.

To provide the users a feeling of togetherness the ‘User
Interface’ of the proposed system takes care of the issues
discussed above. Each member has a set of windows on his
screen. One of these windows is the member’s own window,
in which he can browse the site, thus called the ‘browsable
area’. The other windows belong to the other group mem-
bers and can only by viewed, thus called the ‘read-only’

area. Each member can view what the other members are
viewing in the read-only windows corresponding to those
members. To provide the communication channel between
the group members the system provides the facility to chat.

III. DESIGN CONSTRAINTS

With every new application, the Internet is progres-
sively becoming an aggregation of heterogeneous systems.
Different systems/applications employ different technolo-
gies and have to deal with different issues. For in-
stance the requirements of on-line education systems (like
www. egurucool.com) are different from those of an on-line
shopping mall (like www.amazon.com). To make the pro-
posed system easily deployable on the net and make it free
from technologies lock so that it can be easily plugged onto
existing sites and applications the following issues have
been considered.

A. Use of existing technologies

Since new technologies and applications based on these
technologies are on a rise, issues of backward compatibility
and inter product compatibility are becoming more and
more prominent. In order to work with minimum or no
changes to the existing Internet infrastructure, the system
makes use of the existing/prevailing technologies. For ex-
ample most of the transaction on the Internet are done
on HTTP [3]. Routers/servers/proxies have certain al-
gorithms/protocols customized for HTTP to improve the
performance and for the applications to function correctly.
The proposed system thus uses existing Internet technolo-
gies.

B. Add-on Module in the existing applications

The system is implemented as an add-on module so that
it can be plugged on to existing systems without requiring
any change in their current working. To do so otherwise
would require customized solutions for the different sites to
enable group browsing.

For the proposed system to be an add-on module, it is
designed to be transparent to the site/application. It acts
as a gateway, which intercepts the requests/responses be-
ing sent to and from the site, and makes changes to them
without affecting the normal working of the site. The sys-
tem ensures that group member’s browse in a group, but
as far as the site is concerned it would be unaware of the
existence of the system and would function normally.

C. No Changes on the user side

From the end-user’s point of view there is no change in
the way he browses the various sites. He will still be able
to browse the sites in a group or otherwise using the stan-
dard browsers he uses. If the system required a customized
application to group-browse the site, it may not have been
acceptable to the users. More so, these popular browsers
keep updating with new features. Keeping the application
in tune with these developments would require a consider-
able effort.

IV. ARCHITECTURE OF THE PROPOSED SYSTEM

As per the design considerations mentioned in the pre-
vious section the architecture of the proposed system is
as shown in Figure 1. It consists of a Group Manage-
ment System (GMS), with its set of databases (GMS
Databases in the figure). This add-on module sits before
the application server and intercepts the requests, before
they are forwarded to the application server and the re-
sponses, before they are sent to the client.

In the proposed design, GMS handles the Group Forma-
tion and Maintenance. The requests made by the members
in the group are intercepted by it. It passes only the re-
quests made from the browsing areas of all the members
to the application. GMS then acts as a coordinator whose
responsibility is to send the information pertaining to the
request made by a member to all other group members. It
broadcasts the response given to this member to the other
group members, so that the other members can also see the
responses.

Figure 1 shows two persons browsing in a group and a
third client browsing the site individually. As far as the
application server is concerned, the requests it receives are
as if they are coming from three different clients. It is the
GMS that make it possible for the group members to view
each other’s area.

A. Roles of GMS

Based on functionality, the role of the GMS is categorized
as follows.
(a) Authentication of the client: Authentication of the client
is necessary to provide the users an assurance that the other
persons in the group are actually the ones, they claim to
be. If such an authentication scheme were absent then ma-
licious users would be able to join the groups and do un-
desirable things, thus making an as such secure site prone
to attacks. The GMS can use the available authentication
schemes [16-21] or a variant of them.
(b) Group Management: The users who visit the site
should be able to start a new group, join an existing group
or leave a group. The number of groups and number of
clients per group would change dynamically. These issues
of group management are taken care of by the GMS.
(¢) Broadcast the response to all members of the group: The
response to any client request is sent to all the members of
the same group only. The GMS broadcasts this in a time
efficient and bandwidth efficient manner.
(d) Database Management: For the purpose of its func-
tioning, auxiliary databases are required as shown in Fig-
ure 1. Issues of concurrent transactions, consistency and
integrity of the database become critical to the design of
the system [23]. Due to the frequent access of the database,
the performance of the system depends to a great deal, on
its design.
(e) Security Handling: GMS takes care of various security
issues. The group members should be sure of the authen-
ticity of the data they view as also of the other group mem-
bers. Adding the proposed system to existing sites should
not create a security hole into an as such-secure site.

