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Inferring Emergent Web Communities
Karsten Verbeurgt

Abstract|One of the characteristic features of the World

Wide Web is that it allows anyone to access information on

almost any subject that is of interest to that person. The

emergent result of this process is that communities arise that

are focused around subjects of common interest. Identifying

these communities can be challenging, since in contrast to

the communities that have been formed more traditionally

by people sharing a common interest because they are lo-

cated in physically adjacent spaces, geographic proximity is

not present on the Web. In this paper, we discuss methods

of detecting communities on the Web.

Keywords|Datamining, Networking

I. Introduction

T
HE web is a highly dynamic system, with several mil-

lion new pages going online every day. Authors of web

pages typically link to existing pages on the web that are

related to the new page. As a result, the link structure

of the web contains information about which pages are re-

lated. This leads to the emergence of communities of web

pages.

Due to the immense size of the web, mining the link

structure of the web to determine the communities is a chal-

lenging problem. Several authors have considered graph-

theoretic techniques to address this problem [1], [2], [3],

[4], [5], [6]. None of these techniques enable a query to

determine the community, or communities, that a partic-

ular web page belongs to dynamically. The ability to do

so is interesting for several applications. For example, this

ability would be quite interesting in gathering competitive

intelligence regarding the communities that a particular

company, perhaps a competitor, is involved in.

In this paper, we discuss previous notions of communities

on the web, and the algorithms that are used to determine

those communities. We then propose a new method that,

given a web page, will determine the communities to which

it belongs dynamically.

II. Finding Communities on the Web

Several di�erent notions of community on the web have

been proposed [1], [2], [3], [4], [5], [6]. The common thread

amongst the notions of community proposed is that they

model the web as a graph based on link structure, and

search for properties of the graph deemed to indicate a

community of web pages. In this section, we survey the

graph properties used to indicate communities, and the

algorithms that are used to compute membership in the

communities.

Perhaps the most obvious property of a graph that would

indicate the presence of a community would be a clique. A
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clique is a subset of nodes in the graph such that every

node is connected to every other node in the subset. There

are barriers to �nding cliques in the graph to determine

communities. The �rst of these is a computational issue,

since the problem of �nding the maximum clique in a graph

is NP-hard [7]. In addition, it is even hard to �nd a good

approximation to the maximum clique [8]. The second rea-

son against using cliques to determine communities is that

the connectivity required in a clique is too strong. It would

be too much to expect every member of a community to

be linked to every other member of the community.

A notion of community in the web graph that addresses

these issues was proposed by Keinberg [3]. Kleinberg's al-

gorithm, called HITS (Hyperlink-Induced Topic Search)

views communities as being formed from authorities, to

which many pages are linked, and hubs, which link to many

pages (Fig. 1). The HITS algorithm computes an \author-

ity weight" and a \hub weight" for each node in the graph.
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a) authority node b) hub node

Fig. 1. Part a) shows an authority node, with several nodes contain-
ing links to the authority. Part b) shows a hub node, that points to
many nodes.

The HITS algorithm associates with each page p a hub

weight h(p) and an authority weight a(p), all initialized to

1. If p ! q represents a link from page p to q, then the

weights are adjusted iteratively as follows:

a(p) :=
X

q!p

h(q)

h(p) :=
X

p!q

a(q)

The algorithm �rst updates the a(p) values based on the

h(q) values of pages q pointing to page p, and then updates

the h(p) values based on the a(q) values of pages q pointed

to by page p.

The HITS algorithm was applied in [2] to extract com-

munities from the web. For this application, HITS was

used as a post-processing phase applied to a set of root

pages. The root set may in practice be obtained by using

a search engine on a particular query to �nd the root set.
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That set is then expanded by including all forward and

backward links to and from the root set. In [2] root sets of

200 pages were used, although the algorithm could easily

scale to much larger sets. The core of the community is

then de�ned as the ten pages with the highest h() value,

and the ten pages with the highest a() value. The authors

in [2] note that the value ten is arbitrary.

