
SSGRRwinter2003

1

Abstract—Next generation mobile service delivery puts very

high demands on context-aware and personalization enabling

technologies. Context-awareness and personalization of our

Personalized Service Environment (PSE) [7] is achieved by the

integration of a complex set of those technologies imposing the

constraints of different entities such as wireless and fixed

networks, end-devices, services, users and businesses. Our PSE

concept heavily hinges on a so-called “brokerage system” that

controls and manages the delivery of future mobile services [8]. In

this paper we investigate additional brokerage functionality that

is needed to enforce privacy of the parties involved in delivering

mobile services. To this end, a mobile service can be considered as

an ensemble of so-called sub-services, where each sub-service is

controlled and managed by a “brokerage sub-system”. Our study

of middle agents for the Internet [9] yields a specification of a

“brokerage sub-system” in terms of how it preserves privacy of

the actors involved in requesting and delivering the

corresponding sub-service. A well-designed combination of these

brokerage sub-systems can enforce context and user depending

privacy requirements. We build a context-aware personalized

scheduling service for a mobile business-to-employee (B2E)

setting, where software agents collectively arrange new meetings

at different locations and times keeping in mind the upcoming

meetings of the employees. The software agents also

simultaneously look after privacy or security policies of the

employees or their companies, e.g. with respect to location

information, time schedules, personal preferences or business

sensitive information. We developed and deployed our scheduling

service on the JADE-agent platform using PDA’s and small

notebooks connected to a server using WLAN and GPRS

networks.

Index Terms— privacy, scheduling service, service brokerage,

software agents.

I. INTRODUCTION

OBILE services must be very resilient in a highly

heterogeneous and dynamic environment that

encompasses different and varying networks, terminals,

locations, user preferences, etc. Normally the service delivery

in this environment is realized by service components

distributed over many physical and administrative domains.

Concerning mobile service delivery then several issues have to

be resolved such as:

- Which sub-services are needed in a mobile service?

- Where can we find providers offering these mobile sub-

services?

- How can we schedule these mobile sub-services?

- How can we integrate sub-services, taking into account

the existing constraints imposed by devices, networks,

requesters and providers?

- How can we adapt a mobile service to the dynamics of the

mobile environment?

- How can we learn from current experiences in order to

make the future mobile services more efficient?

- How can we react proactively to future mobile service

conditions? Or how can we anticipate future brokerage

problems?

To settle these issues, mobile service provisioning require a

sophisticated and intelligent system to initiate, steer and

terminate the service such that it is acceptable to all actors.

This is a very challenging problem that the telecommunication

research community still has to face and solve.

In this paper we elaborate on a framework in which these

issues are settled by a so-called brokerage system. In a mobile

service environment the service components and resources are

spread over different administrative and physical domains. In

this environment the brokerage system must gather information

about the capabilities and preferences of all the actors that

request and provide the sub-services of a mobile service. Each

sub-service in the life-cycle of a mobile service, in turn, is

enabled by a set of control and management operations carried

out by a so-called brokerage sub-system. We focus on the

privacy protection functionality of these brokerage sub-

systems that are primarily based on latest software-agent

related technologies and research. These brokerage sub-

systems enforce privacy through multi-agent negotiation

means in every stage of the brokerage process. Depending on

the level to which each actor is willing to share his capability

and preference information with others, an appropriate

brokerage mechanism can be used to enforce the privacy

Agent-based Privacy Enforcement

of

Mobile Services

Mortaza S. Bargh, Ronald van Eijk, Peter Ebben and Alfons H. Salden,

Telematica Instituut, P.O. Box 589, 7500 AN Enschede, The Netherlands.

M

SSGRRwinter2003

2

concerns. We will illustrate the concept by describing the

implementation of a scheduling service in a mobile B2E

setting. By implementing these brokerage mechanisms into

autonomous, negotiating software agents, a service was built

that is capable of protecting employees’ privacy for scheduling

of meetings.

The main goal of mobile service brokerage is the steering of

the required mobile sub-services in such a way that all

resources are optimally managed and used. This issue has

extensively been studied in the area of Quality of Service

(QoS) management for distributed multimedia applications

[2][3]. In this and many others areas such as commerce, trade

and network bandwidth management brokers are enabling the

above optimization. Contrary to those other areas that limit

their scope of the broker to a particular service aspect within a

particular business, network, and application area, we define

the functionality of a service independent of service

characteristics. Instead we focus on generic service delivery

and how to deal with information flow and privacy aspects.

Our paper is organized as follows. Section II elaborates on

the problem of next generation mobile services, summarizes

work related to it and points out the contributions of our work.

In Section III we categorize brokerage sub-systems from a

privacy perspective. Section IV describes in detail a

personalized scheduling service in a mobile B2E setting,

which settles privacy issues by means of negotiating software

agents.

II. BACKGROUND AND RELATED WORK

Nowadays, mobile services should be adapted in order to

meet the very dynamic and diverse range of user requirements.

In this context the adaptability of generic services is getting

recently more and more attention, for example, to ensure their

accessibility by all users and to satisfy these users when using

such services tailored to their needs. These forms of service

adaptation could be performed by systems, by end-users, or by

a combination of both. User initiated adaptation (or

“customization” according to [15]) has, however, many

limitations, especially in the case of mobile services where

context changes are considerable and cannot be resolved in

time manually. Furthermore, a mobile user has normally very

limited (human-computer) interaction capabilities on his end-

device to adapt services. Another problem in mobile service

provisioning is persistency of the service when many

interactions have to take place between user and service

provider to define a service request and to define the proper

service that matches the request.

We adopt a solution to the above mobile service adaptation

problem that is based on communicating the service adaptation

(brokerage) issues mainly in a fixed instead of a wireless

environment. We use the term “personalization” to denote both

user and system initiated service adaptation concepts. Services

become personalized when they are (dynamically) tailored to

usage contexts. Usage context in this sense consists of many

aspects, like the needs of an end-user; location-related aspects

(e.g., physical co-ordinates and velocity, ambient conditions);

technical aspects (e.g., network bandwidth and capabilities of

the terminal); business rules that apply, etc. In addition to

physical co-ordinates and velocity, the location related aspects

involves environmental and ambient conditions, like for

instance indoors/outdoors, humidity, temperature, etc, and

activity status, like for instance working, meeting, walking,

driving, etc.

