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Abstract—Static single assignment (SSA) form is a program
representation that is becoming increasingly popular in
language processors. In SSA form, each use of a variable has a
single definition point. This property facilitates program
analysis and optimization in compilers. We give some
preliminary results concerning the SSA form in COINS, which is
a compiler infrastructure recently developed by Japanese
institutions. In this paper we present (i) the current status of
optimization using SSA form in COINS infrastructure, (ii) a
comparison of two major algorithms for translating from
normal intermediate form into SSA form, and (iii) a comparison
of two major algorithms for translating back from SSA form into
normal intermediate form.

Index Terms—Compiler infrastructure, Optimization, Static
single assignment form (SSA form)

I.   INTRODUCTION

 EVELOPING a good compiler is indispensable for
producing high-performance software. However, it is not

easy to make a compiler that generates efficient object codes.
To reduce the efforts needed to develop high quality compilers,
two aspects have been studied.

One attempt involves developing compiler infrastructures.
COINS (COmpiler INfraStructure) [7] is one such infrastructure
being developed in a research project entitled "Research on
common infrastructure for parallelizing compilers". Its
development, by Japanese institutions, began in 2000.

Another attempt involves producing a representation
designed to be suited for optimizations. Static single
assignment (SSA) form is a program representation that is
becoming increasingly popular in language processors. In SSA
form, each use of a variable has a single definition point. This
property facilitates program analysis and optimization in the
compiler.
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In this paper, we give some preliminary results concerning
the SSA form in COINS. We present (i) the current status of
optimization using SSA form in the COINS infrastructure, (ii)
a comparison of two major algorithms for translating from
normal (conventional) intermediate form into SSA form, and
(iii) a comparison of two major algorithms for translating back
from SSA form into normal intermediate form.

A characteristic feature of the SSA module in COINS is that
it provides optimization in SSA form and related utility
modules as an infrastructure. This makes it easier for the
compiler writer to compare and evaluate various optimization
methods and to add new optimization methods and translation
utilities in SSA form.

II.  THE COINS COMPILER INFRASTRUCTURE

COINS is a retargetable compiler infrastructure, aiming at
handling multiple source languages and multiple object
architectures. It is written in Java.  Fig. 1 shows the outline of
the COINS compiler infrastructure.

Fig. 1. Outline of the COINS compiler infrastructure
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The COINS infrastructure uses High-level Intermediate
Representation (HIR) and Low-level Intermediate
Representation (LIR). HIR is a data structure holding the source
language information. It can be used for optimization based on
the source language information and for back generation of a
source program. LIR is a low-level intermediate representation
in which only the necessary memory references are explicitly
described and the remaining variables are in virtual registers.
LIR can be used for optimization to the machine architecture.

In the COINS infrastructure, optimization and analysis are
called a "pass". The SSA optimization module is one such pass.
The compiler writer can easily embed optimization and analysis
in COINS by adding passes in the compiler driver, i.e., the
main program of the compiler.

At present, the COINS compiler inputs C language programs
and outputs assembly language codes for the SPARC processor.
In the future, we are planning to accept input in Fortran and a
new language, and produce codes for x86 and a new machine as
output. As for optimization, COINS currently supports control
flow and dataflow analyses in HIR and LIR, and basic
optimization, such as common subexpression elimination.

III. STATIC SINGLE ASSIGNMENT FORM

The static single assignment form (SSA form) [1] [13] [8] [2]
[11] [12] is a representation where indices are attached to
variables so that every definition of each variable in a program
becomes unique. At a joining point of the control flow graph
(CFG) where two or more different definitions of a variable
reach, a hypothetical function called a φ (phi)-function is
inserted so that these multiple definitions are merged. Dataflow
analysis and optimization for sequential execution can be
compacted using the SSA form.

A. SSA Translation
Let us call the conventional representation form before

translating into SSA form, normal form. In translating from
normal form into SSA form (SSA translation) the algorithm
proposed by Cytron et al. [8][2][11][12] and that by Sreedhar et
al. [15] are well known. SSA translation generally consists of
two phases, insertion of φ-functions and the renaming of
variables. Three types of the translated SSA form are proposed,
i.e., minimal SSA form [8][2][12], semi-pruned SSA form
[3][12], and pruned SSA form [6][12]. The algorithms for
translating into these forms are almost the same, only the live
variable analysis being different. The difference between the
three SSA forms is shown in Fig. 2.

