
TKDE-2018-04-0373.R2

1041-4347 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1

Abstract—Conceptual and relational data models of online

transaction processing (OLTP) applications are usually created

and maintained following the principle of normalization, which

implies avoidance of redundancy. Data retrieval from a disk-based

normalized relational database often requires complex and

inefficient queries that may cause noticeable performance issues

when executed on larger volumes of data. Computer professionals

sometimes intentionally trade off the strict normal form to

optimize data retrieval queries through error-prone manual

tuning and denormalization. We propose a fully automatic

optimization approach, based on data redundancy, that relies on a

formal cost-benefit model. We prove that finding the optimal level

of data redundancy, for given workload statistics, is an NP-

Complete optimization problem. A detailed reduction of the

problem to binary linear programming is presented in the paper.

The proposed optimization approach was evaluated using the

TPCE benchmark for OLTP systems. The evaluation has shown

that the proposed optimization approach is highly scalable, and

that it can be efficiently applied to real-life relational data models.

Index Terms — relational databases, optimization,

denormalization, data redundancy, binary linear programming

I. INTRODUCTION

elational databases are inevitable components of online

transaction processing (OLTP) systems and applications.

Conceptual models of data-centric applications expressed, for

example, in entity-relationship, UML, or another language with

similar data modeling semantics, are typically created and

maintained following the principle of normalization which

implies structuring of models by reducing data redundancy for

improved data integrity. Normalization in conceptual models is

transferred, either manually or using automated generators, to

relational models through direct mapping of classes/entities in

conceptual models to the corresponding relations (tables) and

attributes (columns) in the relational model.

Data retrieval from a normalized relational schema often

targets multiple relations. It leads to either complex queries, in

terms of the number of involved relations, or to a larger number

of small subsequent queries that implement a gradual

navigation over tuples in different relations. Such complex

queries or proliferation of small queries, cause performance

issues that are especially noticeable on large volumes of data.

Researchers and practitioners, especially active in the domain

of online analytical processing (OLAP) systems, have been

This research was partially funded by The Ministry of Education, Science and

Technological Development of the Republic of Serbia [TR 61416].

intensively exploring and exploiting denormalization

techniques to speed up demanding data retrieval queries against

a normalized relational schema [1], [2], [3]. Application of all

these and similar techniques in industrial practice usually

assumes ad-hoc decisions made by database designers

according to their subjective understanding of the (expected)

behavior of the application. In our approach, as in some other

research approaches described in Section III (but hardly ever in

industrial practice, according to our experience), the application

of denormalization is based on rigorous engineering methods,

which includes profiling of data access operations, detection of

(frequent) data access patterns, and formal modeling of the

optimization techniques based on the redundancy in the

relational model, as one of the denormalization techniques.

The rest of the paper is organized as follows. Section II

presents the motivation for this research. A brief overview of

existing solutions is given in Section III. Section IV informally

describes the problem we are trying to solve. The formal cost-

benefit and the optimization model is presented in-detail in

section V. The proposed approach was experimentally verified

and Section VI gives the overview of the experimental setup

and the results. Finally, we draw the conclusions and highlight

the most important results in Section VII.

II. MOTIVATION

Strict adherence to normalization may lead to poor

performance of an application that persists data in a large

relational database. A normalized relational schema is not

always suited well to demands served by block-oriented hard

drives (magnetic or solid-state drives) [4]. Hard drives,

especially magnetic disks, are less efficient for random access

over graph-like data structures, which is inevitable when

requested data are spread over multiple normalized relations.

Though the solid state drives (SSDs) have much better random-

access performance than the magnetic disks, the relative usage

of the I/O bandwidth remains unchanged [5], [6].

Notwithstanding the fact that the technology of in-memory

databases is emerging [7], disk-based database systems are

dominant due to affordable price and large storage capacity [8].

Table records in a normalized model usually contain much

more columns than are required in particular transactions. This

is because the columns in the tables are grouped together

because of their conceptual (logical) closeness, without

1041-4347 © 2019 IEEE, https://ieeexplore.ieee.org/document/8692623

Equilibrium of Redundancy in Relational Model

for Optimized Data Retrieval

N. Kojić, D. Milićev

University of Belgrade, School of Electrical Engineering

R

https://ieeexplore.ieee.org/document/8692623

TKDE-2018-04-0373.R2

1041-4347 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2

considering dynamic data demands at runtime. It can be taken

as a presumption that the access to the data (columns) from the

same record is significantly cheaper than the access to (related)

records in different tables [9], [10], [8]. The described effect

may be even more discernible in distributed databases, which

often handle data shards (i.e., horizontal partitions of tables) by

different nodes (servers), while it is assumed that one record

resides entirely on the same node. The response time of data

access transactions in distributed databases is significantly

affected by the communication overhead, as the cost of crossing

the boundary of a node is several orders of magnitude higher

than local data access. Consequently, the performance benefit

of local data access can be leveraged by keeping copies of

required remote data in the local node’s database. For example,

Google Cloud Spanner [11] explicitly enforces different shards

(called “splits” in Spanner) to be intentionally handled by

different servers, in order to spread workload and parallelize

processing. To compensate for the penalty of such distribution,

Spanner supports the notion of interleaved tables: records of a

“child” table can be placed just after a record of the related

“parent” table to ensure physical locality; one record of the

parent table and all its related records of the child table (through

the join relationship) are guaranteed to reside in the same split,

and thus be handled by the same server. This approach can be

treated as a special case of general denormalization by pre-

joining relations. It is, however, constrained to embedding

entire records of a child table into only one parent table; we aim

at a more general approach that allows arbitrary pre-joins of

individual attributes (partial records) from many tables, without

such limitations.

Optimization of the relational model for a large-scale data-

centric application through denormalization cannot be

successfully and efficiently accomplished without considering

the application data demands [3]. In this paper we focus on data

redundancy, as an elementary denormalization technique. With

data redundancy, we can optimize (frequent) data retrieval

operations at the cost of the increased overhead for (preferably

rare) update operations. Finding the optimal level of

redundancy becomes a combinatorial optimization problem,

which requires an adequate formal modeling [12].

Data-centric applications that use any of the popular object-

relational mapping (ORM) frameworks, often suffer from

performance issues on large data volumes and for demanding

workloads. Popular ORM frameworks map object models and

requests straightforwardly to the normalized relational model,

which is usually treated as the central artifact, without

questioning its normalized schema. Programmers are often

forced to put significant effort into performance tuning, aside

from the business logic implementation, in order to satisfy

(non-functional) performance requirements [13] (e.g. by

implementing ad-hoc redundancy, various caching techniques,

etc.). Furthermore, programmers often need to bypass the ORM

framework to implement complex and time-consuming

transactions or queries [14], [15], or to be aware of low-level

implementation details and pitfalls of an ORM technology to

produce efficient code without so-called anti-patterns [16].

Model-driven software development methodology treats

conceptual models as central development artifacts, whilst the

source code, as well as the relational model, can be derived (i.e.,

automatically generated) from it [17]. Such a fully automated

model transformation opens new possibilities for organizing the

relational model in a more performance-aware way (unusual

and unnatural to the engineers, but efficient for the database),

whilst the source code, even written with anti-patterns [13],

need not necessarily suffer from poor data access performance.

It is the responsibility of the ORM layer to intelligently

transform object actions to relational queries, relying on

redundantly prepared responses to the most frequent and

expensive data retrieval operations.

III. RELATED WORK

The catalog of various object-relational mapping patterns,

presented by Rahayu et al. [18], evaluates their positive and

negative effects. Guéhis et al. [19] focused on the data reading

anomaly, called the “N+1 problem”, that leads to proliferation

of small queries when a program generates N+1 separate

queries to fetch the data for one object and its N linked objects.

