
Live Video Streaming on Embedded Devices through Wireless Channel
R.Susanto, D.Wu, X. Lin, K.P. Lim, R. Yu, F. Pan, Z. Li, S. Yao, G. Feng, S. Wu

Signal Processing Program

Laboratories for Information Technology
21 Heng Mui Keng Terrace, Singapore 119613, email: susantorahardja@ieee.org; djwu@lit.a-star.edu.sg

Abstract

We introduce a PDA-based wireless live video streaming
system based on MPEG-4 video compression standard.
The system is implemented in software. Compared to a
dedicated hardware implementation, software
implementation is programmable thereby providing
flexibility to incorporate new algorithms. Due to limited
computational resources of PDA, all the key modules of
MPEG-4 codec are efficiently implemented and
optimized such as multithreading, buffer design, wireless
communication, encoder and decoder. Several novel
techniques are developed in the coding and streaming
portions as well as the post-processing stages of the
system. The results indicate that the proposed system has
successfully reached the aim of achieving real-time video
coding through the wireless channel.

Keywords: Video Compression, MPEG-4, Embedded
System, Communication System, Multithreading

1. Introduction

In recent years, Personal Digital Assistants (PDA)
have attracted tremendous attention. Contrast to the bulky
notebook computers, these electronic devices enable users
to carry them much more easily and run application
programs including taking notes, scheduling plans,
surfing the Net, accessing email-boxes and many more.
Generally, these PDAs such as Palm, Jornada, iPac, etc
can be considered as embedded systems. The reason is
partly because the underlying software platforms inside
are the embedded operating systems like Windows CE
and Palm OS.

With the advent of high speed and low power
embedded processors for PDAs, there is a growing trend
towards a strong demand for better multimedia
applications “on the move”. The added dimension of
broadband networks such as 2.5G or 3G communication
network will undoubtedly proliferate embedded
multimedia applications on PDA devices in a very near
future. Of particular interest, live video streaming is
becoming a viable application on PDA devices. This is
because of the improvement in embedded processor’s
speed and the availability of various wireless broadband

networks such as wireless LAN, GPRS (General Packet
Radio Service), and emerging 3G communication
services.

However, the video stream content involved in a
video streaming system contains so much data that
compression techniques should be utilized to transmit
video data through the narrow bandwidth transmission
channels. In another word, codec which stands for
compression /decompression techniques is indispensable
in this kind of video streaming system.

In a live video streaming system, data exchange must
be performed in real-time. Thus having efficient
algorithm and implementation to achieve the state of real-
time in the streaming is a necessity in the codec here.
Since MPEG-4 [1,2,3] is one of the best compression
standards suitable for low bit-rate compression, it is
adopted in the system.

The paper consists of seven parts. Part 1 gives an
introduction to this paper. Part 2 gives a systematic view
of the developed video streaming system. Part 3 explains
the main idea of video compression techniques. Part 4
presents some implementation and optimization details.
Part 5 introduces several novel techniques implemented in
the system. Part 6 shows the result of the system. Part 7
gives future plans and concludes the paper.

2. System description

The PDA-based wireless video streaming system
developed is mainly related to software. The encoder side
of the system consists of a HP Jornada 568 PocketPC with
Intel StrongARM SA-1110 processor inside, Socket Low
Power CompactFlash (Type 1) IEEE802.11b Wi-Fi
wireless LAN Card and the encoder application software.
In addition, a video camera and a video capture card is
plugged into the slot of encoder PDA for live video
capture. In this case, the FlyCAM-CF digital video
camera made by Animation Technologies is used. The
decoder side consists of the similar configuration with the
exception of the decoder application software. The two
sides are connected through Wireless LAN and Internet.

SDK is provided with the video capture hardware so
that the encoder can read the raw YUV format live video.
After compression, the MPEG-4 compressed video bit
stream is sent out to the wireless channel before it is

decoded on the remote side in the end. A schematic
diagram of the system is shown below in Figure 1.

3. Video compression background

Uncompressed video takes so much storage space
and transmission bandwidth that video compression
provides an effective approach to save the space and
bandwidth. Video can be viewed as continuous image
slices along the time axis. There exist different degrees of
data redundancy between the neighboring image slices.
Compression of image data without magnificent loss of
visual information is mainly due to three reasons. Firstly,
images contain a high degree of spatial redundancy due to
correlation between neighboring pixels. Secondly, they
contain some spectral redundancy because of correlation
among the color components. Thirdly, they show some
degree of psychovisual redundancy due to human being’s
visual system. From theoretical viewpoint, we should
obtain as high compression as possible based on the
redundancy information in the video data.