As noted by Kleinberg in [3], his HITS algorithm essen-

tially computes the largest eigenvectors of matrices Mhub
andMauth that are constructed from the connectivity ma-

trix of the web graph. The most authoritative nodes then

correspond to the largest entries in the principal eigenvec-

tor. It is also noted in [2] that the non-principal eigenvec-

tors can be used to discover additional communities within

the set. The principal community corresponds to the set of

hubs and authorities that are most densely connected, and

the non-principal communities correspond to less densely

connected communities.

One characteristic of the above method for determining

communities on the web based on the HITS algorithm and

its variations is that they consider only link structure. A

very interesting challenge is to combine link structure and

page content to determine communities. This issue is ad-

dressed in [1], where the HITS algorithm is extended to

use an aÆnity measure between pages as a weight on the

page link. The aÆnity value is relative to the �xed query

that produced the root set of pages. The aÆnity value is

in
uenced by the distance of a term of the query from the

hyperlink, with closer proximity contributing higher aÆn-

ity weight. The HITS algorithm is then used on the aÆnity

matrix to compute the principal eigenvector, which is then

used to extract the principal community. This is an inter-

esting modi�cation of the HITS technique; however it is

limited to constructing communities relative to a query.

All of the variations of the HITS algorithm discussed

thus far have been used to extract communities from a

relatively small root set that is typically produced via a

query on a search engine. Kumar et. al. [4] give an algo-

rithm for \trawling the web" to �nd communities on the

entire web graph. The notion of community that they use

is motivated by the hubs and authorities of Kleinberg. In

the bibliometric literature, one common measure of how

strongly two references are related is how often they oc-

cur as co-citations. That is, how often the two references

are cited together. For web pages, the idea of co-citation

corresponds to separate pages containing links to the same

sites. This notion of co-citation is used to de�ne commu-

nity in [4]: \Web communities are characterized by dense

directed bipartite subgraphs." In the terminology of the

HITS algorithm, this means that a community is charac-

terized by a set of hubs that all point to the same set of

authorities (Fig. 2). Thus, this notion of community is

actually stronger than the previously discussed notion of

hub-authority communities in that it requires all the hubs

to point to the same authorities.

In [4], the authors show that every large random directed

bipartite graph will, with high probability, contain a com-

plete directed (i,j) bipartite graph. (Such a graph contains
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Fig. 2. The core of the community is formed by a set of hubs all
connected to the same set of authorities. This forms a (3,2)-bipartite
graph as the core of the community.

two sets of nodes: a set of i nodes, each of which has an

edge to every node in the set of j nodes.) The authors

present a linear-time algorithm to search for complete di-

rected (i,j) bipartite sub-graphs for small values of i and

j. These sub-graphs are deemed to indicate the core of a

community.

While the algorithm of Kumar et. al. [4] discussed in the

previous paragraphs scales the hub and authority notion of

community to large graphs such as the entire web graph, it

does have a limitation. Once a node is detected to be a part

of a community, it is removed from further consideration.

This implies that a page can only belong to one community,

which is a considerable limitation of this method.

An additional limitation of all of these notions of com-

munity is that they represent a very authoritarian view of

the world. If communities are required to contain clear au-

thorities and hubs, then more \democratic" types of com-

munities would be ruled out. For example, a set of nodes in

which each node was linked to a somewhat random subset

of the nodes in the set would not be considered as a commu-

nity (Fig. 3). We refer to this type of structure as being

\more democratic" because every member has a roughly

equal authority measure and hub measure, and there is no

consensus among the hubs as to the best authority.
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Fig. 3. In structures where each node is connected to a number of
other nodes, there may be no clear notion of hubs and authorities.
The graph in this �gure is an example of a clique structure, where
every node is connected to every other node in the set.

That the HITS algorithm does not apply well to this

more democratic notion of community is supported by the

work of Ng, Zheng and Jordan [9] on the stability of the

HITS algorithm. They show that the eigenvectors pro-

duced by the HITS algorithm are stable under minor per-

turbations to the link structure only if there is a relatively

large eigen-gap (i.e., a gap between the values in the eigen-
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vector.) Since community is being determined by the en-

tries in the eigenvector with the largest value, this implies

that the community is stable only when such a large eigen-

gap exists; that is to say, if there are clear indisputable au-

thorities and hubs in the community. Under a more demo-

cratic notion of community, this would not be the case,

potentially leading to an unstable notion of community.

Di�erent authorities and hubs for the community would

typically be found on di�erent runs of the algorithm in

such cases.