They employed profiling of data access patterns, denoted as

program summaries, and proposed query rewriting rules that

improve query performance. Instead of query rewriting, which

requires additional programmer effort, Bernstein et al.

presented a data prefetching approach based on data patterns

predictors at the ORM level [20]. Their optimization eliminates

proliferation of small queries by dynamic data prefetching at

runtime. Though this approach decreases the number of

database requests, it does not reduce the inherent complexity of

accessing multiple relations in the (normalized) relational

model. Poor data access performance can be caused by anti-

patterns in the source code, as Chen et al. have shown [13].

They identified the following issues: a) the excessive data

problem, manifested by fetching superfluous data that is never

used, denoted as the mismatch between the required and the

retrieved data [21], and b) one-by-one query execution in a loop

that results in proliferation of small queries [22]. They also

proposed the appropriate code-rewriting techniques.

The ineffectiveness of a normalized relational model is

especially noticeable in large-scale databases. Shin and Sanders

[1] examined four relational schema denormalization

techniques for the optimization of queries in OLAP systems and

evaluated conditions of their greatest efficiency: a) collapsing

relations, b) partitioning relations, c) adding redundant

attributes, and d) adding derived attributes. Their research was

inspired by pioneering research on denormalization [23] and

various other systematically evaluated denormalization

techniques [24], [25], [26]. Analysis of the vertical partitioning

in OLAP systems, driven by profiling of transactions, was

evaluated by Navathe et al. [27]. All these denormalization

techniques are very effective and often applied in the OLAP

context, because the update operations almost do not exist in

such systems. In OLTP systems, such techniques cannot be

applied without considering the increased overhead of the

update operations. Dabrowski et al. highlighted importance of

data access patterns analysis for relational data modeling in

OLTP systems (which they call knowledge-based data

TKDE-2018-04-0373.R2

1041-4347 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

3

modeling) [3]. They proposed foundations for an expert system

for relational modeling driven by workload statistics. While

their approach is focused on dividing the starting relational

model into clusters of correlated entities, our optimization

model is based purely on data redundancy and operates at the

attribute level. Boniewicz et al. [2] presented the effectiveness

of the data redundancy for the optimization of navigation over

deep recursive object hierarchies using redundant links. The

approach is effective especially if the hierarchical structure is

fixed or updated rarely.

Our optimization model based on data redundancy is

intentionally kept independent from a specific implementation

of the data redundancy, such as covering indexes, materialized

views, redundant columns or redundant tables. All these

optimization structures rely on the principle of spatial locality

of the correlated data. Selection and combination of these

structures has been thoroughly analyzed and covered in several

complementary researches. Dash et al. [12] examined the index

selection problem and showed that it has a well-structured space

of solutions. They described the index advisor – CoPhy that

operates at the table level and suggests a set of indices (one per

table) to achieve the best response time for a given workload.

However, it does not consider join indexes, whilst our approach

combines correlated data from multiple relations.

Implementation of the data redundancy in a relational model is

itself a non-trivial optimization problem of selection between

indexes and (materialized) views based on the workload

characteristics [28]. Agrawal et al. examined that problem in

the context of multidimensional (OLAP) databases and

implemented a tuning wizard for SQL Server 2000. Chirkova et

al. [29] examined the view selection problem for the

conjunctive queries in workloads. The conjunctive queries are

typically comprised of chained/joined relations, which we

denote as the linear navigation along the chain. The linear

navigation is just a special case addressed in our model, as well.

Agrawal et al. [30] presented a scalable approach for the

optimization of queries based on vertical and horizontal

partitioning of database structures driven by the workload

characteristics. They analyzed the partial optimization effects

of partitioning and indexing, as well as their interaction, and

introduced empirical constraints to the cost-benefit model for

effective pruning of the solution search space. Advanced

partitioning techniques have also been examined in the context

of massively distributed computation by Zhou et al. [31]. While

their research is focused on partitioning of massive input data,

for the sake of distributed processing, our research targets the

optimization of data fetching in distributed transactions. Our

optimization model is focused on elimination of the

communication overhead in distributed environments by

exploiting the data redundancy.

IV. PROBLEM DESCRIPTION

In this section we illustrate the problem and the idea of our

solution on a simplified example. The running example was

extracted and simplified from a real-life web portal for online

auctions that we refer to as the application. It is an OLTP system

that generates a large amount of data at high transaction rate.

A fragment of the application’s conceptual model is shown

in UML in Figure 1. Although the model is self-explanatory,

we are presenting just the most important conceptual details.

When a user (as a seller) needs to sell a product, he/she can

create a new auction and fill in the details of the product being

sold. Every product belongs to a category, whilst every

category can have a superordinate (parent) category (except the

root category that does not have any). When the seller

completes the new auction, it is further maintained and

approved by a manager. After the auction is opened, other users

(bidders) can place their bids to it. When the auction closes, the

last bid becomes the winning bid.

Figure 1 The conceptual model of the online auctions application in UML.

We assume that the application persists data in a relational

database whose schema is mapped from the conceptual model

such that each class maps to its corresponding table, whilst the

associations are implemented, depending on the multiplicity

constraints, either using foreign keys or association tables. In

Table 1 we show the most important use cases. Each use case

has the following details: 1) symbolic name (e.g. UC1), 2) short

title, 3) frequency (provided by a profiler), and 4) data access

section that specifies entity types and their properties.

UC1: Show active auctions (5000)

Auction: started, last bid, seller

Bid: time, amount, bidder Product: name, category

User: name (bidder or seller) Category: name

UC2: Show details of an auction (2000); in 500 cases it was a closed

Auction: started, finished, bids, seller, winning User: name

Category: name, parent (full path) Manager: name

Bid: time, amount, bidder Product: name, category

UC3: Place a bid to a selected auction (4000)

Bid: create (time, amount, auction)

UC4: Create a new auction (100)

Product: create (id, name, category)

Auction: create (id, started, product, seller)

UC5: Close auction (100)

Bid: id Auction: winner

Table 1 The list of main use cases in the online auction application.

In UC1, the application retrieves active auctions by issuing

the query shown in Listing 1. Multiple tables need to be

accessed due to the chosen object-relational mapping strategy.

TKDE-2018-04-0373.R2

1041-4347 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

4

select p.name, a.started, a.ended, us.name, c.name,
 b.time, b.amount, ub.name
from Auction a
join Product p ON (p.id = a.item)
join Category c ON (p.category = c.id)
join User us ON (us.id = a.seller)
join User ub ON (ub.id = b.bidder)
join Bid b ON (b.auction = a.id) [last by b.time]
where a.opened < now() and a.ended is null

Listing 1 Query Q1: retrieves summaries of the active auctions, including the

last bid for each, as per the specification for UC1.

The use case UC2 is implemented as a server-side operation,

rather than a query, because it needs to collect the entire

category path (of an arbitrary length) as well as to access the

winning bid only if it exists, as shown in Listing 2. Linked

objects are fetched by invoking the accessor operations. For

instance, the accessor operation a.item() loads (navigates to)

the product being sold at the auction a. It results in a query

issued to the database by an object-relational mapping layer.

Auction a = findById(1);
Product p = a.item();
Category c = p.category();
while (c != null) {
 collect(c.name()); c = c.parent();
}
User s = a.seller();
collect(p.name(), a.opened(), a.finished(), s.name());
foreach (Bid b in a.bids()) {
 User ub = b.bidder();
 collect(ub.name(), b.amount(), b.time());
}
Bid w = a.winner();
if (w != null) {
 collect(w.amount(), w.time(), w.bidder().name);
}

Listing 2 Implementation of UC2 in a Java-like pseudo-language.

From now on, we will treat classes and data types (in a

conceptual model) and tables (in a relational model) commonly

as entity types. An entity represents an instance of an entity

type, with an identity that uniquely distinguishes it from other

entities. Objects, data values or table records are entities.

Instances of primitive data types are special predefined entities

identified by their values (literals). Attributes and associations

are treated as relationships between entity types [32], [33].

Attributes and association ends are jointly referred to as

properties of entity types. Formally, the properties are allocated

as slots in entities. However, we will be using these two terms

interchangeably wherever applicable for better and concise

readability. Slots store identifiers of linked (referenced) entities.

