An Agent-Based Approach to Dynamic Ontology Construction

Klaus Voss and Keiichi Nakata

Abstract—The building of exhaustive ontologies leads to well known problems such as terminology, scope, encoding and context, which can only be resolved in a process of intense communication of the potential users. We propose an environment that enables users to define rules, parameters, constraints for an agent-based system which sustains (self-) organization of small sets of concepts extracted from a specific set of user provided documents and their relations. The system allows users to build or train agents, which carry small ontologies together with specific sample documents, and a generic set of rules, which enables the agents to negotiate their local ontological relations with each other.

Index Terms—Agents, concept classification, naïve Bayes classifier, ontology engineering.

I. INTRODUCTION

According to John Sowa [1], “the central focus of ontology is the classification of the physical or conceptual entities;” the result is usually a form of a static map of concepts and their relations [2], or some other kind of fixed structure. The development of an actual ontology itself is a process, and since an exhaustive ontology can never be really finished [3], unless it covers a very limited domain, the developing of a static ontology is a continuous process without precisely defined termination criteria.

Due to their static nature, existing ontologies can describe widely accepted positive facts, but in return lag behind the current state of the art of the domain they try to cover. Merging and aligning existing ontologies do not necessarily accelerate the process, because only one ontology can be merged or aligned with a second one at a time, basically resulting in the re-engineering of the two initial ontologies. Thus ontologies are valuable for describing knowledge about well known facts in a machine-readable way and in particular for the interchange of this kind of knowledge between users who share the specific definition of concepts for a specific domain. In other words, whilst ontologies are useful in well-established domains to “provid[e] semantics for annotations in web pages” [3], their usefulness is limited when it comes to ongoing research, since any significant research is questioning or extending the actual state of affairs.

Nevertheless, ontologies are used to sustain scientific research in various ways, e.g., to enhance the performance of information retrieval systems, in that they automatically add information to a query provided by a user [4], and to annotate scientific papers, so that their content can be fed into information extraction systems, which are then used to enable intelligent search in databases [5].

To summarize the usage of ontologies, it can be said, that the general issue of ontology is “how best to structure concepts for effective computation” [6]. Ontologies are used here not only to provide a shareable knowledge base, but also to facilitate their efficient utilization. Efficiency becomes crucial here, since the same experts, who are supposed to use such systems to cope with the explosion of results in many scientific domains, are needed to synchronize the ontologies in use with the state of the art in their domain. Current tools are focusing on describing a fixed structure, not on updating them to keep pace with the ongoing progress. Obviously, the gain in the efficiency provided by this structure has to be balanced with the efforts to build such a structure.

The concept of an ontology as a central allying instance for its users affords an exhaustive and reliable common language and understanding of the domain it represents, for the purposes of the whole community of users. This means it must be verified and confirmed by well-established authorities in the field, especially when it comes to describing the prevailing state of the art. However, it is very difficult to find experts who are willing to invest their time in this task, and it also requires a time-consuming process, until two or more experts agree on one ontology. The existence of a general ontology would significantly increase recall and precision of information retrieval mechanisms [4], but here is certainly a limit, where the effort of extension of the ontology exceeds the gain in performance. It is then easier to work with an information retrieval system that might have inferior performance and manually check through its results.

To make the process of ontology building more efficient, there exist tools which sustain the manual process of aligning or merging one existing ontology with another (for example [3]). These tools do not aim to find new concepts or identify their relations, which are not already included. Tools have been developed, which help to formally describe and edit ontologies (for instance [7]), but they do not sustain the process of finding, gathering and extracting of information and knowledge which is
the prerequisite to forming concepts and arranging them in a map.

II. LIMITATION OF CURRENT APPROACHES

The building of exhaustive ontologies leads to well known problems (terminology, scope, encoding, and context) which can only be resolved in a process of intense communication of the potential users. The proposed system aims to support this essential initial part of the process of ontology building.

There is a certain amount of knowledge coded into an ontology, which limits the performance of any retrieval system based on this ontology. Such systems serve well to retrieve all information which is explicitly related to a certain topic (according to the information coded into the underlying ontology). This gain in efficiency (increase in recall and precision) has to be balanced with the effort to build up a comprehensive ontology, taking into account the effort imposed upon the end user to learn the ontology. Hence the effort required by experts becomes demanding, since first they must evaluate the current domain itself and there is an extra effort of having to code the knowledge they have gained into the ontology.

This ontology would then become the basis for a retrieval system, which is supposed to help other domain experts to retrieve information out of a given knowledge base. Thus, the effort of building ontology imposes limits to its level of detail, which in turn affects the performance of the retrieval system built on this ontology.

Furthermore, the later modification (due to progress in the domain) of an ontology is labor intensive, and also affects the retrieval system. Extension of a given ontology due to aligning or merging ontology still requires the workforce of domain experts and thus contributes to only gradual increases in efficiency.

III. SCOPE OF THE PROPOSED SYSTEM

Based on observations in preceding sections, we propose a system, which does not aim to build an exhaustive global hierarchical ontology, but a network of small local sub-ontologies. The ultimate goal is to categorize an existing, finite text corpus in as much detail as necessary in the most efficient way.