Most of the results in the literature on detecting commu-

nities in the web graph are related to the HITS algorithm,

as discussed above. We now consider two other results that

use di�erent measures of community. The �rst that we con-

sider is a method by Pirolli, Pitkow and Rao [5]. They use

a \spreading activation" function that bears some resem-

blance to a neural network. A set of \important nodes"

are chosen to serve as sources of activation. The activation

is then allowed to spread through the graph, so that nodes

that are related to the source nodes will receive a higher

activation. They incorporate a combination of link struc-

ture, textual similarity, and usage statistics in the weights

of links in the graph. While this is a potentially interesting

notion of determining community, it su�ers in that it is

not clear that the spreading activation function will \con-

verge" to a set of nodes. From the authors' description, it

appears that whether the activation dies out or spreads to

the entire graph is highly sensitive to the parameters of the

model.

Another interesting technique was proposed in [6]. Given

a graph on a set of nodes, the task of dividing the set into

sub-graphs, corresponding to sub-communities, is consid-

ered. The method proposed used a max-
ow algorithm to

�nd the minimum cut in the graph. The minimum cut rep-

resents the smallest set of articulation points in the graph

that when removed will partition the graph into two dis-

joint sub-graphs. This method di�ers from all of the others

that we have discussed in that its goal is not to determine

a community as a subset of a potentially large graph. The

goal of this method is, given a set of nodes, to partition

the set into sub-communities. Nevertheless, this method

is potentially interesting as a post-processing phase of a

community-�nding algorithm in order to re�ne the com-

munity into sub-communities.

III. The Connectivity Structure of the Web

Now that we have discussed notions of community on

the web that occur in the literature, along with the cor-

responding algorithms for computing the members of the

community, we now turn to a discussion of the connectivity

patterns on the web. The connectivity on the web graph

plays an important role in determining what types of graph

properties can be used in practice to de�ne communities

on the web. For example, one might consider proposing

connected components of the web graph as a natural prop-

erty to determine communities. That is to say, �nd a set

of pages that are all connected to each other via forward

links. As it turns out, however, this notion of community

would in many cases generate communities of several mil-

lion web pages. This notion of connectivity does identify a

particular type of community, which is basically the well-

connected web community comprising a large portion of

the web. In this section, we further discuss such results on

connectivity of the web.

In one of the earlier papers on web connectivity [10],

several types of connectivity are discussed. We refer to the

web graph as W , and the undirected version of this graph

asWu. Wu is formed fromW in a natural way by replacing

all edges with an undirected edge. The results of [10] state

that Wu contains a \giant component", although they do

not quantify how large that component is. They further

report that under strong connectivity in W , the largest

strongly connected components are small, of size less than

20. More recent results, presented in [11], show the situ-

ation to be much more intricate. Their studies show that

in fact there is a single strongly connected component at

the core of the web that contains about 56 million nodes

(Fig. 4). In contrast, the next largest strongly connected

components are small in comparison, at about one hundred

thousand nodes. In addition, there is a large set of approx-

imately 44 million nodes that have paths leading into the

strongly connected central core component, and another set

of roughly the same size whose nodes are pointed to by the

strongly connected central core. These results were com-

puted on a snapshot of the web that contained 200 million

pages. Thus, about 25% of the pages on the web are found

to be in the strongly connected central core component.

The implication of these results to determination of com-

munities is that under the property of strongly connected

components, a large proportion of the web belongs to this

single central community at the web's core. Thus, strong

connectivity is too \weak" for determining communities at

a more local level.
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Fig. 4. The strongly connected component that forms the core of the
web has approximately 56 million nodes. Thus, there is a path from
each of the nodes in this set to every other node in the set. There is
also a set approximately 44 million nodes that are not strongly con-
nected, but that contain a path of links that lead into the strongly
connected core set. Similarly, there is a set of approximately 44 mil-
lion nodes that are not strongly connected, but that can be reached
from nodes in the strongly connected core. This result shows that
the notion of strong connectivity induces immense connected compo-
nents.

Two other notions of connectivity are discussed in [10]:

biconnectivity and alternating connectivity. Biconnectiv-

ity applies to the undirected graph Wu, and is de�ned as
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follows: two nodes x and y are biconnected if there is no

third node z such that z is on every path between x and

y. Under this notion of connectivity, the authors �nd that

the web graph contains a \giant biconnected component".