If a property allows maximum one identifier (in a slot), we talk

about a functional mapping or a functional relationship. The

generalization-specialization relationship can also be modeled

as a functional relationship from a subtype entity (e.g. a table

record) to a base type entity (e.g. a record in the base table). The

identifier of the super type entity is stored in the special (virtual)

property ℎ of the subtype entity. Entities (values) of primitive

built-in data types are usually embedded in the slots. For

instance, a database record embeds a string value instead of

pointing to it. Once the record is loaded, all such data type

entities become available for the application, without additional

data access. However, if an entity is not embedded in a slot, but

referenced directly from that slot (e.g., as a symbolic link [3]),

the linked entity first needs to be located in the storage (e.g. by

determining the location of the database record), and then

transferred from the storage.

Once established, functional relationships between entities

hold until explicitly changed by the application’s write

operations. The presence of functional relationships allows

packaging of the related entities into (denormalized) database

records of predictable size and layout. Having all functionally

related entities in the same record may significantly speed up

their retrieval and eliminate additional queries, which also

improves the percentage of the relevant data retrieved in a

single database request [34]. Usually, applications read just

subsets of all functionally related entities in individual

transactions. Therefore, we introduce the concept of a data

retrieval pattern, as a model of the data retrieval performed in

the navigational sense over the functional properties/slots. The

model is aimed to be general enough to cover patterns at

different levels of abstraction, as well as to target different data

and processing deployments.

In our solution, data retrieval patterns are obtained by

profiling a test or a production system in its real or close-to-real

(e.g. test, prototype, or pilot) workload environment. They are

extracted and analyzed from real execution traces, organized

into logical units of processing, that we abstractly refer to as

conversations. A conversation represents a piece of interaction

between the application and the database that takes place in a

contiguous time interval, can be executed separately from other

such pieces, has a meaningful goal and semantics, and accesses

the data in a well-defined and predictable way. It can, for

example, represent a batch processing procedure or a

transaction, or an entire set of smaller transactions issued from

an interactive use case (i.e., a dialog with the user).

Figure 2 The data retrieval pattern 𝑝1 detected in the traces of UC1. The dashed

lines represent the functional relationships derived from the non-functional

relationship bids: 𝑏𝐿 –last bid. The root node is grey.

A data retrieval pattern is represented as a rooted, connected,

and directed tree (Figure 2), as it will be formally defined in

Section V.A. The vertices represent entities, whilst the directed

edges represent properties (slots) of the entities read in a

conversation. Every pattern has a root vertex (e.g. 𝐴 in Figure

2). All the other vertices in the tree are functionally dependent

on the root vertex. Each entity in the pattern has its entity type,

shown inside its vertex (e.g. 𝐴). Similarly, the directed edge 𝑠
(from 𝐴 to 𝑈) represents a reading of the property/slot 𝑠 (from

an entity of the type 𝐴) and retrieving an entity of the type 𝑈 as

the result. For the sake of brevity, we use short identifiers for

the entity types and the properties in our sample conceptual

TKDE-2018-04-0373.R2

1041-4347 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

5

UML model shown in Figure 1. The naming scheme is given as

follows: 𝐴 – Auction, 𝑈 – User, 𝑀 – Manager, 𝑃 – Product, 𝐶

– Category, 𝐵 – Bid, 𝑇 – Time, 𝑆 – String, 𝑁 – number. The

edges are denoted as follows: 𝑛 – name, 𝑡 – time, 𝑜 – opened,

𝑓 – finished, 𝑖 – item, 𝑝 – parent, 𝑐 – category, 𝑎 – amount, ℎ –

inherited, 𝑚 – manager, 𝑠 – seller, 𝑏 – bidder or bids.

The data retrieval pattern 𝑝1 in Figure 2 is obtained by

parsing the query Q1 (Listing 1). It is important to notice that

the dashed edge 𝑏𝐿 represents a functional relationship that does

not exist in the conceptual model originally. It is inferred from

the non-functional relationship bids, assuming that the profiler

can be made smart enough to capture the retrieval of a bid under

an invariant condition – the latest bid time in this case.

Figure 3 Three data retrieval patterns found in traces for UC2: 𝑝2, 𝑝3, 𝑝4. The

root vertices of the patterns are grey.

Figure 3 shows data retrieval patterns captured by profiling

execution of the code for UC2 (Listing 2). We can notice three

data retrieval patterns that are displayed on the same diagram in

Figure 3: 𝑝2 – the small tree rooted at the vertex 𝐵 in the bottom

right corner (determined by 𝐴. 𝑏𝑖𝑑𝑠 relationship), 𝑝3 – the tree

rooted at the vertex 𝐴, not including the winning bid’s subtree

(determined by the edge 𝑤), and 𝑝4 – the whole tree rooted at

the vertex 𝐴 (including the winning bid’s subtree). The

functional relationship 𝑤 is depicted by the dashed edge just

because the winning bid’s subtree may not always be present in

UC2, depending on whether the auction is closed or not.

Now, let us illustrate effects of denormalization on data

retrieval operations by considering one possible denormalized

auction data model {𝐴∗, 𝐵∗, 𝐶∗} determined by analyzing the

patterns {𝑝1, 𝑝2, 𝑝3, 𝑝4} (see Listing 3). These three denorma-

lized relations can cover the data demands in the workload

shown in Table 1. Their columns contain copies of the data from

the functionally related relations (in the normalized model).

𝐴∗ (𝐴. 𝑠, 𝐴. 𝑠: 𝑈. 𝑛, 𝐴. 𝑖, 𝐴.𝑚, 𝐴.𝑚:𝑀. ℎ, 𝐴.𝑚:𝑀. ℎ: 𝑈. 𝑛,

𝐴. 𝑜, 𝐴. 𝑓, 𝐴. 𝑖: 𝑃. 𝑛, 𝐴. 𝑖: 𝑃. 𝑐, 𝐴. 𝑏𝐿, 𝐴. 𝑏𝐿: 𝐵. 𝑎,

𝐴. 𝑏𝐿: 𝐵. 𝑡, 𝐴. 𝑏𝐿: 𝐵. 𝑏, 𝐴. 𝑏𝐿: 𝐵. 𝑏: 𝑈. 𝑛, 𝐴.𝑤, 𝐴.𝑤: 𝐵. 𝑎,

𝐴.𝑤: 𝐵. 𝑡, 𝐴.𝑤: 𝐵. 𝑏, 𝐴.𝑤: 𝐵. 𝑏: 𝑈. 𝑛);
𝐵∗ (𝐵. 𝑡, 𝐵. 𝑎, 𝐵. 𝑏, 𝐵. 𝑏: 𝑈. 𝑛);

𝐶∗ (𝐶. 𝑛, 𝐶. 𝑝, 𝐶. 𝑝: 𝐶. 𝑛, 𝐶. 𝑝: 𝐶. 𝑝, 𝐶. 𝑝: 𝐶. 𝑝: 𝐶. 𝑛);
Listing 3 One possible denormalization of the auction data model.

Let us further consider the expression 𝑎. 𝑤𝑖𝑛𝑛𝑒𝑟(). 𝑛𝑎𝑚𝑒

from Listing 2 (or shortened 𝑎. 𝑤. 𝑛), that fetches the winner’s

name. In the normalized relational model, this expression

requires three separate read operations from the relations 𝐴, 𝐵,

and 𝑈. However, the winner’s name is redundantly stored in the

denormalized relation 𝐴∗ and becomes available as soon as a

record from 𝐴∗ gets loaded. We use a naming convention for

such columns that directly reflects the navigation they optimize.

For instance, the result of the navigation 𝑎. 𝑤. 𝑛 is stored

directly in the column 𝐴.𝑤: 𝐵. 𝑏: 𝑈. 𝑛 in 𝐴∗. The name segment

𝐴.𝑤 denotes the property 𝑤 of the entity type 𝐴, whilst the

colon symbol (:) reflects the type of that property, and a

navigation to another relation in the normalized (initial)

relational model (e.g. 𝐵 in 𝐴.𝑤:𝐵. 𝑛).