Clicnt 3,
Lresreeseeees : web st ¥ Esing sl
E .-::M:-- server *'_\
i Existing ' -
i | Applicokions | ________________, .
T I ' : S
i i Group : L " . | Chat Window
' :j Masnssgtermnt Y "y CID=1 | CID=1
. A em ' & Foead
E E E {Thz Proposed Systom) ! B : (Onlv‘J
: i : " Client 1
I e t . .,
i [A = —— .,
' o GMS Datahiases ' A
: o : Chai Window
' .
CID=l | CID=2
Group Interaction Enobled Site (Fead
Oy
Clierit 2

Fig. 1. Basic Architecture (GMS as an add-on gateway module

B. Interaction between GMS and client browser

Figure 2 shows the client side structure of the system. It
contains an agent program known as the Actual Client
Agent (ACG). Each user who is a member of group has
an ACG. GMS sends the ACG to the user when he joins
or starts the group (e.g. as a Java applet with the home
page). ACG establishes a two-way communication channel
with the GMS (a channel like a socket connection). GMS
uses this channel to pass instructions and messages to the
ACG, which in turn executes those instructions with the
help of the browser. Corresponding to each ACG on the
client side there exists a Virtual Client Agent (VCG)
on the GMS, which is responsible for talking with the ACG
on behalf of the GMS.

ACG apart from handling the message communication
between VCG and itself also manages the user interface on
the client side. It interacts with the client browser and asks
it to fetch the recent responses of the other group members,
as informed by the corresponding VCG. It also maintains
the number of windows dynamically synchronized as users
join or leave the group. It can manipulate the client side
browser to produce the desired outcome.

When a member makes a request from his browsing area,
GMS updates its database and forwards the request to the
application. The application, unaware of the existence of
the GMS, assumes that the request came from the client,
processes it and sends the response, as it normally would.
GMS intercepts the response and updates its databases. It
sends a customized response to the client and saves a mod-
ified copy of the document with itself for the other group
members. To broadcast the news of the new document to
all the other members of the group it sends a message to
the ACGs via their corresponding VCGs. ACG in turn
take charge and gets the saved documents with the GMS
(refer section V-B) corresponding to its group.

As mentioned above, the GMS make changes before
sending the response to the client. These changes are made

to URLs that will be used for group activities (refer section
IV-D).

C. Anatomy of GMS

Figure 3 shows the basic modules in the GMS. It consists
of three basic modules namely the HTTP Request Handler
(HRH), the Garbage Collection Daemon (GCD) and the
Virtual Client Daemon (VCD). Besides the above modules,
GMS has a set of databases it uses. The functionality of
each module is explained next.

(a) HTTP Request Handler (HRH): HRH is the primary
module of the GMS. It sits between the web server and the
application server without them being aware of its pres-
ence. It processes both the requests and the responses from
and to the client, thus enabling group browsing.

(b) Virtual Client Daemon (VCD): When the ACG acti-
vates, it contacts the Virtual Client Daemon (VCD), which
in turn creates a new VCG in the GMS corresponding to
the ACG. The newly created VCG and the corresponding
ACG have an established communication channel through-
out the session. In the proposed system the communication
channel is a socket connection.

(c) Databases: The GMS maintains two databases. The
Group Information Database (dbl) contains information
pertaining to the groups. It contains one entry per group
in the system. Each entry keeps the information pertaining
to the group and a collection of Client Records. The Stored
File Information Database (db2) contains information re-
garding the various files stored in the local storage of the
GMS. It has an entry for each group. Each group record
contains the entries corresponding to the stored files, which
were browsed by the group members. One of the impor-
tant information maintained by db2 includes the send bits.
The send bits refer to the files, which have been received
by each member (Refer to appendix A for more details).
(d) Garbage Collection Daemon (GCD): The Garbage Col-
lection Daemon periodically cleans up and reclaims the lo-
cal storage space. It also removes the unnecessary entries
from the database. During cleaning up it primarily re-
claims the space used by the local files, which have been
served to all the members of the group (i.e. all send bits of
a file record in db2 are marked).