In the GigaMobile project [25] we use a Personalized Service

Environment (PSE) to adapt mobile services [7]. In our PSE

users are allowed to roam between different (wired and

wireless) access networks and receive services according to

their personal profiles and contexts. In this respect we are

merely concerned with delivering mobile services between

enterprises and their employees. The employees interact with

peer-to-peer as well as client/server services via different

terminals. In this B2E setting we identify five types of actors

each imposing their own mobile service requirements. These

actors are employees (having personal preferences), end-

devices (having limited capabilities), network operators and

service providers (having limited capabilities) and business or

organizational managers (determining or affecting access to

resources by enforcing their policies).

In [7] and [8] we discriminated between two planes to deliver

personalized mobile services in our PSE, namely, a service

plane and a brokerage plane. The latter plane takes into

account the constraints imposed by all actors mentioned above

(see Figure 1). The distinction between service plane and

brokerage plane is also made for signals carried in different

OSI layers (see for example [26]), where it is often known as

the difference between data plane and control plane. The data

plane carries data and supports control signals of higher OSI

layers. Here we take a user–centric perspective with respect to

the difference between service and broker planes. What is

stored and flows in the service plane is what a user expects

from the service (e.g., content data, arranging an appointment,

etc). The service plane thus contains system components that

store, forward and adapt the data units and logic for delivering

mobile services to the end-users. The brokerage plane, on the

other hand, contains system components that determine a

specific launching of service plane components. The brokerage

plane obtain requests, profiles and status (evolution) of actors

and then issue the storage and flow controls affecting the

service plane components (ensuring therewith dynamic service

binding) [8].

SSGRRwinter2003

3

E
n
d

d
ev
ic
e

N
et
w
o
rk

S
er
v
ic
e

Service plane

Brokerage plane
U
se
r

…

…

B
u
si
n
es
s

m
an
ag
er

Figure 1: Our reference model for a PSE

A service brokerage system in a PSE carries out the

following functions to realize a mobile service delivery (see

also [8]):

�� Integral representation, retrieval and updating of actor

profiles,

�� Service initiation by matching and finely tuning the

requests and offerings in order to optimize overall system

performance.

�� Service maintenance by driving deductive or inductive

inferential structures to enable a broker to monitor the

service, to adapt the service on the fly, and to learn and

anticipate.

�� Service termination, by releasing the resources.

The PSE brokerage functions during a mobile service delivery,

i.e., the last three functions mentioned above, correspond to

three generic brokerage phases, namely: service initiation,

service maintenance and service termination. These phases are

based on those of QoS management for distributed multimedia

applications. This is abstracted from observing a strong

correlation between the QoS management topics for real-time

multimedia applications and the brokerage topics involved in

next generation mobile services. For example:

�� In both areas, the preferences and capabilities of the actors

are represented by meta-data or profiles to reach a

settlement.

�� Like in real-time streaming applications, in a PSE the

predefined conditions and constraints do not remain valid

through the whole lifecycle of the service due to

dynamically changing locations, time, device, network

load, user preferences, etc.

�� It is necessary in both cases to monitor (the status of) the

service during the delivery time and to adapt the service

dynamically to rising conditions.

The goal of the brokerage system is to use available resources

effectively and efficiently in the sense that all actors are

satisfied with the mobile service given their contexts. This

optimization problem has not yet been resolved in distributed

system theory. Nevertheless, the classical research in the area

of QoS management has produced many solutions in terms of

frameworks and standards [2], [3]. Centralized and client-

server resource management schemes [4] and QoS brokers [6]

are common solutions to the optimization problem mentioned

above.

Another solution to the optimization problem of mobile and

distributed service brokerage can be provided by collective

intelligent agent systems [1]. Following [1] we proposed in [8]

a functional problem-solving environment for service

brokerage based on such an agent paradigm. In distributed

multimedia applications such an agent-based approach has also

proven to support effectively service brokerage in terms of

robustness, flexibility, openness and resource optimization [4].

However, as observed above, our paradigm ensures that novel

brokerage mechanisms are put in place to enforce dynamic

service binding mechanisms. For example, in order to

dynamically enforce privacy issues on the service plane, we

could deploy appropriate service brokerage measures in the

brokerage plane. For this reason, in the next section we

categorize the behavior of agents in brokering sub-services

with respect to privacy issues analogous to that categorization

process carried out for information-gathering organizations in

[9].

In section III we make the roles of the privacy enhancing

agents in brokerage sub-systems explicit. In section IV we will

describe a detailed implementation of a related scheduling

service for a mobile B2E setting. In this setting traveling

employees of possibly different companies might share a

distributed schedule. The brokerage system of such a

scheduling service could control the exchange of schedule

information and the rescheduling of meetings according to the

wishes of the employees and the policies set by their

companies. In contrast to existing scheduling services such as

Outlook (or even those based on agent technology [12]), our

service aims at protecting privacy or business sensitive

information. Instead of revealing schedules and preferences to

all actors, and then let these actors determine proper time and

location slots for a meeting, we automate the negotiation phase

between the actors keeping in mind their privacy concerns.

Our actors are not aware of privacy concerns of the others, but

their representative agents deal with these issues using multi-

agent negotiation strategies. Note that these agents are not

aware of the negotiation strategies adopted by the others.

III. PROTECTING PRIVACY

Considering the lifecycle of a mobile service, we can group

the activities of its brokerage system in three generic phases,

namely: service initiation, service maintenance and service

termination, similarly to those in QoS management of

distributed multimedia applications. Like most real-time

control, communication, and information systems, also our

PSE brokerage system is complex in nature. This complexity

calls for decomposing a mobile service to a set of sub-services

that jointly deliver a privacy-enhanced mobile service. To this

end, each sub-service is controlled and managed by a

SSGRRwinter2003

4

brokerage sub-system. The brokerage-subsystems

corresponding to the sub-services of a service steer the

delivery of the mobile service collectively. How to decompose

a service to its sub-service combine will be illustrated by a

case service in Section IV (a B2E scheduling service). In this

section we elaborate on specification of a “brokerage sub-

system” in terms of how it preserves privacy of the parties

involved in delivering the corresponding sub-service and we

explain the strategies for making decisions in “brokerage sub-

system”.