We further assume the following metrics in the database: a)

2000 bids per bidder, b) 10,000 auctions per manager, c) 10 bids

per auction, d) 10 subcategories per category, e) 500 auctions

per seller. In Table 2 we evaluate the effects of the

denormalization on each use case separately. The columns 𝑟𝑁

and 𝑤𝑁 show the numbers of records that the application

accesses in the normalized database per one occurrence of each

pattern. Similarly, the columns 𝑟𝐷 and 𝑤𝐷 show the number of

records that the application accesses in the denormalized

database per one occurrence of each pattern. The columns 𝑅𝑁,

𝑊𝑁,𝑅𝐷, 𝑊𝐷 show the total numbers of records.

𝑼𝑪𝒙 𝒇𝒓𝒆𝒒. 𝒓𝑵 𝒘𝑵 𝒓𝑫 𝒘𝑫 𝑹𝑵 𝑾𝑵 𝑹𝑫 𝑾𝑫

UC1 5,000 10 0 2 0 50,000 0 10,000 0

UC2
500 30 0 12 0 15,000 0 6,000 0

1,500 28 0 12 0 42,000 0 18,000 0

UC3 4,000 0 1 1 2 0 4,000 4,000 8,000

UC4 100 0 2 3 2 0 200 300 200

UC5 100 1 1 1 1 100 100 100 100

Overall 64,700 107,100 4,300 38,400 8,300

Table 2 The estimate of the benefit for the proposed schema {𝐴∗, 𝐵∗, 𝐶∗}.

The overall estimate is that the proposed denormalized

schema {𝐴∗, 𝐵∗, 𝐶∗} can eliminate access to 64,700 (of 111,400)

records, given the use cases and the distribution of their

frequencies. However, we did not consider a potential overhead

imposed by changes of the property 𝑈. 𝑛. A value of 𝑛 may be

a seller’s name, a bidder’s name or a manager’s name,

depending on the role that the user plays. If just one name

changes per each of the three roles, the application needs to

update additional 12,600 records, which decreases the overall

benefit to 52,100 records. Though the proposed solution yields

this benefit, we still cannot judge about its optimality.

Furthermore, our practical experiments have shown that

simple record counting is not always an accurate metric, due to

the inherent complexity of relational databases and many of

their internal aspects and optimizations. Finally, we proposed

the denormalized schema {𝐴∗, 𝐵∗, 𝐶∗} by pure intuition and

experience in building and optimizing such systems. However,

for more complex models, we need an automated approach that

can handle much larger number of entities and their

relationships and use a more sophisticated cost-benefit model.

We will show that the data redundancy selection problem is an

NP-Complete combinatorial optimization problem that can be

reduced to binary linear programming and solved efficiently by

the standard solvers, which makes this approach applicable to

complex real-life problem domains.

TKDE-2018-04-0373.R2

1041-4347 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

6

V. FORMAL MODEL

In this section we introduce the formal model of the data

retrieval patterns, formulate the cost-benefit model, and

describe the reduction to binary linear programming problem.

A. Definitions

Let 𝐸 be the set of entity types {Е1, Е2…Ек}, each of which

is a set of entities extended with 𝑛𝑢𝑙𝑙 element. Let 𝐹 be the set

of (partial) functions {𝑓1, 𝑓2…𝑓𝑛}, where 𝑓𝑘: 𝐸𝑖 ↦ 𝐸𝑗, 𝐸𝑖 , 𝐸𝑗 ∈

𝐸. Given the partial function 𝑓:𝑋 ↦ 𝑌, if 𝑥 ∈ 𝑋 does not

participate in the relationship, we extend 𝑓 with (𝑥, 𝑛𝑢𝑙𝑙). In

order to allow composition of partial functions, we assume that

𝑓(𝑛𝑢𝑙𝑙) = 𝑛𝑢𝑙𝑙 for every 𝑓. The functions abstract properties

of entity types. Every function 𝑓 has the following properties:

a) 𝑤 – write frequency, denotes the total number of updates of

the mapping (i.e., the number of all writes to the property 𝑓 of

any entity 𝑥), b) 𝑑 – reverse cardinality, representing the

average number of entities in the function’s domain mapped to

the same non-null entity in the function's codomain, c) 𝜇 – data

access cost, defined as 𝜇 = 𝜆 + 𝜏, where 𝜆 represents the cost

of locating the entity in the function’s codomain, and 𝜏
represents the data transfer cost of the located entity.

Multivalued relationships can also be modeled by functional

relationships as follows. Through profiling, one may conclude

that the application frequently reads only certain (preferably

small) subset of k values of a multivalued property 𝑓 (with

cardinality 𝑛). Thus the multifunction 𝑓 can be used for

derivation of the following 𝑘 functions: 𝑓[𝑖1], 𝑓[𝑖2], … , 𝑓[𝑖𝑘],
while the rest of 𝑛 − 𝑘 values are not treated any further.

Two functions 𝑓𝑝 and 𝑓𝑞 are chained, denoted by 𝑓𝑝 ↣ 𝑓𝑞, if

the domain of 𝑓𝑞 is the codomain of 𝑓𝑝. Having a functional

chain 𝑓𝑖1 ↣ 𝑓𝑖2 ↣ ⋯ ↣ 𝑓𝑖𝑘, we can specify a function compo-

sition 𝑓𝑥 = 𝑓𝑖1 ∘ 𝑓𝑖2 ∘ … ∘ 𝑓𝑖𝑘. If the domain of 𝑓𝑖1 is 𝐸𝑥 and the

codomain of 𝑓𝑖𝑘 is 𝐸𝑦, given an entity 𝑒𝑥 ∈ 𝐸𝑥 , we can deter-

mine an entity 𝑒𝑦 ∈ 𝐸𝑦 by 𝑒𝑦 = 𝑓𝑖𝑘(… 𝑓𝑖2(𝑓𝑖1(𝑒𝑥))). However,

the function 𝑓𝑥 maps 𝑒𝑥 to 𝑒𝑦 directly by 𝑒𝑦 = 𝑓𝑥(𝑒𝑥) along the

chain 𝑓𝑖1 ↣ 𝑓𝑖2 ↣ ⋯ ↣ 𝑓𝑖𝑘, and eliminates the subsequent

functions invocations. Hence, we refer to it as an optimization.

A data retrieval pattern is defined as a directed rooted tree

(𝑉, 𝑈,𝑀𝑉 , 𝑀𝑈, 𝑟, 𝜔, 𝜃), where 𝑉 is a set of vertices, 𝑈 the set of

edges, and:

- 𝑀𝑉 is a marking of vertices, i.e. a function (not

necessarily an injection) 𝑉 → 𝐸, where 𝐸 is the set of all

entity types,

- 𝑀𝑈 is a marking of edges, i.e. a function (not necessarily

an injection) 𝑈 → 𝐹, where 𝐹 is the set of all functions,

- 𝑟 ∈ 𝑉 is the root vertex,

- 𝜔 ∈ ℕ denotes the number of occurrences of the pattern

in a profile (i.e., its frequency), and

- 𝜃 ∈ ℝ, 𝜃 ∈ [0,1] denotes the normalized cost of the

pattern (e.g. a cost obtained from the query optimizer

and normalized to 1 considering all the patterns).