HTTP requests
¢ for nownal
browvsing & pages
HTTPD
“:Il> [Thie weeb server on aopication sitel ————— of elharmember:
HTTP HTTP requests for
roquasks group accamc
which zre rot
o request
P e
i
: | h 4
: - - Auchaal i
Existing | I Socket conmeciions ™ Cliemi Bfﬂ]ﬁtﬂ.
Application] 3
iap_\,l,?ming_mm, i Group Managerment i Agent Windows
; Sysiern i ACG2
; S
: e N SERREE i
i : e A rhaal Client
i GMS Datahases | - -l Client Browrse
: | Agent Windows [
i | ACCGL
2 AU . |

Fig. 2. Client Side Agents (ACGs)

r"i’f’x‘—__—‘—‘—‘“_'_____

Interface with the
! HTTF Server

HTTF Request Handler
{HRH;)

Interface
with the
application

' | GM5 Database
! db2 — Stared
' File Inio

GMS Database
(db1-Group Info)

' Sarbage Collection Daemon
(GCD)

Communication
Channels

! Actual

- = —r__Client

T "hAgents
On

“irtual i
Client V| — it Rterface of GIE wih
Daemaon i » App Server
(\,’CD} H = Weh Servar
i = ACG on clent

Fig. 3. Anatomy of GMS

D. Identifying the requests made for group activity

In HTTP-based communication, client requests are made
by sending URLSs to web servers. The proposed system too
uses URLs to identify the request. All the requests corre-
sponding to group communication will have a group pad.
It contains information pertaining to the Group, the par-
ticular group member, various security related information,
contains the path of the GMS (so that GMS gets the control
before the actual application server) and other information
pertaining to group activity.

The group pad is inserted into the documents before the
response is sent to the group members. This is so that when
these modified URLSs (containing the group pads) are sub-
sequently accessed by the users, the GMS knows the group
to which the request corresponds to and can hence send
the response to the other group members. Also, this pad
is extracted and removed from the requested URL before

forwarding it to the application server, as the application
server is unaware of the groups.

URL Categorization: The URLs in the system are cat-
egorized using two different categorizations, as explained
below:

1. Master and Slave Requests: The requests from the
browsable area (section IT) of clients are called Master’s Re-
quest. Corresponding requests from all other members for
the same document are called the Slaves’ Requests. Master
requests are forwarded to the application server and the
slave requests are handled by the HRH itself. The corre-
sponding clients are called master and slave respectively.

2. HTML - URL C(Categorization: For the purpose of
the proposed system we have divided URLs appearing on
HTML pages into two different categories. This is because
both of them will have to be dealt with differently.

(a) HREF Type URLs: These URLSs are those, which are

included in HTML tags like ANCHOR, ACTION etc. in
form of HREF or ACTION. To access the resources cor-
responding to these URLs, the user has to trigger certain
events (e.g. clicking on the links corresponding to HREF or
pressing the 'SUBMIT” button in a form). Only then does
the browser send a request corresponding to these URLs.
(b) SRC Type URLs: In general almost all Internet doc-
uments have some objects like the images, image maps,
style sheets etc., which are brought by the browser in sub-
sequent connections with the server automatically. Such
objects are specified in the Markup Languages by using the
SRC, BACKGROUND, and HREF etc. in tags like IMG,
BODY, and LINK etc. When the browser comes across
these tags, the browser makes a request for the associated
URL without the physical user asking to do so. We call
these URLs as the 'SRC-type URLs’.
The basic difference in the two types of URL references is
that the former represents a transition to a new document
whereas the later represents some objects that are needed
to complete the current document itself. The system there-
fore has to handle both of them differently. Different ac-
tions are also taken depending on whether the request is a
master request or a slave request (refer section V-B)

Types of URL in the system: Given above categoriza-
tions, there exist at least 4 types of URLs viz. master re-
quests contain both HREF-type and SRC-type URLs. So
also have slave requests. Apart from these, there exists
another special URL, used for the initial group formation
(section V-A). Thus, there exist 5 types of URLs in all, as
noted below (for detailed structure, refer Table I).

Type 0: These requests correspond to the initial stage of
group formation, when the user wants to join or start the
group. These requests are no way related to the application
and are provided by GMS solely for the group management.

Type 1: URLs corresponding to master requests of HREF
type URLs. The documents corresponding to the URL are
stored in the local storage with the GMS, certain modifi-
cations are made to the databases, and the VCGs of the
other group members are informed about the new request
made by a master.