For the task of categorizing, the combined information contained in the texts is used, as well as existing ontologies to automate this process as much as possible. The resulting structure of the text corpus should significantly increase the speed of the annotation of the texts in order to enhance the precision of information retrieval systems, which make use of these annotations.

The starting point is a given text corpus of one specific domain, and a shallow ontology, according to which a small
each other: The category agents try to improve themselves, in that they build relations (and memorize them) with other agents, and adjust (merge/align) their initial relations. Fig. 1 illustrates the relations between concepts and local ontologies. We expect relations to be built automatically from texts. Fig. 2 describes a simplified example taken from an actual project.

The initial limited knowledge of a domain is contained in a shallow ontology, which can be developed with reasonable effort by a domain expert together with an ontology expert. Every node of the ontology represents a concept, which is populated with example texts taken from a text corpus with documents specific to the domain. Thus, the concept belonging to the node is described explicitly by a cluster of documents, which is used to train the agent which belongs to that node. The following explicit information is then available to describe a concept:

- A category name (given by the user)
- A set of documents, which explicitly describe the category (given by the user)
- A machine-readable representation of the category. A naïve Bayes classifier is a candidate, which consists of a set of keywords and their weights.
- Optional keywords, which must or must not be in a category (user input)
- Optional tags (automatically extracted) according to a given shallow ontology.

According to these initial categories, the system attempts to cluster the whole text corpus, and to assign the clusters to the given categories (e.g., provide the probability that a document belongs to a cluster). A cluster is built automatically by the system, based on the naïve Bayes algorithms with an optimization for domain specific documents [8]. For example, Weka [9] can be used to transform a set of training documents into a category to create a classifier.

As indicated above, a category is defined by the user. The system can identify the probabilities between documents and clusters, or clusters and categories. Its elements are as follows:

- **Instance**
 - **Instance** = **Data** + **Attributes**
 - **Attributes** = **Keywords** and classifier class (hit | miss)
 - **Data** = frequencies of **Keywords**

- **Instance set** (initially empty)
- **Training** based on example texts
 - Instances are filtered (discrete filter) and added to instance set.

- **Keywords**
 - Extracted from text, extracted from tags in the document, or provided by user (according to the ontology).

Based on the instance set, the text corpus is clustered with the help of the keywords of the deep ontology. The result is a set of clusters of the documents in the text corpus, according to the deep ontology. The naïve Bayes algorithm is modified which leads to a bias in favor of domain-specific terms [8].

Next, the clusters resulting from the deep ontology can be compared with the categories of the shallow ontology (which contains additional information to the keywords). If several clusters of the deep ontology match one category in the shallow ontology, the training documents of the category are exchanged, and the text corpus is re-clustered. Depending on the result of the re-clustering, it can be decided, if categories need to be merged or split.

Once mutually disjunctive categories are detected (based on the assignment of texts), they can be used to enhance the negative training of a category. Precision can further be enhanced with the detection of keywords, which must not be in a category.

The proposed process should facilitate the successive categorizing of a text corpus with the help of all available explicit information to minimize user input.

IV. PRELIMINARY ANALYSIS

In order to test the feasibility of the proposed approach, we carried out preliminary experiments on the applicability of naïve Bayes classifiers to the identification of concept relations.

First, seven concepts were selected as test cases. These were: Murakami (referring to the Japanese novelist Haruki Murakami), Endo (referring to the Japanese novelist Shusaku Endo), Fusion (for nuclear fusion), Nuclear (for nuclear power in general), Baseball, Football (for American Football), and Soccer. For each concept, 10 documents were collected using commercial search engine categories that correspond to these concepts. Using these documents as training documents, a naïve Bayes classifier was created for each of these concepts.

A. Construction of naïve Bayes classifiers

Since all the documents were in Japanese, they were first analyzed by a morphology processor (“Chasen”[10]) so that word boundaries and parts of speech could be identified. Then only the nouns (minus a set of meaningless words) were used in the construction of the classifier.

To test the performance of the classifier, further 5 documents were chosen for each concept, constructing a test collection of 35 documents. As a result, 33 out of 35 documents (94%) were classified correctly demonstrating that the classifiers were appropriately constructed.

B. Identification of concept relations

To find out whether naïve Bayes classifiers could be used to identify relations between concepts, the following test was conducted. In addition to the 7 concepts and 70 training documents, further 3 concepts were introduced in trained by 10 documents each to construct a naïve Bayes classifier. These concepts were: Shakespeare (referring to William Shakespeare), Novel (referring to novels in general) and Sport (referring to sport in general). Using these 10 concepts, we attempt to find relations among them. The relations we consider here are 1) associated (similar) and 2) class-subclass relations.

1) Measuring concept similarity

What is stored in a naïve Bayes classifier are values of
conditional probability for a term \(t \) that appears in the class \(c \). This means that internally, a set of term-probability pairs is stored. If we interpret this set of terms as elements in a vector and the conditional probability as weights, this becomes analogous to the text (term) vector representation used in text analysis [11]. Then a standard similarity measure such as cosine similarity can be used to evaluate the association between concepts.