Let 𝑃 be the set of all data retrieval patterns and let 𝑂 be the

set of all optimizations. Any subset 𝐶 ⊆ 𝑂 represents a

configuration. The number of all possible configurations is 2𝑁,

where 𝑁 = |𝑂|. Alternatively, configurations can be

represented using the concept of configuration variable. A

configuration variable is defined as a vector of 𝑁 binary

variables 𝑐 = [𝑜1, 𝑜2, … , 𝑜𝑁], where each binary variable 𝑜𝑥

(also called the optimization variable) represents one

optimization from 𝑂 and determines whether that optimization

is applied (𝑜𝑥 = 1) or not (𝑜𝑥 = 0). If the given optimization

𝑓𝑥 = 𝑓𝑖1 ∘ 𝑓𝑖2 ∘ … ∘ 𝑓𝑖𝑘 is applied, then the redundant value of

the function 𝑓𝑖𝑘 (the entity 𝑒𝑦 or a reference to it) becomes

available each time the entity 𝑒𝑥 is loaded by the program

(𝑒𝑥. 𝑓𝑥). This way the total cost of the retrieval along the chain

is decreased for the cost 𝜇𝑖𝑘 of accessing the value of the

function 𝑓𝑖𝑘. Let 𝜌 ∈ ℝ, 𝜌 ∈ [0, 1] denote the ratio of the

relevant properties (columns) in an entity (record) for a specific

data retrieval (e.g. 2 of 10 columns read, 𝜌 = 0.2). In row-

oriented relational databases, the projection ratio 𝜌 does not

(usually) affect the query plan cost, but we extend the definition

of the data access cost 𝜇 with the corrective factor 1 +
𝐿(1 − 𝜌), 𝐿 ∈ ℝ, 𝐿 ≥ 0 to be able to assign a higher cost to data

retrievals of database records with less relevant data (and favor

data redundancy in such cases), 𝜇 = (𝜆 + 𝜏) ⋅ (1 + 𝐿(1 − 𝜌)).

B. The Cost-Benefit Model

The effects of the data redundancy are quantified by the

decreased cost of read operations (read benefit) and the

increased penalty of write operations (write penalty).

The read benefit, denoted by 𝑟𝑏(𝑝, 𝑐), represents a reduction

of the data retrieval cost for a pattern 𝑝, due to the applied

optimizations in the configuration 𝑐. The total read benefit

𝑟𝑏(𝑐), is defined as a cumulative read benefit for all data

retrieval patterns affected by the applied optimizations in 𝑐. The

operational definition of the total read benefit is given in (1),

where 𝜔 represents the pattern frequency.

 𝑟𝑏(𝑐) = ∑ 𝑟𝑏(𝑝𝑘 , 𝑐)

𝑝𝑘∈𝑃

𝜔𝑘 (1)

The write penalty, denoted by 𝑤𝑝(𝑓𝑘, 𝑐), quantifies the

increase of the cost of the update operations that maintain the

redundant data imposed by the applied optimizations in the

configuration 𝑐, each time the function 𝑓𝑘 changes. The total

write penalty 𝑤𝑝(𝑐) represents a cumulative write penalty of

all the functions participating in the applied optimizations. The

operational definition of the total write overhead is given in (2),

where 𝑤𝑘 represents the write frequency of a function 𝑓𝑘.

 𝑤𝑝(𝑐) = ∑ 𝑤𝑝(𝑓𝑘 , 𝑐)

𝑓𝑘∈𝐹

𝑤𝑘 (2)

Let 𝑓𝑖1 ↣ 𝑓𝑖2 ↣ ⋯ ↣ 𝑓𝑖𝑚 be a functional chain isolated from

a simple linear navigation pattern which occurs 𝜔 times. The

set 𝑂 = {𝑓12, … , 𝑓1𝑚, 𝑓23, … , 𝑓𝑚−1𝑚} contains all the possible

optimizations derived from the pattern, represented by the

configuration variable 𝑐 = [𝑜12, … , 𝑜1𝑚 , 𝑜23, … , 𝑜𝑚−1𝑚]. We

now consider the configuration 𝐶 = {𝑓12, 𝑓13, … , 𝑓1𝑚} of those

optimizations that start with the function 𝑓𝑖1. Each such

optimization is defined as 𝑓1𝑘 = 𝑓𝑖1 ∘ 𝑓𝑖2 ∘ … ∘ 𝑓𝑖𝑘 and maps the

root entity directly to the entity at the end of the chain. The

configuration 𝐶 can be represented by the configuration

TKDE-2018-04-0373.R2

1041-4347 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

7

variable value 𝑐1𝑚 = [1,1, … ,1,0, … ,0], with 𝑚 − 1 leading 1𝑠.
The read benefit of the linear pattern for the configuration 𝑐1𝑚

is estimated by the equation (3), where: 𝜇𝑖𝑘 = 𝜇(𝑓𝑖𝑘).

𝑟𝑏(𝑐1𝑚) = 𝜔 ∑ 𝜇𝑖𝑘

𝑘=𝑚

𝑘=2

 (3)

Each applied optimization 𝑓1𝑘 eliminates the retrieval cost

𝜇𝑖𝑘. On the other hand, a change of any function participating

in the optimizations in 𝑐1𝑚, affects the applied optimizations

containing that function in the composition. We treat changes

of the functions independently (which models the worst case).

𝑤𝑝(𝑐1𝑚) = ∑(𝑤𝑏(𝑓𝑖𝑘) + 𝑟𝑎(𝑓𝑖𝑘))

𝑘=𝑚

𝑘=1

𝑤𝑖𝑘 (4)

As shown in (4), the write penalty is comprised of the two

components (multiplied by the write frequency 𝑤𝑖𝑘): a) write-

backward penalty 𝑤𝑏(𝑓𝑖𝑘) and b) read-ahead penalty 𝑟𝑎(𝑓𝑖𝑘).
The write-backward component determines the cost of updating

all the redundant copies of 𝑓𝑖𝑘. The number of the entities

holding the redundant copies of 𝑓𝑖𝑘 (considering the

optimization 𝑓1𝑘) is determined by the product of the backward

cardinalities of the functions that precede 𝑓𝑖𝑘 in the chain. Once

the number of the affected records is determined, it is multiplied

by the cost factor 𝜇𝑖1, 𝑤𝑏(𝑓𝑖𝑘) = 𝜇𝑖1∏ 𝑑𝑖𝑗
𝑗=𝑘−1
𝑗=1 . Likewise, the

remaining redundant functions 𝑓1𝑘+1, … , 𝑓1𝑚 also became

outdated. Their new values need to be retrieved from a new sub-

path whose root entity is the new value of 𝑓𝑖𝑘. The cost of

obtaining their new values is determined by the read-ahead

penalty that corresponds to the retrieval cost in the new sub-

path, 𝑟𝑎(𝑓𝑖𝑘) = ∑ 𝜇𝑖𝑗
𝑗=𝑚
𝑗=𝑘+1 . These two write penalty

components do not necessarily appear together. The cost of

changing the first function 𝑓𝑖1 comes down to the read-ahead

penalty, whilst the cost of changing the last function 𝑓𝑖𝑚 comes

down to the write-backward component. The total write penalty

is given in (5), where 𝑚 is length of the linear pattern.

𝑤𝑝(𝑐1𝑚) = ∑ (𝜇𝑖1 ∏ 𝑑𝑖𝑗

𝑗=𝑘−1

𝑗=1

+ ∑ 𝜇𝑖𝑥

𝑥=𝑚

𝑥=𝑘+1

)

𝑘=𝑚

𝑘=1

𝑤𝑖𝑘 (5)

The presented cost-benefit equations are illustrated on the

sample linear navigation pattern 𝑝𝑥 shown in Figure 4.

Figure 4 A linear data retrieval pattern 𝑝𝑥 for the navigation path 𝑓1 ↣ 𝑓2 ↣ 𝑓3.
The redundant functions are visualized as the dashed edges.

For the considered pattern, the set 𝑂𝑥 = {𝑓12, 𝑓13, 𝑓23}
contains all the optimizations, whilst 𝑐𝑥 = [𝑜12, 𝑜13, 𝑜23] is the

corresponding configuration variable. We consider the fixed

configuration 𝑐110 = [1,1,0] that is visualized by the dashed

lines in Figure 4. The optimization 𝑓23 is not in the

configuration (𝑜23 = 0). For the sake of simplicity, we set the

physical parameters as follows: 𝜏 = 0, 𝜆 = 1, 𝜌 = 0.1 and 𝐿 =
0.1. The concrete cost-benefit equations are shown below.