Type 2: URLs corresponding to slave requests of HREF
type. These requests are for documents that had earlier
been stored in the local storage.

Type 3: URLs corresponding to master requests for SRC-
type files. These files are got from the site and sent as the
response. A copy of them is also maintained in the local
storage for subsequent slave requests.

Type 4: URLs corresponding to slave requests of HREF
type. These requests are for documents that had earlier
been stored in the local storage.

V. WORKING OF THE PROPOSED SYSTEM

The working of the proposed system is broken up into
three different parts namely the Initial Group Formation
Model, the subsequent Transmission Model and the Secu-
rity Model. Initial Group Formation includes the process
by which a user can start or join a group. Transmission

Model includes the broadcast of the response of applica-
tion server for each member to all other members of the
group. And the security model includes the various secu-
rity protocols incorporated to ensure that there would be
no security breach in the access of a site due to the pres-
ence of the proposed system. The initial group formation
and transmission models are discussed next. The security
model is discussed in details in section VI.

A. Initial Group Formation/ Joining Model

The HRH handles all activities using URLs. For the ini-
tial group formation the system uses a URL type 0 (section
IV-D). The system may use any authentication scheme as
provided by the site, for example username/password, dig-
ital signatures etc. The current implementation uses the
conventional username/password [18-21] interface for the
authentication of the users (step 1, Figure 4). The system
first authenticates the user, and if the username and pass-
word match, the system from here on believes that the user
is the one whose account the server has.

Once the user is authenticated the system gives him an
option, whether he wants to start a new group or join an
existing group (step 2, Figure 4). If he wishes to join an ex-
isting group, the information about the groups is displayed
to him and he chooses his group.

The existing group members of the group are then asked
whether they want the particular new user to join their
group. The group members are given certain identification
information about this new user. The new user is admitted
as a part of the group if the responses from other members
satisfy the group-joining criterion. The group-joining cri-
teria could vary, e.g. if 50% of the users give permission,
then the user is allowed to join the group. Corresponding
updates are made in the database (step 2.1.1, Figure 4).
However, if the user started a new group, he would simply
be assigned to the new group, and information about this
new group is added to the database (step 2.1.1, Figure 4).
After the addition of client in an existing or newly created
group, the ACG is sent to the client. After reaching to
the client side the ACG activates itself and tries to connect
the VCD. VCD then creates a new VCG on the server side
and binds it to the ACG (step 3, Figure 4). All the future
communication between GMS and user/ client would now
happen between VCG and ACG.

Once VCG has been created, GMS sends the URL of
the ‘Home Page’ or the Initial Page’ and the ‘Permission
Granted Message’ to the user via VCG. ACG on receiv-
ing this message asks the browser to fetch the Home Page
in the users browsable area. The newly added member is
then given the status of the rest of the members so that
it can start the group activity. The user gets the pages of
other users in the corresponding read only windows (step
4, Figure 4). This is explained in Figure 4.

Leaving a Group: If a client wants to leave a group he in-
forms it to GMS, who then updates the group information
and the databases. After updating the databases GMS,
removes the corresponding VCG and asks the other VCGs
to get their clients informed and re-adjusted.

(HTTPD)

Web Server on the application site

1. Req: For Group Activity
Res: Chooss to start! join

A

S P g

1.1 Req: For Group Actiity

roLl
Res: Choose 1o starld join group)

v

B e e e i e
2.1 Req: Startdain (a selec?ed 2. Rew:

"Res: A page containing AO%B Res: A page containl

(a selected g

i Client
HTTP Request Handler :
(HRH) .
2.1.1 Update the . . 5
Group Info And Virtual Client >
Asks all olher Agent /,"
members of group E
if zan join WCG1) -

v

31 Initi?tgs nesw W0 G

(VCD)

Virtual Client Daemon |~

Fig. 4. Initial Group Formation/Joining Model

Rejoining a Group: In this case, the client agent who
has the Group ID and corresponding secret key reestab-
lishes the socket connection. This is also used for auto
maintenance of the connection.

B. Transmission Model

This subsection describes the functioning of GMS after
the group has been established and the normal browsing
has started. The algorithm which GMS uses to process
the various types of URLs and hence to manage groups is
summarized next along with Figure 5.

When GMS receives a URL, U, it does the following:

o Verify the integrity of U (refer section VI-A).
o Determine the type of U.