Statistical (spatial) redundancy exists because the
pixel values of images in this world usually are not totally
random, but representing a degree of gradual changing.
Psychovisual redundancy is due to the reason that the
human visual system is insensitive to some spatial
frequencies. Since the neighboring image slices inside the
video sequence generally shows strong data redundancy,
this feature is also being utilized to compress the video
data more. A typical image compression system [4,5,6,7]
is generally comprised of the following parts: motion
estimation, motion compensation, transformation,
quantization, and coding.

The video codec adopted in the system is MPEG-4,
which is a source codec that facilitates efficient storage,
transmission and manipulation of video data in
multimedia environments. One of its targeted application
is just coding and transmitting video stream through the
wireless channel.

4. Implementation and optimization

Our implementation is based on the MPEG-4 codec
developed previously by Laboratories for Information
Technology. However this codec is written under Win32
environment [8,9], rather than Windows CE. To make
things much worse, the initial performance of the video
codec on the StrongARM platform (after porting to
Windows CE) is unsatisfactory. Thus a lot of optimization
has to be done to improve its performance. Major
optimizations and implementation issues are discussed
below.

(a) MPEG-4 video encoder optimization
1) Encode_MacrocBlock module optimization

It was found that the Encode_MacroBlock() function
executed subroutines that are the most computationally
intensive. All the modules in the function have been
successfully re-coded and optimized to boost the
performance. There are mainly two tasks that
Encode_MacroBlock() does: to encode the INTRA-blocks
and the INTER-blocks. To compute the INTRA-blocks,
the following steps have been optimized and
implemented: i) transform the input image blocks using
our new fast fixed-point DCT transform; ii) quantize the
DCT-coefficients in the transformed blocks; iii)
dequantize the quantized-DCT-coefficients; iv)
reconstruct the blocks by performing inverse-DCT
transform on the dequantized-DCT-coefficients. To
compute the INTER blocks, the following steps have been
optimized and implemented: i) generate the error-signal-
blocks by subtracting the current-blocks-to-be-coded with
the motion-compensated-blocks; ii) transform the error-
signal-blocks using DCT transform; iii) quantize the
DCT-coefficients in the transformed blocks; iv)
dequantize the quantized-DCT-coefficients; v) perform
the inverse-DCT transform on the DCT-coefficients and
adding the results to the motion-compensated-blocks to
reconstruct the image.

2) Advance-detection of Zero-DCT-Coefficients

It is realized that in INTER coding, a large
percentage of the DCT-blocks after quantization are all

Wireless LAN Wireless LAN

Figure 1. Schematic
diagram of the system

Pocket PC
(Encoder)

Pocket PC
(Decoder)

Access Point Access Point

Live Video

Internet

zero. By predicting these all zero DCT-coefficient-blocks,
we can skip the DCT transform, quantization,
dequantization and Inverse DCT transform steps thus
increasing the speed of encoding. [10]

3) Combining quantization with Fast DCT

We have adopted the fast DCT proposed by Arai,
Agui and Nakajima [11]. This version of DCT requires 13
multiplications and 29 additions/subtractions for each 8-
point DCT and is one of the fastest algorithms at present.
The 2-D DCT is performed in two stages. The first stage
is to perform DCT on the 8-point columns and the second
stage on the 8-point rows. In the second stage, by
combining the quantization with the DCT, instead of
using 13 multiplications, only 5 multiplications are
required. In addition, the integration reduces the
unnecessary data write and read that is required to store
the temporary DCT coefficients before doing the
quantization.

(b) MPEG-4 video decoder optimization
1) Fixed-point inverse DCT

The StrongARM processor does not have a dedicated
floating point unit. As such, doing floating point operation
has to rely on software emulation which is a very
computationally intensive process. By converting the
operations to fixed-point IDCT computation, the
performance is substantially increased without hurting the
precision and the visual quality output.

2) Optimizing the motion compensation module

This is done by looking into how data can be
efficiently moved from one segment of the memory area
to another. The data movement is important because the
StrongARM processor has a very small cache memory:
48KB for data and instruction cache. Comparing this with
the 256KB or 512KB cache found in the x86 platform, the
cache in StrongARM processor is very small and we
expect much more cache misses when running memory
intensive application such as our MPEG-4 program. In
case of cache misses, at least 4 CPU cycles are used
which is a relatively heavy penalty. To prevent this
shortcoming, unnecessary memory read and write are
avoided. Another optimization strategy employed is to
read one long word (four bytes) in one memory access
rather than reading a single byte four times. This will
speed up the processing by at least two times.