They also �nd that this biconnected component generally

contains all of the top hubs an authorities computed by the

HITS algorithm.

Since the relation of biconnectivity induces a huge graph,

a more concise notion of connectivity might re�ne the size

of the community. Thus, the notion of alternating con-

nectivity was proposed in [10]. An alternating path from

nodes x to y is a path where the directions of edges strictly

alternate between forward an backward (Fig. 5). The al-

ternating distance between nodes x and y is de�ned to be

the length of the shortest alternating path between u and v.

The undirected distance is the length of the shortest path

between x and y in the undirected graph Wu. The authors

report that the alternating distance in the giant connected

component of Wu is generally at most twice the undirected

distance. This tends to indicate that there are many alter-

nating paths in W . The signi�cance of this result is that

the notion of alternating paths is related to the concept of

hubs and authorities. An alternating path allows a zig-zag

between hubs an authorities, traversing �rst from a hub

to an authority, and then following a back-link to another

hub (Fig. 5). The evidence that there are many alternat-

ing paths supports the notion of the web being organized

as hubs and authorities. As mentioned in the previous sec-

tion, however, the hubs and authorities structures do not

accommodate some notions of community on the web that

seem natural and interesting.
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Fig. 5. An alternating path consists of a strict alternation between
forward edges and backward edges. Note the similarity between al-
ternating paths and biconnected components, as depicted in Fig. 2

IV. Aspects of Web Community

We have now reviewed several works on determining

communities on the web, and have also discussed several

results on the connectivity structure of the web. Predom-

inant in these works is the notion of hubs and authorities

as forming the core of the community. This notion of com-

munity is very interesting, for the following reasons. First,

there is an algorithm (namely HITS [3]) to compute the

hubs and authorities of the community locally from a root

set obtained via a web search. The algorithm is known to

converge rapidly in practice. Secondly, there is an algo-

rithm to �nd communities at a global level ([4]) using this

notion of community. Finally, this notion of community is

plausible sociologically, in that web content creators do try

to include links to authoritative sites, hence creating hubs.

Despite these salient features, the authority-hub notion

of community is not all-encompassing. It does not allow for

more democratic community structures, as discussed previ-

ously in this paper. In addition, if the algorithm is applied

to graphs that do not contain the authority-hub structure,

the hubs and authorities chosen to form the community will

be unstable, as discussed previously and in [9]. Thus, ex-

ploring alternate de�nitions of community to complement

the hubs-authorities view of community is an important

area for further research. In the remainder of this paper,

we discuss criteria for de�nitions of community, and pro-

pose notion of community based upon cyclical structure of

sub-graphs.

Before discussing criteria for a de�nition of community

on the web, we �rst brie
y discuss the obvious graph prop-

erties to look for that allow more democratic community

structures. The �rst of these is the clique, which is a sub-

set of nodes in the graph such that each node is connected

to every other node. There are two problems with using

cliques. First, determining the maximum clique is NP-hard

[7], and it is hard even to approximate [8]. Secondly, clique

connectivity is too much to expect in a web community.

Every node would be required to connect to every other

node in the community.

The weaker notions of connectivity commonly used in

graph theory, such as strongly connected components and

weakly connected components, cannot be used in practice

as de�nitions of community. As discussed in the previous

section, the results of [11] show that a large fraction of the

web is a single strongly connected component of tens of

millions of nodes.

Thus, we desire a notion of local connectivity that is

somewhere between clique and strongly connected compo-

nent. It should embody the notion that members of the

community are somewhat densely interconnected.

V. Criteria for Definition of Web Community

We are thus in search local properties of the web graph

that characterize community, and that have associated al-

gorithms to compute the members of the community. Such

a property and its associated algorithm should have the

following properties:

1. Convergence: The search for the nodes in the commu-

nity should converge to a set of nodes that meets a de�ni-

tion of a local graph property. As noted previously, strong

connectivity would not achieve this, since the computation

of the community would not halt in many cases until tens

of millions of nodes were included in the community.