𝑟𝑏(𝑐110) = 2 ⋅ (1 + 0.09)𝜔 = 2.18𝜔

𝑤𝑝(𝑐110) = 𝑤𝑝(𝑐110, 𝑓1) + 𝑤𝑝(𝑐110, 𝑓2) + 𝑤𝑝(𝑐110, 𝑓3) =
 2.18𝑤1 + (1.09 + 𝑑1)𝑤2 + 𝑑1𝑑2𝑤3
where:

𝑤𝑝(𝑐110, 𝑓1) = 𝑤1(𝜇2 + 𝜇3) = 2𝑤1𝜆(1 + 0.09) = 2.18𝑤1

𝑤𝑝(𝑐110, 𝑓2) = 𝑤2(𝜇2 + 𝜆𝑑1) = (1.09 + 𝑑1)𝑤2

𝑤𝑝(𝑐110, 𝑓3) = 𝜆𝑑1𝑑2𝑤3 = 𝑑1𝑑2𝑤3

Now, let us briefly explain the equations on a concrete chain

of three entities: 𝑒1 ∈ 𝐸1, 𝑒2 ∈ 𝐸2 and 𝑒3 ∈ 𝐸3. An update of the

property 𝑒1. 𝑓1 (“redirection” to a new entity 𝑒2
′ ∈ 𝐸2) requires

reading ahead the new path and collecting the new values of the

properties 𝑒1. 𝑓12 and 𝑒1. 𝑓13. An update of the property 𝑒2. 𝑓2
(“redirection” to a new entity 𝑒3

′ ∈ 𝐸3) affects the optimizations

𝑓12 and 𝑓13. If 𝑓12 was the only applied optimization, the read-

ahead overhead of the change of the property 𝑒2. 𝑓2 would not

be required. However, with 𝑓13 applied, it is necessary to read

ahead the new value of 𝑒1. 𝑓13 from the new entity 𝑒3
′ . The

number of records containing the obsolete values of the

properties 𝑒1. 𝑓12 and 𝑒1. 𝑓13 is determined by the reverse

cardinality of 𝑓1 multiplied by the cost factor 𝜇1. When the

property 𝑒3. 𝑓3 changes (“redirection” to a new entity 𝑒4
′ ∈ 𝐸4),

the write penalty has only the write-backward component. The

product 𝑑1𝑑2 determines the number of entities 𝑒1
∗ ∈ 𝐸1, such

that 𝑓2(𝑓1(𝑒1
∗)) = 𝑒3, that have the obsolete values of 𝑒1

∗. 𝑓13.

The impact of the physical parameters in the equations can

be eliminated as follows: 𝜏 = 0, 𝜆 = 1, 𝜌 = 1 and 𝐿 = 0. That

way the cost-benefit equations become metrics based on record

(request) counting.

𝑟𝑏(𝑐110) = 2𝜔

𝑤𝑝(𝑐110) = 2𝑤1 + (1 + 𝑑1)𝑤2 + 𝑑1𝑑2𝑤3

If 𝑤 = 5 and 𝑑 = 2 for each function, and 𝜔 = 50 for the

pattern shown in Figure 4, we get the following results:

𝑟𝑏(𝑐110) = 100 and 𝑤𝑝(𝑐110) = 45.

Finally, the general cost-benefit metrics based on the record-

counting are defined in the equations (6) and (7) respectively.

 𝑟𝑏(𝑐1𝑚) = (𝑚 − 1)𝜔 (6)

𝑤𝑝(𝑐1𝑚) = ∑ (∏ 𝑑𝑖𝑗

𝑗=𝑘−1

𝑗=1

+ (𝑚 − 𝑘))

𝑘=𝑚

𝑘=1

𝑤𝑖𝑘 (7)

C. Optimization Model

Now that the cost-benefit model is formally defined, we can

formulate the following optimization problem: find a

configuration that maximizes the read benefit provided that the

write penalty is below the given threshold 𝑇. The threshold

value defines the lowest requirement for acceptable solutions.

𝑀𝐴𝑋 𝑟𝑏(𝑐), 𝑐 = [𝑜1, 𝑜2, … , 𝑜𝑁]
 𝑠. 𝑡. 𝑟𝑏(𝑐) > 𝑤𝑝(𝑐), 𝑤𝑝(𝑐) ≤ 𝑇, 𝑇 > 0

We name our optimization problem Data Redundancy

Equilibrium (DRE). To be able to solve DRE problem, we need

to incorporate the binary optimization variables into the cost-

benefit equations. That way we can quantify performance

impact of the optimizations analytically. The read-benefit

equation for the pattern in Figure 4 thus becomes:

𝑟𝑏(𝑐) = 𝜔 ⋅ (𝜇1𝐸1
𝑜𝑝𝑡
+ 𝜇2𝐸2

𝑜𝑝𝑡
+ 𝜇3𝐸3

𝑜𝑝𝑡
).

Each binary variable 𝐸𝑘
𝑜𝑝𝑡

 determines whether the access to

TKDE-2018-04-0373.R2

1041-4347 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

8

an entity 𝑒𝑘 ∈ 𝐸𝑘 in the pattern is optimized or not; if it is

optimized, the retrieval cost is decreased. (These variables have

the visual decoration 𝑜𝑝𝑡 in the superscript.) For the given

linear pattern, the initial constraint is 𝐸1
𝑜𝑝𝑡
≝ 0, because the

application needs to load the first entity in the chain at least.

Loading of the entity 𝑒2 can be eliminated if all its properties,

required in the pattern, are already loaded in the entity 𝑒1,
provided that the optimization 𝑓12 is applied. We formulate this

constraint analytically as 𝐸2
𝑜𝑝𝑡
= 𝑜12. Furthermore, the access

to the entity 𝑒3 ∈ 𝐸3 is not required if: a) the optimization 𝑓13 is

applied and the entity 𝑒1 is loaded (𝑒1. 𝑓12), or b) the

optimization 𝑓23 is applied and the entity 𝑒2 is loaded (𝑒2. 𝑓23).

We formulate this constraint analytically as 𝐸3
𝑜𝑝𝑡
= 𝑜13 ∨

(𝑜23 ∧ ¬𝑜12). Consequently, the optimization 𝑓23 makes sense

only if 𝑓12 is not applied. The condition ¬𝑜12 ensures that the

entity 𝑒2 is loaded by the program. If an access to the entity 𝑒2

is not optimized, denoted by ¬𝐸2
𝑜𝑝𝑡

, the access to its property

𝑓2 should not be optimized either, and vice versa. In general, the

access to an entity in a pattern is optimized if all its properties

(functions), present in the pattern, are optimized. Otherwise,

none of the properties should be optimized. For that purpose,

we introduce the optimization variables 𝑓𝑥1
𝑜𝑝𝑡
, 𝑓𝑥2
𝑜𝑝𝑡
, … , 𝑓𝑥𝑘

𝑜𝑝𝑡
 that

correspond to the properties 𝑓𝑥1, 𝑓𝑥2, … , 𝑓𝑥𝑘 of an entity type 𝐸𝑥.

The general entity optimization constraint is formulated with

the following equations: 𝐸𝑥
𝑜𝑝𝑡
= 𝑓𝑥1

𝑜𝑝𝑡
∧ 𝑓𝑥2

𝑜𝑝𝑡
∧ …∧ 𝑓𝑥𝑘

𝑜𝑝𝑡
, and

𝑓𝑥1
𝑜𝑝𝑡
⊕ 𝑓𝑥2

𝑜𝑝𝑡
⊕…⊕𝑓𝑥𝑘

𝑜𝑝𝑡
= 0.

The final transformed cost-benefit equations for the pattern

𝑝𝑥 in Figure 4 are shown below (𝜏 = 0, 𝜆 = 1, 𝜌 = 1, 𝐿 = 0).