— If Uis of Type 1, i.e. a Master HREF, then GMS con-
structs the actual (non group enabled) URL by removing
all the information pertaining to group. It then sends the
request to the application server.

While processing the response received from the application
server, GMS not only customizes the response for Master
Client but also saves a separate and customized copy for
the slave clients. For the master client it changes all the
HREF type URLs to Type 1 URLs and all the SRC type
URLs to Type 3 URLs with same group and client ID.
Before changing the SRC type URLs to Type 3 URLs it
creates an entry in the File Database, db2, and uses the
index of the entry in the Type 3 URL construction.

In the customized copy saved for the slave clients it disables
all the HREF type URLs and converts all SRC type URLs
to Type 4 URLs. The index of the file entry used in the
creation of the Type 4 URL is same as the one used in
the construction of Type 3 URL for Master response. The
group ID is the same. Since the client ID is not known at
the time, client information is not filled and is added on
the fly while serving the document.

After processing and saving the document, GMS sends a
broadcast message to all the other members of the group

for requesting the document. It constructs Type 2 URLs
for it and sends to ACG through VCGs.

— If U is Type 2 the request is not forwarded to the appli-
cation server, instead the document from the local storage
is retrieved. All the Type 3 URLs those were incomplete
while saving are completed with the client information and
served. The send bits are set in the database for this file.

— If U is Type 3, then the actual URL is constructed by
removing all the group related information and forwarded
to the application server. The response is sent to the mas-
ter client and a copy is saved in the local storage (in the
path given the db2 entry for the index). The send bits are
updated to indicate the document has actually been re-
ceived from the application server. It then notifies all the
ACGs that have already requested for the document.

— If U is type 4, then the document present in the local
storage is served. If no document is present then it waits till
a time-out happens. In case of time out a notifier is added
to notify the ACG of this client whenever the document is
brought in local storage.

VI. SECURING - THE PROPOSED (GROUP BROWSING

The system discussed so far is generic in nature. It can be
plugged on to an existing application to make that applica-
tion accessible in a group. But as the type of applications
varies over a wide range, with each application having its
own requirement, the security requirements of each of the
application is different. The system will not plug any secu-
rity hole in the implementation of the application but has
to make sure that no security loophole occurs due to its
presence.

Below we describe certain security hazards which might
arise due to group enabling a site and later we propose the
security model which takes care of all the below mentioned
loopholes.

o The users should be authenticated (refer section V-A)
i.e. proof of identity must be established.

HTTPD
{web Server)

1. Hitp recuestfor the master document by masier

2. Requestpassed o Gl l SIResponsebJ the isjr Req: Slare’s HREF i ¥
e ster recuest Res: Serd Saved Doc E ACGL Client
[DR 5
i 1 i _ Browser
e m——== =TT
: (RS S
i | Sockel connections |
3 Reguest i !
passed o shop ! i H
| Gls ; ;
| | |
[e o
Application : -----F-JRL sends for theslzva—- Client
Sike ! 17T | acG2 Browser
e I T B >
!
4. Rksponge
1o e ster ==mn
i ‘__?TUD[:Q:e:rrdgfnr_ﬂle clave ACGE Client
I CEEmei s TR Browser

B. Save document:@and
update databases |

e ——
GMS Datahases

Fig. 5. Transmission Model

o GMS sends the actual client agent (ACG) to the client
when the client has successfully joined or started a group.
If an intruder can replace the ACG with a customized ACG
while it is being sent then the system is breached. So, the
ACG should thus be sent over a secure channel.

e An intruder should not be able to record and replay any
transaction. Such replay-attacks would make the site vul-
nerable to a lot of damage by intruders.

o The messages being exchanged between the VCG and
ACG should be authenticated and their integrity should
be maintained. Without this the intruder can misbehave
in various ways e.g. send fabricated-messages like logout
etc.

o During the activation of ACG, when ACG contacts the
VCD, the intruder should not be able to hijack the connec-
tion and hence being able to proxy as the Server.

o The response sent by HRH should be authenticated. If
it is not then all the group members may not see the same
things. The intruder would be able to show different re-
sponses to different members.

o Even the group members should use only the links pro-
vided by the system and should not be able to reconstruct
or tamper with the URLs. No one should be able to con-
struct an URL that corresponds to a group activity. In-
tegrity of the URLs should be maintained.