Fig. 2  Minimal, semi-pruned, and pruned SSA forms

B. SSA Back Translation
We call the translation from SSA form into normal form SSA

back translation. For SSA back translation, the algorithms
proposed by Briggs et al. [3], Morgan [11] and by Sreedhar et
al. [16] are well known, although there are others.

In SSA back translation, the process formed by a φ-function
is divided into the predecessor basic blocks. Therefore, in most
cases, the back translation inserts copy statements for variables
used in the φ-function into the predecessor block of the basic
block where the function resides, and then deletes the φ-
function. This gives the normal form.  Fig. 3 shows an
example of SSA back translation. In Fig. 3 (a), variables x1 and
x2 used in the parameters of φ-function in block L3 are the use
of definitions reached from block L1 and block L2, respectively.
The SSA back translation puts the definitions of variable x3,
originally defined in the φ-function of block L3, into L1 and
L2, which are the predecessor blocks of L3, and then deletes the
φ-function. This produces the result shown in Fig. 3 (b).

Fig. 3  SSA back translation
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Fig. 4  Organization of the SSA form optimization module

IV. ORGANIZATION OF SSA FORM OPTIMIZATION MODULE

The organization of the SSA form optimization module is
shown in Fig. 4. This deals with the LIR. Because future use as
an infrastructure was envisaged, the SSA module was designed
so that the compiler writer can select from various
representation forms and phases.

A. SSA Translation

We implemented SSA translation based on the algorithm by
Cytron et al. [8]. In our system, the translation can produce
three SSA forms, i.e., minimal, semi-pruned, and pruned, by
performing live range analysis of varying precision at the φ-
function insertion phase. Furthermore, copy folding and dead
φ-function elimination can be performed simultaneously with
the variable renaming phase of SSA translation [3][4].

The types of the translated SSA form can be selected, and
whether or not simultaneous copy folding and dead φ-function
elimination with variable renaming phase are required, can be
specified by command options.

B. SSA Form Optimization
The following optimization in SSA form is currently

implemented [2][11][12][18].
l dead code elimination
l conditional constant propagation
l common subexpression elimination
l copy propagation
As shown in Fig. 4, these optimizations are all performed in

a submodule, and the compiler writer can specify the type and
the order of optimization to be executed.

C. SSA Back Translation

We adopted the algorithm proposed by Sreedhar et al. [16] to
implement the translation from SSA form into normal form.
The following steps are executed in this algorithm.

Step 1: For each φ-function in the program, if there is
interference between variables used in the φ-function, rename
the variable and insert a copy statement.

Step 2: Eliminate dead copy.
Step 3: Delete φ-function and translate into normal form.

As regards Step 1, Sreedhar et al. proposed three algorithms,
Method I, Method II, and Method III. Method I naively inserts
copy statements for all variables used in the φ-functions.
Method II is an extension of Method I, and inserts copy
statements only for interfering variables. Compared to Method
II, Method III further reduces the number of copy statements to
be inserted. This is done by using not only interference
information, but also live range information of the variables
used in the φ-functions. We implemented Method I and
Method III in our system. The Method can be selected by
command option at compile time.

Step 2 eliminates unnecessary copy statements by executing
SSA-based coalescing as proposed by Sreedhar et al. [16]. Our
SSA module can also execute this step selectively.

In addition to Sreedhar et al.'s coalescing, we also
implemented another coalescing algorithm based on the
interference graph, which was originally proposed by Chaitin
for register allocation [5]. This can be called selectively for the
normal form after SSA back translation.

Kohama et al. implemented another SSA back translation
algorithm on top of our system for comparison and further
investigation. This is a good example of using our system as an
infrastructure. We present this in Section VI.

V.   COMPARISON OF SSA TRANSLATION METHODS

Several algorithms have been proposed for translation from
normal form into SSA form. Two representative algorithms are
that of Cytron et al. [8] and that of Sreedhar et al. [15]. Both
algorithms use a data structure called the dominance frontier
[2][11] and can efficiently translate even irreducible control
flow graphs into SSA form.

Before deciding which algorithms should be included in the
COINS infrastructure, we first made a prototype
implementation of both these SSA translation algorithms and
compared the two.