𝑟𝑏(𝑐) = (𝑜12 + (𝑜13 ∨ (𝑜23 ∧ ¬𝑜12))) ⋅ 𝜔

𝑤𝑝(𝑐) = (𝑜12 + 𝑜13) ⋅ 𝑤1 + (𝑑1(𝑜12 ∨ 𝑜13) + 𝑜13) ⋅ 𝑤2
+ (𝑑1𝑑2𝑜13 + 𝑑2𝑜23) ⋅ 𝑤3

Values of binary optimization variables and the logical

expressions are treated as small integer values {0,1} that can be

combined in the arithmetic expressions. Since all the

independent variables are binary, DRE problem can be reduced

to binary linear programming (BLP). The reduction to BLP is

in-detail presented in the following section.

D. Reduction to Binary Linear Programming

Since data retrieval patterns are rarely linear, but most often

complex rooted trees, and since there can be many of them, we

need a sophisticated algorithm for deriving the equations for the

BLP model. The input of the algorithm is the set of patterns 𝑃

and the set of functions 𝐹. For the sake of brevity and due to the

lack of space, we deliberately omit the physical parameters in

the listings. The main complexity of the algorithm and the

problem itself especially comes from the interference of

optimizations that needs to be properly analytically modeled.

Before describing the algorithm (divided into a few

procedures), we first give the key assumptions and definitions.

We assume that every entity has the property 𝑡𝑦𝑝𝑒 that provides

its type from 𝐸, and that every function has the property 𝑒𝑛𝑡
that provides its domain entity. Every optimization is viewed as

an ordered tuple 𝑜 = (𝑓𝑖1, 𝑓𝑖2, … , 𝑓𝑖𝑘) of chained functions. The

n-th function in the optimization can be referred to using the

one-based indexing 𝑜[𝑛] (e.g. 𝑜[1] accesses the function 𝑓𝑖1).
The expression 𝑜[𝑙𝑎𝑠𝑡] denotes the last function, whilst the

expression 𝑜[𝑖. . 𝑗] denotes a sub-chain of the functions at the

indexes from 𝑖 to 𝑗, 𝑖 < 𝑗. Each pattern 𝑝 is represented as the

tuple (𝑉, 𝑈,𝑀𝑉 , 𝑀𝑈, 𝑟, 𝜔, 𝜃). The components of the tuple can

be referred to using the dot (.) operator (e.g., 𝑝.𝑀𝑉). The set of

the directed edges 𝑈 is defined as a set of ordered pairs

{(𝑠𝑟𝑐, 𝑑𝑠𝑡) | 𝑠𝑟𝑐, 𝑑𝑠𝑡 ∈ 𝑉}, where 𝑠𝑟𝑐 indicates the starting

vertex, and 𝑑𝑠𝑡 indicates the ending vertex, for each directed

edge in 𝑈. A projection of the relation 𝑈, 𝑈[𝑥], yields a subset

of the ordered pairs that satisfy the condition 𝑥. For instance, a

subset of the edges, incident on the root vertex in the pattern 𝑝

is denoted by 𝑝. 𝑈[𝑠𝑟𝑐 = 𝑝. 𝑟]. We assume that the following

basic utility functions are defined on the set of optimizations 𝑂:

- 𝑜𝑝𝑡(𝑓𝑥, 𝑓𝑦): a set of optimizations having 𝑓𝑥 as the first

function and 𝑓𝑦 as the last function in the chain;

- 𝑣𝑖𝑎(𝑓𝑥): a set of optimizations with func. 𝑓𝑥 in the chain.

1) Derivation of Optimizations

Algorithm D.1 (Listing 4) derives optimizations from the

input pattern 𝑝. It starts from the edges incident on the root

vertex, 𝑝. 𝑈[𝑠𝑟𝑐 = 𝑝. 𝑟], and calls Algorithm D.2 (Listing 5)

which creates the optimizations. The time complexity of

Algorithm D.1 is 𝑂(𝐷 ⋅ |𝑉|), where 𝐷 is the longest chain in the

pattern, and |𝑉| is the number of entities in the pattern.

Listing 4 The algorithm that derives optimizations from the input pattern 𝑝.

Algorithm D.2 (Listing 5) finds all functional paths (chains)

in the subtree of the pattern 𝑝 determined by the edge input

parameter and transforms them to optimizations.

Listing 5 The recursive procedure that derives optimizations from the subtree

of the pattern 𝑝 determined by the 𝑒𝑑𝑔𝑒 parameter.

Every recursive invocation of the function starts a traversal

of the subtree whose root node is the ending node of the edge

input parameter. The algorithm first determines the incident

TKDE-2018-04-0373.R2

1041-4347 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

9

edges on the subtree’s root node, 𝑝. 𝑈[𝑠𝑟𝑐 = 𝑒𝑑𝑔𝑒. 𝑑𝑠𝑡]. The

edges are mapped to the corresponding functions using the

markings 𝑝.𝑀𝑈 in line 2. Derived optimizations are stored to

the intermediate set 𝑂𝑃 (in the scope of the current recursive

invocation, line 3). In line 4, the algorithm makes a recursive

call for each edge 𝑥 determined in line 1. Each optimization

collected in the recursive call is added to the result set 𝑂𝑝 and

appended to the composition 𝑜𝑥 (line 5).

2) Derivation of Read-Benefit Equations

Algorithm D.3 (Listing 6) generates a read-benefit equation

for a pattern 𝑝. The algorithm builds the equation gradually

using the maps 𝐸𝑜 and 𝐹𝑜 to keep partial optimization conditions

for the entities and the functions in the pattern, respectively. For

each entity in the pattern, the algorithm creates an entity

optimization variable and keeps it as a key (eid) in the map 𝐸𝑜

(line 6). Each entity optimization variable is mapped to a set of

the function optimization variables that correspond to the

properties of that entity. Each such function optimization

variable is also stored as a key (fid) in the map 𝐹𝑜 (line 5) and

maps to a set of binary expressions that specify partial

optimization conditions for that function within the pattern 𝑝.

The partial conditions are specified in the abstract form using

the angle brackets ⟨… ⟩ notation. Optimizations, entities and

functions within the angle brackets transform to the

corresponding binary optimization variables at runtime. For

instance, the following abstract expression ⟨𝑜 ∧ 𝑜[1]. 𝑒𝑛𝑡⟩ may

be transformed to the following concrete expression 𝑜1 ∧ 𝐸1
𝑜𝑝𝑡

.

Note: the algorithm must ensure that each entity and function

optimization variable has a unique name in the entire binary

linear programming model (considering all the patterns).

Listing 6 The algorithm that composes the read-benefit equation and the

corresponding constraints for the given pattern 𝑝.

The algorithm first calculates the set of optimizations 𝑂𝑝

from the given pattern (line 3). The loop in lines 4-7 iterates

through the given optimizations and creates partial optimization

conditions considering the last function in each optimization.

The last function is optimized if the current optimization 𝑜 is

applied and the first entity is not optimized (which ensures that

the program will load it and pick up the optimization, line 5).

The optimization variable of the last function in the current

optimization is added to the set fcond of the corresponding

entity optimization variable (line 6). The optimization

conditions for the functions are assembled in the loop in lines

8-10. A function is optimized if at least one of its conditions is

satisfied (line 9). The loop in lines 11-14 completes the entity

optimization conditions. An access to an entity is eliminated if

all its functions in the pattern are optimized (line 12).

Otherwise, none of the functions should be optimized since

partial optimizations do not eliminate access to the entity (line

13). Finally, the read benefit equation is completed in line 15 as

the sum of the entity optimization variables multiplied by the

pattern’s frequency. The time complexity of Algorithm D.3 is

the same as for Algorithm D.1.

Listing 7 The algorithm for composing the write-penalty linear equations with

the logical constraints for the input function.