A. Brokering Sub-services

In its simplest form, a sub-service is requested by a

Requester (R) from a Provider (P) that has access to the

resources to deliver the service. This sub-service for example

enables communication (messaging, phone calls, etc) or the

allocation of resources (network bandwidth, time, facilities).

The data or service flows live in the service plane, while

control or brokerage flows live in the brokerage plane. In the

brokerage plane, a Requester Agent (RA) and a Provider Agent

(PA) represent R and P, respectively. Note that such agents are

not just software agents, but it might also be a piece of

hardware, the user herself/himself, etc. This model of a sub-

service is illustrated in Figure 2.

R P

RA PA

PA: Provider Agent

Cap: Capabilities
Pre: Preferences

R: Requester

P: Provider

RA: Requester Agent

Service flow

Brokerage flow

Pre Cap

Figure 2: The model of a sub-service.

RA and PA are in possession of their own preference and

capability information, respectively. To establish the service,

the capabilities and preferences should somehow be compared

and matched in the brokerage plane. The preference

information can for this reason flow from an RA to a PA, and

the capability information can flow the other way round. Any

agent (RA, PA or any other 3
rd
 party agent) that is informed of

both preferences and capabilities is in a position to make a

decision on the type of storage and flow in the service plane,

i.e., on the service to be delivered. Using this approach, the

privacy issues involved in sub-service brokerage can now be

solved by ensuring that the preference and capability

information is only accessible to entrusted parties.

An agent that deals with preference or capability

information that is neither a requester nor a provider is called

a middle-agent (denoted by MA). For privacy purposes, the

flow of information can be stopped at different points in the

brokerage plane by RA, PA and MA as shown in Figure 3,

resulting in different organizational structures for solving the

brokerage problem of a sub-service. Preference information

can initially be kept private to RA, be revealed to some MA or

be known by PA. Similar reasoning can be held for capability

information.

RA PA

Brokerage plane

Pre Cap

MA

Figure 3: Flow of information in the brokerage plane of a sub-service.

We assume that the preference information is handed over

from RA to MA and from MA to PA, and the capability

information is handed over from PA to MA and from MA to RA,

as illustrated in Figure 3, by a brokerage action. Depending on

agents RA, MA and PA having this information before and after

a brokerage action, nine general middle-agent roles can be

identified (analogous to the approach of [9] for information-

gathering organizations) as illustrated in Figure 4, namely:

1. Where there is no MA involved, RA or PA (or both) could

broadcast their preferences or capabilities to the whole

community. Consequently, either the requester informs the

provider of the preferences or the provider informs the

requester of the capabilities. After such a brokerage

action, either PA or RA (or both), respectively, could be

aware of both capabilities and preferences and therewith

devise a solution. When RA or PA broadcast their

knowledge about preferences or capabilities, the whole

community can be aware of this information, which may

not be desirable from a privacy perspective. To limit the

extent of private information dissemination or to hide the

identity of RA or PA, there is a need of an MA to facilitate

the brokerage process. The following brokerage actions

reflect the roles that such an MA may have.

2. Front-agent: PA informs MA of its capabilities in order for

MA to deal with RA on PA’s behalf.

3. Yellow-pages (matchmaker): PA has already informed MA

of its capabilities. MA shares this information with RA in

two ways: either RA asks MA for it or MA forwards it to

RA in a deterministic way (if RA is subscribed).

4. Anonymiser: RA informs MA of its preferences in order for

MA to deal with PA on RA’s behalf.

5. Blackboard: RA has already informed MA of its

preferences. MA shares the information with PA in two

SSGRRwinter2003

5

ways: either PA asks MA for it or MA forwards it to PA in a

deterministic way.

6. Broker: Both RA and PA inform MA of their preferences and

capabilities, respectively. MA holds this information for

itself and especially does now share preferences and

capabilities with PA and RA, respectively.

7. Recommender: Both RA and PA have already informed MA

of their preferences and capabilities, respectively. MA

shares the capabilities with RA.

8. Introducer: Both RA and PA have already informed MA of

their preferences and capabilities, respectively. MA shares

the preferences with PA.

9. Arbitrator: Both RA and PA have informed MA of their

preferences and capabilities, respectively. MA shares the

capabilities and preferences with RA and PA, respectively.

Cap. Known by
PA

Cap. Known by
PA and MA

Cap. Known by
PA, MA and RA

Pre. Known
by RA

Pre. Known

by RA and
MA

Pre. Known
by RA, MA

and PA

2 3

5

4 6

8

7

9

Cap.
PA MA RA

Cap.

Pre.

RA

MA

PA

Pre.

1

(8)

(7)

(9)

(9)

Figure 4: Roles of a middle agent in brokerage plane of a sub-service.

The brokerage actions mentioned above assume that the

requester and provider agents are aware of the MA. For

example, in a pure brokered organization all the agents

generally know of the whereabouts of an MA. In an open

system, however, hybrid brokered organizations use a

matchmaker allowing providers and requesters to find an

appropriate middle agent. Hybrid organizations can make use

of anonymizer or front-agent MA’s to protect both requesters

and providers from (security and) privacy infringing agents.

B. Categorization of Decision Making Strategies

A solution to a privacy enhancing service brokerage takes a

proper combination of sub-service. One can distinguish two

aspects in each brokerage step corresponding to a sub-service.

The first aspect concerns the selection of methods applied in

decision-making. For example, the inference schemes and

criteria on which a “broker middle agent” decides to assign

requests to providers come from several areas of research,

including load balancing, enterprise resource planning, and

market-based economics. The second aspect concerns

determining who is entitled to make the decisions. Apparently

anyone aware of both preferences and capabilities is in a better

position to decide.