3) Optimizing the video display module

The decoded image is written directly into the video
memory buffer. This is only possible if we know the
virtual start address of the video memory buffer. We have
successfully implemented the direct access technique on
Jornada 568 PocketPC.

4) Combining motion compensation with IDCT
When these two processes are separated, the result of

IDCT has to be written into a temporary buffer and is
later retrieved (read) for motion compensation. This write
and read process can be eliminated by directly doing
motion compensation immediately after the IDCT
coefficients have been computed.

(c) Buffer issue
Memory space is used to buffer the encoded video bit

streams. The encoder fills up the buffer while the network
thread reads the data and sends it out to the network. Once
the data has been fetched, the memory space can be used
to store new coded frame from the encoder. Once the
encoder’s pointer reached the end of the buffer, it is
brought to the beginning of the buffer. The similar buffer
operation is also applied to the decoder side. In this way,

xxxx

xxxx

xx
xx

xx
xx

xxx
x

xxx
x

xxx
x

xxx
x

xxxxxx

OccupiedRead
pointer

Write
pointer

Figure 2. Circular buffer

(a) Encoding
 process

receiver thread

decoder thread

display thread

(b) Decoding
 process

Figure 3. Concurrency in the codec

encoder thread

transmitter thread

video caputure thread

the same memory block could be used over and over
again in a circular manner. This process can be illustrated
in Figure 2.

(d) Multithreading

At the encoder side, the video capture, encoder and
transmitter have to be run concurrently. At the decoder
side, the receiver, decoder and display also need to run at
the same time. This type of concurrency is obtained by
using multi-thread programming techniques. In Windows
programming, this is achieved by forking the codecs as
threads, as illustrated in Figure 3.

(e) Communication through wireless LAN

Wireless LAN standard (IEEE 802.11b) provides the
way to connect PDA with wireless access point, which is
further connected to the Internet. Since wireless LAN
implements TCP/IP stack, Windows CE socket
programming is adopted in order to implement
communication functionalities such as opening a
connection, listening, sending data, receiving data and so
on.

5. Novel techniques utilized

Besides implementing and optimizing MPEG-4
coding on PDA, we also develop several novel techniques
in coding, streaming and post-processing stages of the
whole system. These techniques can make the encoding
process faster, streaming better and decoded video quality
more pleasing. Figure 4 shows the whole data flow of the
system. On the encoding side, raw live video data
captured and stored in the video buffer of the video
camera is input to the encoder (Enc). The encoder
encodes and stores the encoded bits in the encoder
circular buffer (Enc buffer) and do self-adjustment by
receiving feedback from Enc Buffer. The transmitter
(Tran) gets data from Enc Buffer if it is not empty and

undertakes the task of putting these bits to the network.
On the decoding side, receiver reads data from net and
puts it in the decoder circular buffer (Dec buffer) so long
as it is not full. The decoder (Dec) gets data from Dec
Buffer if available and does the decoding. Then decoded
video is post-processed before being displayed on the
screen. The following introduces the three novel
techniques used.

(a) 2-stage partial distortion search

A novel 2-stage partial distortion search (2S-PDS)
algorithm [12] is proposed and utilized in the system to
reduce the computational complexity in block motion
estimation algorithms. In the algorithm, an early-rejection
stage is introduced where the partial distortion of a
decimated pixel block is calculated and compared with its
local minimum. A block is rejected without calculating
the full distortion of the entire block if the partial
distortion is larger. The local minimum is amplified by a
pre-defined threshold value before the comparison in
order that the probability of false rejection can be
reduced. The algorithm reduces the complexity of block
motion estimation significantly with only marginal
performance penalty. In addition, the algorithm can be
used in combination with full-search or other fast search
algorithms.

(b) Robust rate control

During the process of developing the system, we
found that since both the available channel bandwidth for
the live video coding process and the statistics of video
are usually time varying, the quality of each picture vary
vastly if the encoding frame rate is always fixed at a
predefined rate. Meanwhile, since the live video is
encoded on the embedded devices which can not always
allocate necessary computational resources to the coding
process, the actual frame rate is sometimes less than the
specified frame rate. Some portion of the channel

Enc Tran Rec Dec

P.P.
&Display

Dec bufferEnc buffer Net

Video
buffer

Figure 4. Data flow graph
of the system

bandwidth will be wasted if this phenomenon is not
considered in the rate control algorithm of encoding
process. Accordingly, a new rate control scheme is
designed and implemented to address the problems. With
our rate control algorithm, the encoder can adaptively
adjust itself to both the computational resource allocated
and the time varying channel bandwidth, resulting to
better utilization of channel bandwidth and better PSNR
performance. The average PSNR has been improved by
1.56dB.