A. Proposed Security Model

The proposed security model provides authentication
and prevents the malicious replay attack. All ACGs have
the following random numbers: n; to expect from GMS on
socket, m1 to send to GMS over socket, Ny; to expect from
GMS on HTTP for each the ith client of group and My;
to send to GMS on HTTP for each of the ith client of the
group. The ith client for an ACG corresponds to the read
only window with the ACG for the ith client in the group.

Since in the socket communication, all the messages are
transported between the ACG and the VCG over the same

socket, integrity of the messages can be maintained by a
pair of random numbers (section VI-A.3). But in case of
HTTP communication, since each browser window of client
(there are multiple browser windows on the client corre-
sponding to the members of the group, see section III) gen-
erates a separate HT'TP request, the response and requests
of different windows are independent, thereby mandating
use of different random numbers. In case if we use the same
numbers then there would be problems for instance while
one request has been sent other request could not be sent
concurrently.

Each client shares a secret key with GMS, K*hared (it
is termed as share, because it is shared the clients and the
GMS). This key is stored in the Client Record of Group
Database, dbl. It is exchanged during the initial authenti-
cation (using SSL). GMS has another secret key, K®¢"¢t
but only GMS know this.

A.1 Preventing URLSs from being tampered

In order to prevent the tampering of URLs, the URLs
would contain the keyed hash [26] of the rest of the URL
appended at the end of the URL. Thus when a request
corresponding to a URL comes to the server, the GMS
first checks for the authenticity of the URL and only then
does it further process the request. The key for the hash is
private to GMS (K*¢°"¢!). This ensures that even the group
members cannot reconstruct or tamper with the URL.

A.2 Authentication during initial group formation

It uses the conventional username/password [18-21] in-
terface for the authentication of the users. Once authen-
ticated the system then believes that the user is the one
whose account the server has. If the application supports
an authentication scheme, then the authentication by the
GMS for the group may be merged with that of the ap-
plication. In order to provide security during the initial

Authentication Pad: <Message>/n1 + 1/ns/ Keyed Hash
n1 = Expected number, na = Next number to expect

Keyed Hash = Hash of (<message>/n1 + 1/n2) with Kshered

Fig. 6. Authentication Pad

group formation and the actual client agent transfer, the
system uses Secure Socket Layer Protocol (SSL) on HTTP
(i.e. HTTPS) [12-15]. The user name and password from
the client are sent to GMS on HTTPS.

When the ACG is sent to the client over SSL, a Shared
Secret Key (K *"*7¢?) the client’s Group ID, Client ID and
the other nonces as mentioned above i.e. ny, my, Ny, M,
are also passed to the ACG. When ACG initializes and
connects to GMS (or more precisely the VCD), it authen-
ticates itself by sending the ‘ACG Awuthorization Message’
to the GMS. The message consists of the GID, CID, m;+1,
a new Random Number (m2) and the Keyed Hash of the
tuple, the key being the shared key (K*h2r¢d). Since only
ACG has K*"¢? and m,, the above-mentioned tuple un-
mistakably identifies the ACG.

A.3 Authentication of Requests and Responses

When a client, whether a master or a slave requests GMS
for a document, GMS has to verify that the request is com-
ing from a valid client. This is because a malicious intruder
might request for a dummy page as a master, and then
GMS would distribute the same page to the other mem-
bers of the group. This is clearly undesirable and hence
the need for authentication of the requests. Also an in-
truder must not be able to record a transaction and replay
it backs again at a later time thereby be fooling the group
members.

In order to prevent the replay attack, system takes the
approach of maintaining pair of random numbers for each
expected request/response and refreshing the numbers in
subsequent calls. As assumed in the design of the secu-
rity model (section VI-A), all ACGs have a pair of ran-
dom number for communication on the socket and a pair
of random numbers for each client for HTTP communica-
tion. The initial nonces are sent to the client, along with
the ACG. Since the initial communication is on SSL, the
initial numbers are exchanged safely.

The approach taken in the system is to append an au-
thentication pad after the message in case of the socket or
after the URL in case of HTTP. The authentication pad is
shown in Figure 6. Since the party on the other side, be
it GMS or ACG, knows the expected number the replay
attack can be prevented.

o Authentication of messages over socket: When the
VCG sends a URL or for that matter any message to the
ACG over the socket, it appends the authentication pad
with the message. The numbers used in this case are ny
and my, respectively for GMS to ACG and ACG to GMS
communication.

e Authentication of HTTP Requests received by
GMS: GMS processes the requests it receives in much the
same way as explained in Section V-B. Besides the normal

processing explained earlier, it takes some extra steps to
verify the authenticity of the URL and makes some modi-
fications in the generated URLs to prove the authenticity
to the ACG.