2. EÆciency: The algorithm for searching for a commu-

nity must be eÆcient. For example, maximum clique would

not meet this criteria, since there are no eÆcient algorithms

known for maximum clique.
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3. Naturalness: The notion of community should bear

some relation to a natural notion of community. For ex-

ample, dense connectivity amongst the nodes in the com-

munity would be a property that could be interpreted as

being naturally indicative of the presence of a community.

It is worth noting that the hubs and authorities de�ni-

tion of communities conforms to the three properties men-

tioned. In fact, these salient properties of de�nitions of

community were motivated by their presence in the work

on communities of hubs and authorities.

VI. A New Definition of Community

We seek to propose a de�nition of community that will

allow for more democratic community structures than the

hubs and authorities model of communities, as discussed

previously in this paper. This notion of community will

conform to the intuition that a community is a somewhat

densely connected set of nodes, and will also conform to the

three properties outlined above, that we argue are essential

for any meaningful de�nition of community.

The motivation for our de�nition of community is the

intuition that if a node is a member of a community, then

it will be linked to the rest of the community, and it will

also have links from the rest of the community. Thus, if

a web user follows a link to another member of the com-

munity, they would eventually �nd their way back to the

initial node if it is indeed a community. The relevant graph-

theoretic structure to this intuition is a cycle in a graph.

A cycle in a graph starting at node x is a directed path

that begins at x and ends at x, for which all intermediate

nodes are distinct. The length of the cycle is the number of

links in the cycle. To detect a community involving a node

x, we �rst choose a maximum diameter of the community

we are interested in �nding. In rare cases this may be the

diameter of the entire web, but in general, it will be much

smaller. We then apply a variant of depth �rst search called

depth-limited search, which is commonly used in the arti-

�cial intelligence literature [12]. This algorithm conducts

a depth-�rst search up to a �xed depth. The depth we will

use is the maximum community diameter discussed above.

Using the depth-limited search, we propose to �nd all cy-

cles of length bounded by the community diameter using

the standard depth-�rst search algorithm for determining

cycles in a graph [13]. When a cycle is found, each node

along the cycle is credited with a weight inversely propor-

tional to the length of the cycle in which it occurs. That is

to say, if a cycle is found of length t, then each node along

the cycle is credited with a weight of 1=t. This heuristic

is designed to give higher credit for smaller cycles, imply-

ing tighter communities. After the depth-limited search

has been completed to the diameter of the community, we

are guaranteed that all cycles of length less than or equal

to the speci�ed diameter involving node x will have been

found, and the weight at node x will indicate the strength

of its membership in the community. The value accumu-

lated at node x is a measure of how well it is connected

to the other nodes searched via cycles. This value can

then be thresholded to determine communities of a spec-

i�ed strength. This allows us to model a continuum of

increasing levels of connectivity, from strongly connected

components to clique connectivity.

The method of determining community that we propose

here meets all three of the criteria we outline for a de�nition

of community. Due to the bounded diameter of the search,

the method is guaranteed to halt at the speci�ed diameter,

hence meeting the convergence criteria. It is also eÆcient

both in time and memory usage, since it conducts a depth-

limited search. Finally, it corresponds to a natural notion

of community; that of node x being connected to the rest

of the community by a path that leads back to the node

through the community.

This new notion of community is presented here as a

preliminary work. We have not at this time implemented

the method and run experiments using it to validate this

notion of community. It is our intention to do so in future

work.

VII. Conclusion

In this paper, we have surveyed results on determining

communities in the web. Most of the literature pertinent to

this area stems from Kleinberg's work on hubs and author-

ities as the core of web communities. This is a very inter-

esting notion of community on the web, and experimental

work validates that indeed much of the web is structured

as hubs and authorities. However, the hubs and author-

ities notion of communities does not accommodate some

graph structures, which we refer to as \more democratic"

community structures where all members of the commu-

nity have a more equal status rather than centering around

well-de�ned authorities. These types of community struc-

tures are interesting for several applications. For example,

it could be used to discover communities in hyperlinked

newsgroup discussions. Another interesting application is

competitive analysis in e-business. Given the web site of

particular company, �nding the web communities of which

it is a member may reveal interesting information about

the alliances of that company with others on the web.

We intend to further investigate local graph properties

that lead to the determination of communities in the web

in future research.
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