With a close investigation of the nine classes mentioned in

the previous paragraph (each corresponding to one specific

combination of RA, MA and PA being aware of the preferences

and capabilities at the time of decision-making), we distinguish

four main decision making strategies. The second aspect

regarding the best decision-making authority is briefly touched

upon in the following strategy categorization and in

Figure 5.

PA PA, MA

PA , MA

and RA

RA

RA

MA

RA

MA

PA

P
re
fe
re
n
ce
s
k
n
o
w
n
 b
y

Capabilities known by

3

4

2

1

Negotiation methods

MA’s role

1

2

RA’s role

PA’s role

3

4

Figure 5: Four categories of strategies of decision-making.

1. For strategies within region 1, none of the actors has

both preferences and capabilities information at his

disposal. Here we propose to use negotiation

strategies that are widely studied in AI and multi-

agent systems to reach an agreement. Hereby, the RA

and the PA (or their representative MA in the role of a

front-agent or anonymiser) can withhold the sensitive

information regarding the preferences and

capabilities. For example, such sensitive information

can be the price range that they are willing to pay or

to get for the service. Of course, as in real life, on the

one hand agents may try to learn about the

preferences and the capabilities of their opponents

(by studying their behaviors for a long period of

time). But on the other hand, each agent may do its

outmost to hide such information (or deceive the

opponent by its behavior).

2. For strategies within region 2, an MA is aware of both

preferences and capabilities when it is a broker,

recommender, introducer, and arbitrator. As an

entrusted entity, such an MA is allowed to make a

decision on behalf of the others, when acting as a

broker, or to provide support, while acting in the

other three cases.

3. For strategies within region 3, an RA solely (or

together with another agent) is in the position of

making a decision based on full information of

preferences and capabilities. This is the case when

MA has acted as a yellow pager, recommender or

SSGRRwinter2003

6

arbitrator.

4. For strategies within region 4, a PA solely (or together

with another agent) is in the position of making a

decision based on full information of preferences and

capabilities. This is the case when MA has acted as a

blackboard, introducer or arbitrator.

Depending on its organizational role, an agent makes a

decision in favor of the requester, the provider or both (i.e.,

being fair). This dependency influences the choice of a

brokerage action. Another problem to handle is the effect of

dynamically changing preferences and capabilities. A

capability change over domains implies the entry or exit of

requesters/providers. The ability of an organization to quickly

adapt to new preferences and capabilities is in addition a

function of the distance that the information has to travel, and

the costs of keeping that information up-to-date. This may also

influence the choice of a brokerage action.

IV. PRIVACY ENHANCED SCHEDULER AGENT SYSTEM

In this section we outline our activities in designing and

implementing a location aware personalized scheduling service

using agent technology. The brokerage system of this so-called

Scheduler Agent System (SAS) enforces users’ privacy, an

important issue impeding the success of M-commerce [24].

SAS schedules a meeting for employees keeping in mind the

contexts of the attendees. SAS is enabled by software agents

for negotiating resources like time and location, which are

aware of preferences and schedules of the employees.

In the following paragraphs we describe: a scenario on

which SAS is based, how SAS follows the different service

brokerage phases, how SAS is implemented using software

agents, and what our practical results and experiences are in

building SAS. Moreover, we emphasize in particular the

different roles of agents, privacy issues and service brokerage

actions.

A. Privacy and Security Policies in SAS scenarios

Our SAS was especially designed to realize personalization,

device and time-critical aspects, and location-awareness of

mobile services in line with a common B2E setting. Let us

briefly elaborate on this real-life situation.

Assume that three employees, each from a different

company A, B or C, have scheduled a meeting in a city. They

all have to drive to this city to attend the meeting and when it

is finished, each of them has to drive home or to a second

meeting. However, on his way, one attendee (or some

monitoring agent) listens to the traffic information on the

radio, reporting about a traffic jam on the way to the meeting

point. Given this situation, since he is not able to make the

planned meeting on time, he activates his Scheduler Agent

(SA) to rearrange the meeting somewhere else and sometime

later.

Now this SA will negotiate with the SA’s that represent the

other employees over location and time of the new meeting

keeping in mind the current locations of their employees on the

road, employees’ preferences and time constraints for traveling

(taking into account the travel time to their homes or some

other second location). The employees work for different

organizations with different security or privacy policies.

Because of these policies one of the employees or

corresponding SA may not be willing to share its current

location or schedule with the others. After some negotiation

rounds, the users receive notifications over the rearranged

meeting on their wireless devices.

B. Service brokerage phases of SAS

In Section III we distinguished three brokerage phases in the

lifetime of a mobile service, namely service initiation,

maintenance and termination. Here we describe these phases

of our scenario presented in the previous paragraph.

In the service initiation phase, an employee requests a

meeting with a group of people. This user event triggers

activation of the SA’s (of the attendee and other required

resources) in the broker plane. These SA’s negotiate over

different issues such as the location, the day, the starting time,

the ending time (or the duration), taking into account the

preferences of the users. When an agreement is reached, the

appointment is stored in the scheduling database (reservation

of resources, i.e. time and facilities) and a notification is sent

to the users. In the service plane, the system delivers the data

about a meeting to the corresponding attendees. In the

brokerage plane all measures are taken to arrange the meeting.

In the service maintenance phase, the status of the

appointments is monitored with respect to the contexts of the

attendees by the users themselves or some agents on their

behalves). An initially agreed upon appointment might not be

acceptable anymore later because of a change in context, e.g. a

traffic jam and delay. If a user cannot make the scheduled

meeting, the service broker triggers a rescheduling process

(initiated by the user or an agent on his behalf). When an

agreement is reached, the rescheduled appointment is stored in

the scheduling database (resource and time reservation) and a

notification is sent to the users.

The service termination phase is not relevant in this service.

As soon as a meeting finishes, resources are freed

automatically.