Generally, an SSA translation is divided into two phases, (i)
insertion of φ-functions, and (ii) renaming of variables. The
difference between the algorithms of Cytron et al. and Sreedhar
et al. is in the way φ-functions are inserted. Cytron et al.'s
method first computes the dominance frontier and then inserts
φ-functions using that dominance frontier.
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In contrast to this, Sreedhar's method can insert φ-functions
at the same time as it computes the dominance frontier. This is
done by using a special data structure called the DJ-graph.
Sreedhar et al. claim that their method is faster than Cytron et
al.'s method [15].

It is known that Cytron et al.'s method (i) can insert φ-
functions in linear time with respect to the size of the control
flow graph for most realistic programs, but that (ii) it requires
quadratic time for programs with repeatedly nested do-while
statements and for programs whose control flow graph becomes
the so-called ladder graph (Fig. 5).

Fig. 5  Nested do-while and ladder graph

In contrast to Cytron et al.'s method, Sreedhar et al.'s
method can insert φ-functions in linear time for any control
flow graph.

We produced a prototype implementation of both algorithms
and measured the time for SSA translation. The experiment was
performed on CPU Athlon 650 MHz, memory 256 MB, OS
Linux 2.4.0, and the algorithms were implemented in Java,
Sun Java2 SDK 1.3.0.

The results are shown in Figs. 6, 7, and 8. The gap in the
execution time is due to the garbage collection.

We can see from Fig. 6 that for normal programs Cytron et
al.'s method is slightly faster than Sreedhar et al.'s method.
This result is different from Sreedhar et al.'s claim.

We also found that in translating normal programs into
minimal SSA form, the time for renaming the variables
accounts for 60–70% of the total translation time. Therefore,
the efficiencies of φ-function insertion methods are often not
critical.

On the basis of this prototype implementation, we have
decided to adopt Cytron et al.'s method in the SSA module of
the COINS infrastructure.

Fig. 6  Result for normal program

Fig. 7  Result for nested do-while statements

Fig. 8  Result for ladder graph
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VI. COMPARISON OF SSA BACK TRANSLATION METHODS

A. Problems of the Naive Algorithms
Several algorithms have been proposed for SSA back

translation, namely the translation from SSA form to normal
form.

One of the representative previous algorithms is that of
Cytron et al. [8]. Their algorithm translates SSA form (Fig. 3
(a)) into normal form (Fig. 3 (b)) by inserting copy statements
in the predecessor blocks of each φ-function and by deleting the
φ-function. However, it has recently been pointed out that their
algorithm does not work correctly in some cases [3][16][11].
One example of incorrect behavior is named the "lost copy
problem" and is shown in Fig. 9.

Fig. 9  The lost copy problem

In Fig. 9, the figure on the left is a usual SSA form. After
applying copy propagation optimization to the SSA form on
the left, we obtain the SSA form in the middle. This SSA form
is correct. Then, if we apply a naive algorithm such as Cytron
et al.'s to this optimized SSA form, it inserts a copy statement
"x1 = x2" at the end of block 2, i.e., the predecessor block of
the block where the φ-function resides and we obtain the SSA
form on the right hand side, which is incorrect. The value
returned by "return x1" is now always 2, which is different from
the original SSA form. The reason for this error is that the
method inserts copy "x1 = x2" at the point where x1 is live.

There are also other problems in previous SSA back
translation algorithms that give incorrect results, such as the
so-called "simple ordering problem" and the "swap problem"
[3][16].

To remedy these problems, two algorithms have been
proposed. One is by Briggs et al. [3][4][11] and the other is by
Sreedhar et al. [16]. Hereafter, we often call them simply
Briggs' and Sreedhar's algorithm, respectively.

B. Solution by the Algorithm of Briggs et al.
The SSA back translation algorithm by Briggs et al. [3][4]

extends Cytron et al.'s method to perform a safe translation
(Fig. 10). As described above, the problem of the naive
translation in Fig. 9 arose because the value of x1 in block 2 is
destroyed by the insertion of "x1 = x2". In Briggs' method, it
inserts an assignment to a temporary "temp = x1" at the entry
of block 2 to save the value of x1 at this point to temp, and
replaces the use of x1 in block 3 by temp, as in Fig. 10 (b).

Fig. 10  SSA back translation by Briggs et al.

We see from this example that the SSA back translation
algorithm by Briggs et al. inserts many copies, that is, copies
inserted by naive methods and also copies inserted to avoid
these critical problems. However, Briggs et al. claims that
coalescing the live ranges afterwards can eliminate many of
these copies.