The result is shown in Table 1. In Table 1, relations that have the cosine similarity of 0.44 and above are highlighted. This shows that the three groups of concepts (novel-related, energy-related, sport-related) are roughly identified. Based on this observation, cosine similarity of conditional probability vectors could be seen as a candidate for identifying the association relations among concepts.

2) Finding hierarchical relations

While cosine similarity could be used to identify relations that two or more concepts are somehow close to each other, it does not specify how they are related. When ontological relations are considered, the hierarchical relation (class-subclass relation) is among the most important relations. It would be therefore useful if such a relation can be automatically identified.

For this purpose, we used a set of documents which we call probe documents. A probe document (or a “probe”) is used to see how a classifier responds to it, in this case the value of probe documents automatically identified.

It shows that the three groups of concepts (novel-related, energy-related, sport-related) are roughly identified. Based on this observation, cosine similarity of conditional probability vectors could be seen as a candidate for identifying the association relations among concepts.

The result is shown in Table 2, and cells with less than 1000 are highlighted. This also seems to indicate well, apart from the obvious exception of “Baseball” and “Novel”, clusters of concepts that are similar.

If we employ a hypothesis that concepts that are more general (higher in the conceptual hierarchy) tend to be on average more likely to give favorable scores to more probe documents, taking the average of the column (or row) might reveal certain tendencies. However, upon inspection, the differences in average scores among these concepts were not significant.

We considered that the reason that this lack of difference was due to the diversity of documents used for probing. Therefore, for each concept, if we added up the score difference for only those probe documents that are given a highest score for that concept, then the difference should be more significant (Table 3).

From Table 3, we can observe that “Sport” has the lowest average score, and “Shakespeare” and “Novel” also display low value. Since there was no document that was classified to “Murakami”, its score is 0. From this result, with the exception of “Novel”, both “Sport” and “Novel” are distinguished from

| Table 1. Cosine Similarity of Concepts Calculated from Classifier Data |
|------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Murakami | Endo | Shakespeare | Novel | Fusion | Nuclear | Baseball | Soccer | Football | Sport |
| Murakami | 1.000 | 0.473 | 0.410 | 0.542 | 0.261 | 0.298 | 0.288 | 0.241 | 0.314 |

<table>
<thead>
<tr>
<th>Table 2. Sum of Scores for Probe Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murakami</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Murakami</td>
</tr>
<tr>
<td>Endo</td>
</tr>
<tr>
<td>Shakespeare</td>
</tr>
<tr>
<td>Novel</td>
</tr>
<tr>
<td>Fusion</td>
</tr>
<tr>
<td>Nuclear</td>
</tr>
<tr>
<td>Baseball</td>
</tr>
<tr>
<td>Soccer</td>
</tr>
<tr>
<td>Football</td>
</tr>
<tr>
<td>Sport</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3. Sum of Scores Difference for Probe Documents That Are Classified to Each Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murakami</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Murakami</td>
</tr>
<tr>
<td>Endo</td>
</tr>
<tr>
<td>Shakespeare</td>
</tr>
<tr>
<td>Novel</td>
</tr>
<tr>
<td>Fusion</td>
</tr>
<tr>
<td>Nuclear</td>
</tr>
<tr>
<td>Baseball</td>
</tr>
<tr>
<td>Soccer</td>
</tr>
<tr>
<td>Football</td>
</tr>
<tr>
<td>Sport</td>
</tr>
</tbody>
</table>

Average | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
other concepts, and this might be able to be used as an indicator that they are super classes within each cluster of concepts.

3) Discussion
As we have shown, in our preliminary analysis, we conducted several tests in order to find strategies for identifying concept relations. It appears that we can identify association relations between concepts by finding similar concepts. Also, an indication that more general concepts could be identified, leading to hierarchical relations, has been obtained. However, these results are still preliminary and the data sets used were not large enough to make any general statements about the feasibility of these methods.

V. CONCLUSION
In this paper, we proposed a framework for supporting the process of ontology building, usage, extension, and maintenance. This approach does not aim to build an exhaustive global hierarchical ontology, but a network of small local sub-ontologies. The ultimate goal is to categorize an existing, finite text corpus in as much detail as necessary in the most efficient way, striking the balance between the performance of information retrieval performance and the effort of building and maintaining the ontology, which forms the basis of the retrieval system.

In this framework, each concept is represented by a naïve Bayes classifier constructed from text examples that describes it, from which concept relations and concept-cluster relations are expected to be computed semi-automatically. Concept clusters that constitute local sub-ontologies are captured by agents so that networks of sub-ontologies can be formed dynamically and global ontologies would emerge.

For this purpose, a preliminary analysis was carried out, and some strategies have been tested. Although some promising results were obtained, further tests and experiments on the feasibility and effectiveness of this approach are required.

ACKNOWLEDGMENT
The authors would like to acknowledge Yohei Iida, a student in the Department of Systems Innovation, School of Engineering, The University of Tokyo, for his contribution to programming and the production of preliminary results presented in this paper. This work was supported by CREST Program, Japan Science and Technology Corporation (JST).

REFERENCES