As mentioned in Section VI-A GMS maintains a set of ran-
dom numbers for each ACG, where each set has a random
number corresponding to a member in the group. The ex-
pected number is changed to the next expected number
only if the request is a request for some other document.
Since a document can be split across over multiple HTTP
requests as in case of SRCs (see section IV), the expected
number for such parts of documents (images, maps etc.) is
same as the expected number for the main document.
Thus the expected number is only changed if there is a
Type 1 of Type 2 request. The SRC requests (Type 3 and
Type 4) do not change the expected number. The formats
of URLs expected by GMS are shown in Table I.

o Authentication of Response over HT'TP: In case of
the HTTP response, GMS passes the authentication pad as
part of the HTTP header. The authentication pad contains
the keyed hash of normal response appended with N; +
1/N». The ACG verifies the authentication by recomputing
the Keyed hash. It then changes its next expected number
to NQ.

VII. IMPLEMENTATION ISSUES AND ANALYSIS

Performance analysis of the system is done to check the
feasibility of the system on the net. A Pentium II based PC
with 128 MB RAM (100 MHz bus speed) and loaded with
Windows NT Workstation with Service Pack 6, Personal
Web Server (Microsoft’s Web Server) is used for prototype
implementation and performance analysis. The tool used
is the application “Apache Benchmark” for making given
number of requests to the server. Apache benchmark was
run from two different machines running Red Hat Linux
v6.2. The performance is found to be satisfactory. It is
observed that response time of the server with GMS (i.e.
browsing in a group) is four to six times more than re-
sponse time of the server without GMS (i.e. browsing indi-
vidually). Response time of the server with GMS depends
on the following; (i) load on the server, (ii) number active
groups and (#¢7) number of members in each active group.

The performance can be improved upon by taking care
of the following implementation issues:

o Implementing the GMS as a servlet (in case of Java),
which is pre-loaded in memory, instead of a process being
forked each time a request arrives at the web server (e.g.
CGI scripts). The GMS could also be implemented as a
filter in the W3C Jigsaw Java Web server [22].

o If the GMS sent the entire document, to the ACG, over
the socket instead of just the URL of the saved document
in the local storage, client side latency would be reduced to
half the round-trip time to the server. The problem with
this design is that there is no way the ACG (an applet) can
display a page (i.e. parse it and display it), which has been
got on a socket, on the common browser windows. In the
Netscape Navigator (v6), the applet has more control over
the browser and the said design may be a possibility. But

TABLE I: URL Types

| Type | Description | Format |
Type 0 | Group Management https://<Server>/<GMS>/<ManagementInfo>/0/Hashsnared
Type 1 Master HREF <Protocol>://<server>/<GMS>/<documentPath>/<GID>/<CID>/1/
My + 1/ M /Hashgsecret, where My, M, are for this ACG and this window.
Type 2 Slave HREF <Protocol>://<server>/<GMS>/<indexOfStoredFile>/<GID>/<CID>/2/
M + 1/ M, /Hashgsecret, where M, corresponds to this ACG and
My is for the window of ACG of the Master of this Document.
Type 3 Master SRC <Protocol>://<server>/<GMS>/<documentPath>/<GID>/<CID>/3/
M; + 1/Ms/Hashgsecrer, where My, Mo, are for this ACG and this window.
Type 4 Slave SRC <Protocol>://<server>/<GMS>/<documentPath>/<GID>/<CID>/4/
My 4+ 1/M;y/Hashgsecrer, where M; corresponds to this ACG and
M is for the window of ACG of the Master of this Document.

this possibility hasn’t been explored.

« File handling is a very expensive operation. Keeping the
recent files (up to a certain maximum size) in memory,
could improve performance.

o The database implemented was a simplistic one. It used
mutex locks for per-record locking. It didn’t maintain any
index of the table according to the primary key of the table,
thus increasing the search time. The search being linear
took time in the order of O(n). This search time could be
improved to O(log(n)) by using appropriate search algo-
rithms and by maintaining indexes on the primary fields.
Other database optimizations will improve the performance
of the system [23].