Service initiation as well as maintenance can be triggered

SSGRRwinter2003

7

and controlled by different types of events. The agents in the

control plane responsible and active in those phases can be

triggered by user related events (employee manually requests

meeting with a group of people or cancels a meeting) or by

context related events (changes in circumstances like location

unavailable or traffic jam). The position of a member of a

contact list of an employee can be monitored and used to

establish an ad-hoc meeting when both are in each other’s

vicinity.

C. Implementation of SAS

Our SAS has to be able to reschedule a meeting and notify

the traveling employees about the new location and time of the

meeting. When we use our scenario as a basis for our SAS,

note that one can conceive the Schedule Agents (SA’s) as the

enablers of a “scheduling service” in the brokerage plane that

deliver a service, i.e. arranging a scheduled appointment for

the employees. During negotiation in the service initiation and

maintenance phases the SA’s will access and collect all

required information about preferences, locations, schedules

and privacy policies. This information will be taken into

account during the negotiation and will be hidden from the

other SA’s when necessary.

1) System Architecture

For our implementation we use the JADE-LEAP [20][22]

agent platform. Within this Java-based and FIPA [17]

compliant agent platform, agents communicate by sending

FIPA ACL [18] messages over a TCP/IP connection between

different runtime environments. It has a Directory Facilitator

(DF) agent where other agents can register and expose their

service and functionality. Furthermore, it inhabits an Agent

Management System (AMS) agent that takes care of all agents’

life cycles. The overall platform also takes care of the

communication between agents, so that local names can be

used when sending messages and agents are not aware of the

actual physical location of other agents. The JADE-LEAP

platform uses agent behavior models for the tasks that an agent

might perform. The agents instantiate their behaviors (as

threads) according to the needs and capabilities required for

performing their task [20].

One or more local servers will host, besides schedule data,

and profile information, the containers (runtimes) of the

JADE-LEAP platform hosting all SA’s. The JADE-LEAP

platform hosts several agents and connects them logically,

even when they run at several different physical locations

(different servers and devices). In addition to the AMS and DF

agents, the following types of agents can be distinguished on

the platform of the SAS (see Figure 6):

�� One Scheduler Agent (SA) for every employee, located on

a JADE-LEAP main container in a server machine,

�� A Database Access (DA) agent on each server machine,

�� One Graphical User Interface (GUI) agent for each end-

device.

The DA agent accesses the schedule of a user and his/her

profile data. Harmony® [16] for MS Exchange® was used to

enable the JAVA based DA agent to login, extract and update

appointment information of schedules on an MS Exchange

server.

Each client device (notebook, Sony VAIO or Compaq

iPAQ) is a portable device that runs a JADE-LEAP peripheral

container. The peripheral agent container hosts one single

agent, namely the GUI agent. This is basically a very simple

agent, since it is only used to provide a way to interact with the

user, so the user can use it to activate his/her SA on the server

to cancel or reschedule an appointment. We successfully

implemented the system using PDA’s and small notebooks

connected to the server using WLAN and GPRS networks.

The main negotiation functionality has been implemented into

the Scheduler Agents. The interaction and negotiation

functionality of these agents will be explained in detail in the

next sections

JADE/LEAP
Containers

DF AMS

Scheduler
Agents

))

((GUI Agent on

user’s wireless
device

Databases

Server Environment

DA

Access Point

Profiles

Schedules on

MS Exchange
server

Distances

DF: Directory Facilitator

AMS: Agent Management
DA: Database Access

Figure 6: Simplified system architecture of SAS.

2) Basic Interaction Algorithm

The agent that triggers the rescheduling process, referred to

as the initiator, can be considered as a RA that requires

resources (time) from the responding agents to set a meeting.

The responders have to provide time and thus can be

considered as a PA. We assume that RA and PA (‘s) do not share

their strategies and the main part of user preferences directly.

Also they do not give this information to an MA to decide. On

SSGRRwinter2003

8

the other hand, user preferences are stored in databases, to be

requested from and accessed by the DA’s. The DA is a trusted-

third party in our implementation and it will refuse any direct

request for schedules or locations from outsider agents.

Generally RA (the initiator) is not aware of the capabilities

(available time-space slots) of PA (the responder) or even RA

may not be authorized to reschedule the meeting by itself.

Therefore, RA and PA will have to negotiate (as in case 1 of

Subsection III-B).

Based on the FIPA Iterated Contract Net Interaction

Protocol (ICNI protocol, see [11]), a fully functional

interaction algorithm was developed and implemented for the

SA’s, including the possibility to query, collect and process

information from other agents. An important feature in the

ICNI protocol is the distinction between initiator and

responder. The initiator starts and manages the interaction. It

sends a Call for Proposal (CFP) message (see [11] for

definition of ACL performatives), setting the conditions by

which the responders would have to act after an agreement,

evaluates the proposals sent back by the responders, continues

negotiation by rejecting proposals or finishes it by accepting

them. The responder role is assigned to all other participants in

the interaction. Responders can respond to a CFP by defining a
proposal and sending a PROPOSE message.

In our case, the interaction algorithm has to deal with one

important additional condition: both the initiator (who

reschedules the meeting) and all responders have to agree on

the same conditions (settings of the meeting). This implies that

at some point in the negotiation, i.e. in response to one specific

CFP, all responders have to send the same proposal to the

initiator. This will never happen when the initiator just sets

general conditions in a CFP. Instead, it has to define a full
proposal in the CFP and the responders must have the choice

to propose the exact similar proposal. The initiator finally has

to send out a CFP that results in the different responders
sending back the similar proposal. Based on these conditions,

an interaction protocol has been developed that enabled

successful negotiations and reaching always agreements in

finite time (no infinite loops possible). The steps defined and

developed for this protocol will be described in the next

paragraphs, for the monitoring and adaptation phase

(rescheduling).

3) Definition of a Meeting Proposals

The objective of the negotiation is to reschedule a meeting.

Each proposal for a meeting can be described by a few

parameters: subject, names of attendees, start time, end time

and location. The SA’s will exchange proposals by

communicating to each other their accepted parameter values.