(c) Post-processing after decoding

Due to coarse quantization at low bit rate coding, the
perceived quality of decoded video frames are severely
degraded by various artifacts, such as blocking,
blotchiness and ringing effects. In order to remove
annoying coding artifacts and substantially improve the
video quality, we developed an efficient post-processing
algorithm [13] that is based on image degradation model
and use half-quadratic regularization for preserving image
edges and removing ringing effects. The proposed
algorithm has been tested using several images and
compared with the current proposals proposed by
University of Wisconsin and University of Southern
California, which have been included in the international
standard JPEG 2000. The experiments have shown that
the objective quality of decompressed images in terms of
peak signal-noise-ratio (PSNR) is largely improved and
the visual quality of our results is much better than others.
With this post-processing technique for the video coding,
the PSNR value of decoded video can be increased
0.25dB in comparison with the results of MPEG-4 post-
processing algorithm.

6. Results

The encoder software developed is able to compress
and transmit video data with bit rate of around 120 kbps
for the size of QCIF (176x144). The decoder can receive
the video signal remotely via wireless LAN. After the
optimizations, the final deliverables of the project can
achieve 21 frames per second for the encoding rate and 29
frames per second for the decoding rate.

7. Conclusion

We have considered two approaches to enhance
video streaming system. One is to transform our wireless
video communication system into a duplex one. Another
one is to use Bluetooth or GPRS as the underlying
wireless communication channel so that we could
investigate the codec performance under these kinds of
wireless environment.

By and large, the objective of the Project of
developing a real-time ISO/IEC MPEG-4 Simple Video
Profile conformant software encoder/decoder module on
the Intel StrongARM RISC processor (SA-1110) platform
has been attained. The key constituent software
encompasses the Base Layer MPEG-4 encoder/decoder,
Error Resilient Tools, and the system is designed on
Microsoft Windows CE operating system. Besides
implementing and optimizing the source codes, a few
novel techniques are also utilized. Results have shown
that the video codec developed can perform real-time
compression. The live video streaming system on
embedded devices through wireless channel has satisfied
the requirements set by our clients and we are certain that
it can be deployed in the wireless video communication
world of the present day.

8. References
[1] ISO/IEC JTC1/SC29/WG11, "Information technology,

coding of audio-visual objects: Visual, ISO/IEC 14496-2,
Committee Draft", ISO/IEC N2202, March 1998.

[2] ISO/IEC JTC1/SC29/WG11, "MPEG-4 video verification
model version 11.0", MPEG98/N2172, March 1998.

[3] ISO/IEC JTC1/SC29/WG11, "MPEG-4 overview -
(Fribourg version)," MPEG97/N1909, October 1997.

[4] W. Kou, Digital mage compression : algorithms and
standards, Boston, Kluwer Academic, 1995.

[5] A.M. Tekalp, Digital Video Processing, Prentice -Hall
International, INC., 1995.

[6] Veldhuis & Breeuwer, An Introduction to Source Coding,
Prentice-Hall International, INC., 1993.

[7] R.J. Carke, Digital Compression of Still Images and
Video, Academic Press, 1995.

[8] W.A. Redmond, Microsoft Visual C++: Class Library
Reference for the Microsoft Foundation Class Library,
Microsoft Press, 1994.

[9] E. Olafsen, K. Scribner, K. David White, et al, MFC
Programming with Visual C++ 6 Unleashed, Sams
Publishing, 1999.

[10] D.C. Soong, A.R. Ramli and M.R. Mukerjee, "All-zero-
AC block detection using energy preservation theorem for
H.263 video coding", IEEE TENCON 2000 Proceedings,
Vol. 2, 2000, pp.425-430.

[11] Y. Arai, T. Agui and M. Nakajima, "A Fast DCT-SQ
Scheme for Images", IEEE Transactions of the IEICE,
Vol. E71, No.11, 1988, pp. 1095-1097.

[12] R. Yu, K. P. Lim, D. Wu, F. Pan, Z. G. Li, G. Feng, S.
Wu, "A 2-stage partial distortion search algorithm for
block motion estimation", The 3rd IEEE Pacific-Rim
Conference on Multimedia (PCM 2002), Tsing-Hua
University, Hsinchu, Taiwan, December 16 - December
18, 2002

[13] S. Yao and X. Lin, "Post-processing for removing coding
artifacts using edge-preserving regularization",
Proceedings of 2001 International Symposium on
Intelligent Multimedia, Video and Speech Processing,
2001, pp. 121 -124