VIII. CONCLUSION

The design of a generic system to support group browsing
as proposed in this paper is a pioneering effort. It proves
that ‘The Concept of togetherness’ and ‘Group Activities’
are now no more unachievable.

With this noble effort a new horizon can be opened for
the Internet Community. We may soon have, Group Shop-
ping Malls, Group On-line Medicare, Group On-line Edu-
cation System and many more.

REFERENCES

[1] Peter Stone, Michael L. Littman, Satinder Singh, Michael Kearns,
“ATTac-2000: An Adaptive Autonomous Bidding Agent”, Journal
Of Artificial Intelligence Research 15, pp. 189-216, 2001.

[2] H. Schulzrinne, “RTP Profile for Audio and Video Conferences
with Minimal Control.”, RFC 1890, Audio-Video Transport Work-
ing Group, January 1996.

[3] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masin-
ter, P. Leach, T. Berners-Lee, “Hypertext Transfer Protocol —
HTTP/1.17, RFC 2616, June 1999.

[4] M. Kumar, A. Jhingran, R. Anand and R. Mohan, “Future of
Sales Promotion on the Internet”, Proc. 3rd USENIX workshop
on Electronic Commerce, Boston, September 1998.

[5] Laurie Law, Susan Sabett, Jerry Solinas, “HOW TO MAKE
A MINT: THE CRYPTOGRAPHY OF ANONYMOUS ELEC-
TRONIC CASH”, National Security Agency, Office of Informa-
tion Security Research and Technology, Cryptology Division, 18
June 1996.

[6] N. Asokan, Phil A Janson, Michael Steiner, Michael Waidner,
?State of the Art in Electronic Payment Systems” IEEE Computer,
volume 30, no 9, pp. 28-35, 1997.

[7] K. Bauknecht, S.K. Madria, and G. Pernul (Eds.), “EC-Web
20017, LNCS 2115, pp. 81-90, 2001

[8] ePSO (Electronic available at
http://epso.jrc.es/

| DigiCash. See http://www.digicash.com/ecash/

0] See www.hdfcBank.com, www.CitiBank.com

1] See www.amazon.com, www.ebay.com

2] A. O. Freier, P. Karlton, and P. C. Kocher, “The SSL Protocol,
Version 3.0”, Internet Draft, March 1996.

[13] K. Hickman and T. Elgamal, “The SSL Protocol”, Internet

Systems Observatory),

Draft, 1995.
[14] Netscape Corporation, “Understanding Encryption
and SSL”, Chapter 14, http://developer.netscape.com

/docs/manuals/proxy /adminux/encrypt.htm

[15] Joris Claessens, ark Vandenwauver, Bart Preneel, Joos Vande-
walle, “Setting up a secure web server and clients on the internet”,
em TEEE (0-8186-8751-7/98), 1998.

[16] Ran Canetti and Hugo Krawczyk, “Analysis of Key-Exchange
Protocols and Their Use for Building Secure Channels”, in pro-
ceedings of Eurocrypt 2001, LNCS 2045, 2001.

[17] C. K. Wong, M. Gouda, S. Lam, “Secure Group Communication
using Key Graphs”, IEEE/ACM transactions on networking, Vol.
8, No. 1, 2000.

[18] S. P. Miller, B. C. Neumann, J. I. Schiller, “Kerberos: An
authentication service for open network systems”, in Proceedings
USENIX Winter Conf., Feb 1988.

[19] R. Rivest, “The MD5 Message Digest Algorithm”, RFC 1321,
April 1992.

[20] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach,
A. Luotonen, L. Stewart, “HTTP Authentication: Basic and Di-
gest Access Authentication”, RFC 2617, June 1999.

[21] W. Stallings, “Cryptography and Network Security, Principles
and Practices, 3/e”, Prentice Hall, 2002.

[22] Jigsaw, W3C Java Web Server,
www.w3.org/Jigsaw/

[23] G. Couloris, J. Dollimore, T. Kindberg, “Distributed Systems
Concepts and Design, 3/e”, Addison-Wesley, 2001.

details available at

Appendix A: Scemas of Databases Used

| Database | Record | Constituents |
dbl Group Group ID and
Group Record Client IDs
Database | Client Client ID, VCG Pointer, User
Record Information and share Secret
Key (kshared)
db2 Group Group ID and
File Record File Indices
Database File File Index, Master Client ID,
Record | Local File Path, List of Members
present at the creation time,
Send bits for the members