The main issue here is the location, because it determines the

travel times of the employees. All agents have to agree on

what a meeting is and have to construct proposals in the same

way (notably not their strategies have to be the same). This

proposal is wrapped in an ACL message, so the other agents

can extract and understand its content.

4) Information Collection

An SA is programmed to perform a task and it will search

for the information it needs to do its task. For network and

memory efficiency reasons, an agent will not have all

information at all time available. Thus he will only query

relevant information at the proper time. The initiator will

collect information of its own employee first, namely:

�� Current location of employee,

�� Schedule of employee’s meeting times and locations,

�� Travel times to location of next and consecutive meeting

In the current implementation the user has to enter his current

position on his device manually. The DA agent logins in the

MS Exchange server as one of the users and extracts

information from the corresponding schedule (see Figure 7).

Note that it will only access the schedule of the user that

corresponds to the SA that made the schedule request (See

Figure 6). Also note that the agent will not share this schedule

information with other agents. In other words, the DA has a

broker middle agent role that preserves privacy.

Figure 7: Each Scheduler Agent can request today’s schedule of its user from

the DA agent. Times and location of a possible second meeting are taken into

account when negotiating about rearranging the first meeting.

 Instead of asking the complete travel time matrix

containing the distances to and from all possible locations, the

SSGRRwinter2003

9

DA will request two lists of travel times: one to be generated

and based on his current location and one to be generated and

based on his second destination (see Figure 8 for an

explanation). Together, these two lists contain the travel times

to all other relevant locations along the route and the SA can

sort this list by travel time. This information is requested from

the DA agent according to the FIPA query interaction protocol

[19].

After the initiator has received the information about travel

times from its own current location and about his schedule for

today, it will ask the responders to supply similar information

about their corresponding employees. However, because of

privacy policies of other agents, the responders may not be

willing to share such information. Based on possibly limited

amount of information, the initiator prepares his first CFP.
Within this CFP he puts a proposal including time and location

for the new meeting. When the responders receive a CFP, they
will request and process similar information about their own

users in the same way.

0

1a

2

1b

Figure 8: The user is at current location 0 and its final destination is at

location 2. To calculate all possible total travel times, the agent of this user

only requires the list of travel times from locations 1a, 1b and 2 to current

location 0 and a list of travel times from final destination 2 to locations 0, 1a

and 1b. When n is number of other locations, the agent has to query 2n travel

times and not n2.

5) First Call for Proposal from Initiator

The initiator defines a full proposal and calls for it by

sending his proposal as part of a CFP message. This implies

that the initiator calls for a possible location and asks the

responders to do a proposal. If the initiator has gathered the

locations of the responders, it can follow a cooperative

strategy by suggesting a central location. However, in order to

illustrate privacy aspects during negotiation we assume that

those locations are not available. Moreover, we assume that

the initiator like the responders will follow a competitive

strategy by proposing preferably his current location. For

example, when it is close to Amsterdam, it sends a message

like CFP(Amsterdam?) to all responders.

6) Proposal from Responders

The responders can respond to a CFP by sending a REFUSE

(if they refuse the proposal completely) or a PROPOSE
message. When the proposal in the CFP fits their requirements

the proposal to be sent back is equal to the proposal that was

in the CFP, i.e. PROPOSE(Amsterdam) . However, when
the proposal in the CFP does not fit the requirements, an

adjusted alternative proposal will be sent back e.g.

PROPOSE(Utrecht) . Note that the agents in a responder

role are not allowed to send REJECT or ACCEPT. Because the
initiator is in control of the interaction, only he has the right

and possibility to send REJECT or ACCEPT messages (see

FIPA ICNI protocol [11]).

7) Negotiation Strategies

A basic strategy has been defined and implemented where

each SA mainly varies the location of the meeting in their

proposals during the negotiation, i.e. the issue to negotiate

about is location. When other issues have to be included, a

scoring function for each issue has to be developed and the

rating function is a weighed sum of these scores. Matos and

Sierra [23] have shown how this approach can be used to

define strategies. In our present case, each SA has to be able to

determine whether a location as part of a meeting proposal fits

its employee’s requirements and schedule (user has to be able

to arrive at least at a second location after this meeting in

time). Therefore, a rating has to be assigned to each possible

location, where Rating = 1 for the user’s current location and

Rating = 0 for each location that implies too much additional

traveling time for the user. To assign a rating to each specific

location in a proposal, the agent has to have a normalized

rating function.

When the negotiation starts, each agent can choose for two

tactics. These correspond to two different scenarios with

respect to privacy. When agents are cooperative, they will

share information, i.e. give their location away in the

beginning of the interaction. The initiator agent can then base

location and times in his proposal on an optimization for all

participants and offer a location that probably fits others’

requirements. This means he starts to propose a location with a

rating value < 1, i.e. he gives way in the negotiation. In the

other case, when the agents act in a competitive way, the agent

starts to bid from the location with rating = 1, i.e. they start to

offer its most preferable location with respect to travel time,

even when this is not expected to fit the other users

requirements at all. Thus, the responders will not immediately

accept this. This is called a stubborn strategy.

The initiator has to start the negotiation by sending his

proposal inside the first CFP message. It depends on the

availability of information about other employees’ locations

whether he will do a cooperative offer by proposing a central

location or a competitive offer by proposing his own current

location.

SSGRRwinter2003

10

8) Reject or Accept and End Negotiation

The initiator will evaluate whether all responders did

propose offers similar to the CFP or, by coincidence, whether
they all sent a similar alternative. Otherwise, the initiator will

send a REJECT to both, e.g. REJECT(Amsterdam) and

REJECT (Utrecht) . He will not accept the Amsterdam

proposal yet, because all parties must agree on one and the

same offer. Then he will prepare and send a new CFP, taking
into account his own list of cities and distances, but also taking

into account alternative proposals that were sent back. In other

words, with every negotiation step the initiator agent obtains

more information about preferences of the responders and,

therefore, makes a better proposal. Because there is no

interaction between the responders, most intelligence is in the

initiator, who has to define a proposal in its CFP that will fit
all other responders at the same time. This is different from a

standard auction-like protocol where the responders try to bid

in a smart way. The interaction is finished when all responders

answer to a specific CFP by sending the same proposal back.