C. Solution by the Algorithm of Sreedhar et al.
The SSA back translation algorithm by Sreedhar et al. [16]

uses a completely different approach from the naive methods or
Briggs' method. Sreedhar's algorithm checks if there is
interference between the live ranges of parameters of each
φ-function. Here we assume that the parameters include the left
hand side variable of the φ-function. If there is interference
between the live ranges of parameters of a φ-function, the
algorithm renames such a parameter and inserts a copy so that
there is no more interference of live ranges between such
parameters.

For example, Fig. 11 (a) is the same SSA form as in the
center of Fig. 10. Consider the φ-function in block 2. It has
three parameters x1, x0, and x2. Because there is interference of
live ranges between x1 and x2, we replace x1 by x1' and insert a
copy "x1 = x1' ", producing Fig. 11 (b). Now there is no
interference between the live ranges of parameters x1', x0 and
x2 of the φ-function. When there is no more interference
between parameters of every φ-function, we replace all the
parameters of a φ-function by a single variable and delete the
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φ-function. In this example, we replace x0, x1' and x2 by A,
and obtain the normal form shown in Fig. 11 (c).

Note that in general we do not need to insert copy statements
for all parameters of φ-functions, in contrast with Briggs'
algorithm.

Fig. 11  SSA back translation by Sreedhar et al.

D. Preliminary Empirical Comparison of Briggs' and
Sreedhar's Algorithms

Selecting an appropriate SSA back translation algorithm is
important, because it influences the run-time efficiency of the
program after translation. To date there have been almost no
studies comparing SSA back translation algorithms. As for
theoretical optimality or minimality of the result of the
translation, Sreedhar et al. presents some discussion, but he
states his algorithm is not always optimal [16]. As far as we
know, there is no discussion of optimality in the other papers.

Therefore, we made a preliminary empirical comparison of
Briggs' and Sreedhar's algorithms on the same compiler, i.e.,
by utilizing the COINS compiler infrastructure. As stated in
Section IV, the SSA back translation algorithm by Sreedhar et
al. and Chaitin's coalescing algorithm [5] are already included
in the SSA optimization module of COINS. Therefore, we
implemented the SSA back translation by Briggs et al. using
the same module in COINS, and made a preliminary empirical
evaluation.

Part of the result is shown in Table 1. Columns in the table
indicate, from left to right, the source program, the number of
copies (copy statements) in SSA form before SSA back
translation, the number of copies after translation by Briggs'
algorithm, the number of copies when Chaitin's coalescing is
applied after Briggs' algorithm, and the number of copies after
translation by Sreedhar's algorithm. The number in parentheses
is the number of copies within loops.

We see from Table 1 that in many source programs, the
number of copies are the same in columns "Briggs +

Coalescing" and "Sreedhar". The result is similar for the
number of copies in loops. However, we found that in some
programs, such as Swap, Swap-lost and "do", Sreedhar's
translation algorithm gives better results, that is, the number of
copies in Sreedhar's method is less than in the others.
Furthermore, the difference in the number of copies occurs in
loops. This means that in these programs Briggs' algorithm
may introduce a run-time overhead due to the copy statements.

Conversely, in Hige Swap, which is a program that we have
intentionally composed, "Briggs + Coalescing" gives a better
result than Sreedhar's.

Overall, we found from this experiment that no single SSA
back translation algorithm gives optimal results. We are
planning to develop a new algorithm that is better than these
two algorithms.

TABLE 1  Empirical comparison of SSA back translation

VII.  DISCUSSION

As far as we know there are few compiler infrastructures that
include SSA form. SUIF [17] has very little support of the
SSA form. Machine SUIF [10] has only dead code elimination
as SSA form optimization. Scale [14] has several SSA form
optimizations, but it generates only C programs and cannot
generate machine code, as opposed to COINS. GCC [9]
attempts SSA optimizations but they are written to be
experimental.

VIII.  CONCLUSION

In this paper, we presented the basic SSA form module of
the COINS compiler infrastructure. We also showed an
experimental comparison of SSA translation algorithms using
our prototype implementation. We empirically compared SSA
back translation algorithms and showed no single algorithm
gives optimal translation.
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Currently, the development stage of COINS is at the
prototype phase. In the near future, we expect that further
algorithms for the SSA form can be developed simply, using
this compiler infrastructure.
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