Because after each negotiation step, all parties will give way

(willing to accept locations requiring further travel time), at

some point, most locations will be acceptable. In our example,

a second call, CFP(Utrecht?) , may be responded by

PROPOSE(Utrecht) messages from all responders. In that

case the initiator sends the ACCEPT(Utrecht) message to

these responders. This implies that initiator and all responders

agree that they have a mutual contract and have to act

according to it. In this case they have to update schedules and

notify their own users.

Under normal conditions (no REFUSE or NOT
UNDERSTOOD messages), the interaction is finished when all

responders answer to a specific proposal in a CFP by sending
the same proposal back. Or when all responders respond by

sending the similar alternative and this alternative is

acceptable for the initiator. In both cases, the initiator will send

ACCEPT message to all responders. This implies that all

agents agree that they have a mutual contract and have to act

according to it. In this case they have to update schedules and

notify their own employees. The agents will do this by sending

REQUEST messages to the database agent to update all

necessary information. When this is done successfully,

responders have to send an INFORM message to the initiator to

inform him that the action is performed successfully. After this

final message the interaction protocol is finished. When the

level of autonomy given to the scheduler agents is high, the

employees do not have to confirm this new appointment.

Figure 9: Alice gets a message that location and time of her project meeting

have been changed.

9) Results

A SAS has been developed based on software agents that

reschedule a meeting scheduled between traveling users. An

interaction algorithm has been developed and successfully

implemented into agents that were executed on a JADE-LEAP

agent platform connected to real wireless devices. Different

runs were done on the agent platform, setting different

locations, different schedule scenarios and different user

preferences. In all cases the agents negotiated successfully and

all actors finally agreed on rescheduling or canceling a

meeting.

V. CONCLUSION AND FUTURE WORK

In line with our PSE we represented actors involved in

service delivery by agents in the brokerage plane. The PSE

system reaches a satisfaction level when all those agents, and

thus their actors they represent, are pleased with the proposed

settings of mobile services in the service plane. In [8] these

satisfaction levels are interpreted as “acceptable QoS levels for

all actors”. Privacy of preferences and capability information

of actors is an important issue in brokering next generation

mobile services. Based on our agent paradigm, we presented

taxonomy of different privacy enhancing brokerage sub-

systems that can be deployed in brokering of sub-services. We

implemented and demonstrated a travel time-aware mobile

scheduling service for employees on the road that want to

adjust their planned meeting. The software agents control in

that context service initiation, management as well as

termination depending on the privacy policies imposed by

their corresponding employees.

SSGRRwinter2003

11

In our opinion development and deployment of software

agents can be done on different platforms and thus be kept

separated [8]. The developer can concentrate on developing

the functionality of the agent (its behavior and intelligence). It

is important to note that the amount of intelligence required to

successfully deliver a mobile service depends on the

complexity of this task. The complexity strongly relates to the

amount of information available by each agent, i.e. the level of

sharing of preferences. Note that in our scenario, the

employees can partly regulate this.

Our scheduling service demonstrates the brokerage aspects

and the roles of the agents very well. It illustrates the different

phases to deliver a service and the different types of brokerage

methods that can be involved. It especially illustrates how one

can deal with private information in different ways and how

agreements and services can be realized, even when

information is kept private or secret. Our SAS is flexible and

scalable and has the following features:

�� User control. This control is enforced as SA represents a

specific user, has access to the users schedule and knows

its current location. It does not have to share its

information with the other SA’s to find a solution (a

rearranged meeting). The more intelligence is used in the

strategies of the SA’s, the less information they have to

reveal to others and the better privacy is preserved.

�� Flexibility. Although the users are from different

companies, it would still be possible to arrange a meeting,

even when they were using different schedule services or

applications. The DA agent takes care of translation

between schedule information and proposed meetings to be

offered to others. This is possible because they share a

common language (ACL), a common interaction protocol

(the meeting interaction protocol) and a common

scheduling ontology (definition of a meeting proposal). A

direct interaction between different scheduling applications

without the use of intermediates like agents is very

cumbersome if not impossible. However this translation is

not straightforward and the choices for specific scheduling

or database applications may limit the application

independent nature of any agent system.

�� Resilience or persistence of mobile services. Meetings can

be arranged even when connection to user is lost or slow.

Current, traditional wireless networks are still hampered by

long latency for connection set-up, data flow corruption,

disconnection, low available bandwidth and unstable

quality. Using agents the data load and flow, and allocated

logics on the networks can be dynamically brokered and

spread on behalf of the different actors. This persistency

due to autonomy of agents does not require constant

connection with a home-base to carry out tasks on behalf

of an actor.

For the traveling employee scenario only a few parameters

were required to describe the employee’s preference, namely a

parameter describing the extra travel time it is willing to make

and a privacy parameter determining whether the user is

willing to show information. For scheduling meetings on long-

term, more parameters are required, including parameters that

describe preferences for specific day in a week or specific time

(morning) in a day [8]. A more complex algorithm in which

these issues and utility functions are used has already been

developed and applied successfully [9]. These functions

should be described as utility functions and stored in user

profiles. At this moment all functions related to a user’s

personal preferences have no relation with real user behavior.

To develop a function and a proper interaction between real

users and our scheduling system, some user behavior

experiments need to be conducted. When more profiles are

required, e.g. service profiles, service–specific user profiles

and terminal profiles, a more elaborate profile management

system has to be used and accessed by our agents.

In future work, location-aware functionality will be added to

a similar scheduler service as described here, but supporting a

Business to Employee (B2E) setting at the site of a company.

Such a location-aware service will be enabled by different

terminals connected to (wired and wireless) core networks in a

business area (W-LAN hot spots) or Bluetooth. Such a

location aware scheduling service could automatically arrange

short and spontaneous meetings between people as soon as the

system spots them as being present in the same building. Or it

can monitor the location of the user and notify them when they

cannot make it to the location of their scheduled meeting.

By implementing a Scheduler Agent System (SAS) we

showed how a mobile distributed scheduling problem can be

solved using agent technology. The SAS delivers a service to

traveling users with different preferences. Furthermore, our

scenario demonstrates personalization, device and time-critical

aspects and location-awareness of mobile services and shows

how arranging or adjusting meetings can improve B2E

workflows in an ad-hoc way. All together, we have shown that

the SAS, connecting users equipped with small wireless

devices, can bring the right people together at the right time

and at the right place.

The approach we have taken here, i.e. using agents to

represent users and using negotiation as a way to adapt

services and to preserve privacy, can also be used in Business

to Customer (B2C) settings. Soon, WLAN hotspots and

Location Based Services will be available and will be offered

on the fly. Examples are tourist services, and shops offering

their services to customers when they are near. Langendoerfer

[24] mentions that it seems feasible that low cost services will

be successfully deployed in hot spots such as shopping malls,

train stations and airports since here airtime will be free or at

least extremely cheap. Such services require dynamic binding

of business and customer, which can be handled by brokerage

sub-systems (e.g. agents) in the same way as was described in

SSGRRwinter2003

12

this paper.

REFERENCES

[1] D. Wolpert and K. Tumer (1999). “An Introduction to Collective

Intelligence”, Tech Report NASA-ARC-IC-99-63; In: Jeffrey M.

Bradshaw, editor, Handbook of Agent Technology, AAAI Press/MIT

Press, 1999.

[2] A. Campbell, C. Aurrecoechea and L. Hauw (1995), “Architectural

Perspectives on QoS Management in Distributed Multimedia Systems”,

PROMS’95, Salzburg, Austria, October 1995, pp. 274-283.

[3] C. Aurrecoechea, A.T. Campbell, and L. Hauw (1998), “A survey of

QoS architectures”, Multimedia Systems, Springer-Verlag, June 1998,

pp.138–151.

[4] L.A. Guedes, P.C. Oliveira, L.F. Faina and E. Cardozo (1997). “QoS

Agency: An Agent-based Architecture for Supporting Quality of Service

in Distributed Multimedia Systems”, IEEE conference on protocols for

multimedia systems, multimedia networking (PROMSMmNet’97),

Santiago, Chile, Nov. 1997.

[5] A. Hafid, G. von Bochmann and R. Dssouli (1998). “Distributed

Multimedia Application and Quality of Service: a Review”, Electronic

Journal on Networks and Distributed Processing, No. 6, February 1998,

pp. 1-50.

[6] K. Nahrstedt and J.M. Smith (1995). “The QoS broker”, IEEE

Multimedia, spring 1995, pp. 53-67.

[7] M.M. Lankhorst, H. van Kranenburg, A. Salden, and A.J.H.Peddemors

(2002). "Enabling Technology for Personalising Mobile Services,"

HICSS-35, January 2002, Hawaii, USA.

[8] A.H. Salden, R.J. Van Eijk, M.S. Bargh and J. de Heer (2002). “Agent-

based brokerage of personalized B2B mobile services SSGRR2002,

L’Aquila, Italy, 2002. https://doc.telin.nl/dscgi/ds.py/ViewProps/File-

22312.

[9] K. Decker, K. Sycara and M. Williamson (1997). “Middle Agents for

the Internet”, Proceedings of the 15th International Joint Conference on

Artificial Intelligence, Nagoya, Aichi, Japan, August 23-29, 1997.

[10] N.R. Jennings (2001). “An agent-based approach for building complex

software systems”, Communications of the ACM, April 2001, Volume

44, No. 4, p. 35-41.

[11] FIPA, Foundation for Intelligent Physical Agents, http://www.fipa.org/.

[12] F. Bellifemine, A. Poggi and G. Rimassa. JADE – a FIPA-compliant

agent framework, SELT internal technical report. From

http://sharon.cselt.it/projects/jade/.

[13] F. Bergenti and A. Poggi (2001). “LEAP: a FIPA Platform for Handheld

and Mobile Devices”, presented at ATAL 2001, from http://leap.crm-

paris.com/.

[14] N. Matos and C. Sierra (1998). "Evolutionary Computing and

Negotiation Agents", In AMET98 Workshop on Agent Mediated

Electronic Trading, Minneapolis MN, 1998, pp. 91-111.

[15] Page, S.R., T.J. Johnsgard, U. Albert and C.D. Allen (1996). “User

customization of a Word processor”. In Proceedings of the conference

on Computer Human Interaction, (pp. 340-346). ACM Press.

[16] Compoze Software Inc, Harmony for MS Exchange, available from,

http://www.compoze.com/index.html.

[17] FIPA, Foundation for Intelligent Physical Agents, http://www.fipa.org/.

[18] FIPA ACL, FIPA Agent Communication Language,

http://www.fipa.org/repository/aclspecs.html.

[19] FIPA, Interaction Protocol Specifications,

http://www.fipa.org/repository/ips.html.

[20] F. Bellifemine, A. Poggi and G. Rimassa. “JADE – A FIPA-compliant

agent framework”, CSELT internal technical report. From

http://sharon.cselt.it/projects/jade/.

[21] N.R. Jennings (2001). “An agent-based approach for building complex

software systems”, Communications of the ACM, April 2001, Volume

44, No. 4, pp. 35-41.

[22] F. Bergenti and A. Poggi (2001). “LEAP: a FIPA Platform for Handheld

and Mobile Devices”. Presented at ATAL 2001. From http://leap.crm-

paris.com/

[23] N. Matos, and C. Sierra (1998). "Evolutionary Computing and

Negotiation Agents", In AMET98 Workshop on Agent Mediated

Electronic Trading, Minneapolis MN, 1998, pp. 91-111.

[24] P. Langendoerfer. (2002). “M-Commerce: Why it does not fly (yet?)”,

SSGRR2002, L’Aquila, Italy, 2002.

[25] GigaMobile project http://www.telin.nl/Middleware/GIGAMOBILE/

[26] B. Ip, “3G Wireless Network Architecture UMTS vs. CDMA2000”,

ELEN 6951 Wireless and Mobile Networking II, Columbia University.