3) Derivation of Write-Penalty Equations

Algorithm D.4 (Listing 7) generates a write penalty equation

for a function 𝑓. The equation is built gradually using the maps

𝑅𝐴 and 𝑊𝐵 for keeping partial expressions for the read-ahead

and the write-backward penalty, respectively. The map 𝑅𝐴

maps an entity (in a read-ahead subtree) to the sets of

optimizations 𝑙𝑜𝑎𝑑 and 𝑠𝑘𝑖𝑝. The 𝑙𝑜𝑎𝑑 set stores all the

optimizations that require access to the entity in the read-ahead

subtree when the input function changes. However, the access

to that entity can be eliminated (due to possible optimizations

TKDE-2018-04-0373.R2

1041-4347 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

10

in the read-ahead subtree), if any of optimizations in the set

𝑠𝑘𝑖𝑝 is applied. Similarly, the map 𝑊𝐵 maps a functional chain

to its reverse cardinality 𝑟𝑐 and the set of optimizations 𝑜𝑝𝑡𝑠
having that chain as the prefix.

The algorithm first determines optimizations affected by a

change of the input function (line 3). The optimizations are

processed in the loop in lines 3-16. In line 4, the algorithm

determines positions of all occurrences of the input function in

the current optimization (this way we handle recursive

functional chains). If the current composition prefix is not in

𝑊𝐵, the algorithm calculates its reverse cardinality and adds a

new entry to 𝑊𝐵 (lines 5-7). The reverse cardinality contributes

to the write penalty only if the current optimization is applied.

Hence, we add the current optimization to the 𝑜𝑝𝑡𝑠 set for the

current function composition prefix (line 8). The loop in lines

9-14 iterates through the function composition suffix of the

current optimization and adds the current optimization to the

𝑙𝑜𝑎𝑑 set for each entity in the read-ahead chain (line 10). In the

loop in lines 11-13, the algorithm determines all the

optimizations that may eliminate the access to the current entity

in the read-ahead tree and adds them to the 𝑠𝑘𝑖𝑝 set.

Finally, the algorithm assembles the partial expressions into

a complete write penalty equation. The write-backward

expressions are assembled in the loop in lines 18-20. In line 19

the algorithm creates a partial write-backward penalty

expression as a product of the reverse cardinality and the logical

condition that evaluates to 1 if at least one optimization in the

𝑤𝑏. 𝑜𝑝𝑡𝑠 set is applied. The read-ahead expressions are created

in the loop in lines 21-23. An entity is accessed in the read-

ahead tree if at least one optimization in the 𝑟𝑎. 𝑙𝑜𝑎𝑑 set is

applied, and none of the optimizations in 𝑟𝑎. 𝑠𝑘𝑖𝑝 is applied

(line 22). The write-penalty equation is completed as the sum

of the partial write penalty expressions in line 24. The time

complexity of Algorithm D.4 is 𝑂(|𝑃| ⋅ 𝐷3 ⋅ |𝑉|), where |𝑃| is

the number of patterns, 𝐷 is the longest chain in a pattern, and

|𝑉| is the maximum number of entities in a pattern.

E. Proof of NP-Completeness

We showed that 𝐷𝑅𝐸 ≤𝑝𝑜𝑙𝑦 𝐵𝐿𝑃 by providing the detailed

reduction that has the maximum polynomial time complexity

𝑂(|𝑃| ⋅ 𝐷3 ⋅ |𝑉|). Our hypothesis is that DRE belongs to NP-

Complete class of problems. We will show that the known NP-

Complete problem Binary Knapsack can be reduced to DRE in

polynomial time, 𝐵𝑖𝑛𝑎𝑟𝑦 𝐾𝑛𝑎𝑝𝑠𝑎𝑐𝑘 ≤𝑝𝑜𝑙𝑦 𝐷𝑅𝐸.

Let us consider an instance 𝑋 of Binary Knapsack problem

as a set of 𝑛 items, each of which having the value 𝑣𝑖 and the

weight 𝑤𝑖 . The goal of the optimization is to find a subset of the

items 𝑆 ⊆ 𝑋 such that the following constraints are satisfied (𝑊

is the maximum allowed total weight of items in the knapsack):

𝑀𝐴𝑋 𝑉 = ∑ 𝑣𝑖 ⋅ 𝑥𝑖
𝑖=𝑛
𝑖=1

𝑠. 𝑡. ∑ 𝑤𝑖 ⋅ 𝑥𝑖
𝑖=𝑛
𝑖=1 ≤ 𝑊

𝑠. 𝑡. 𝑥𝑖 ∈ {0,1}, 𝑣𝑖 , 𝑤𝑖 ∈ ℝ

On the other hand, let us consider an instance 𝑌 of DRE

problem comprised of 𝑛 linear navigation patterns with two

functions 𝐴𝑖
𝑓𝑏𝑖
→ 𝐵𝑖

𝑓𝑐𝑖
→ 𝐶𝑖, each of which occurs 𝜔𝑖 times. We

eliminate the physical parameters to simplify the equations.

From each pattern we derive an optimization 𝑓𝑏𝑖 ∘ 𝑓𝑐𝑖 . Each

such optimization, if applied, yields the partial read benefit

𝑟𝑏𝑖 = 𝜔𝑖 ⋅ 𝑜𝑖 , where 𝑜𝑖 is the binary optimization variable.

Without the loss of generality, let us suppose that the functions

𝑓𝑐𝑖 are never updated, whilst each 𝑓𝑏𝑖 function is updated

𝑤(𝑓𝑏𝑖) ≡ 𝑤𝑏𝑖 times. That way the write penalty metric has the

read-ahead component only for each pattern. According to the

given assumptions and the preconditions, we formulate the

corresponding DRE problem as follows (𝑇 represents the write

penalty threshold, no interference of the optimizations).

𝑀𝐴𝑋 𝑅𝐵 = ∑ 𝜔𝑖 ⋅ 𝑜𝑖
𝑖=𝑛
𝑖=1

𝑠. 𝑡. ∑ 𝑤𝑏𝑖 ⋅ 𝑜𝑖
𝑖=𝑛
𝑖=1 ≤ 𝑇

𝑠. 𝑡. 𝑜𝑖 ∈ {0,1}, 𝜔𝑖 , 𝑤𝑏𝑖 ∈ ℝ

Comparing the two given problems we can easily define a

reduction 𝑄: 𝑋 → 𝑌 that transforms the instance 𝑋 of Binary

Knapsack problem to the instance 𝑌 of DRE problem.

𝑄 = {(𝑥𝑖 , 𝑜𝑖), (𝑣𝑖 , 𝜔𝑖), (𝑤𝑖 , 𝑤𝑏𝑖), (𝑊, 𝑇)}, 1 ≤ 𝑖 ≤ 𝑛.

We can notice that the reduction 𝑄 represents a simple

renaming transformation which requires polynomial time 𝑂(𝑛).
Therefore, we can write the following equivalences:

{
∑ 𝑣𝑖 ⋅ 𝑥𝑖
𝑖=𝑛
𝑖=1

𝑄
⇔ ∑ 𝜔𝑖 ⋅ 𝑜𝑖

𝑖=𝑛
𝑖=1

 ∑ 𝑤𝑖 ⋅ 𝑥𝑖
𝑖=𝑛
𝑖=1 ≤ 𝑊

𝑄
⇔ ∑ 𝑤𝑏𝑖 ⋅ 𝑜𝑖

𝑖=𝑛
𝑖=1 ≤ 𝑇

Consequently, whenever there is a solution for the DRE

problem instance 𝑌, the corresponding solution for the Binary

Knapsack problem instance 𝑋 exists as well. The existence of

the algorithm for Binary Knapsack (Listing 8), that calls DRE

as its subroutine, proves that DRE problem is NP-Complete.

Listing 8 Reduction of the Binary Knapsack problem to DRE problem.

F. The algorithm in action - example

Now that we gave the detailed reduction to binary linear

programming, we present a formal procedure for solving the

optimization problem illustrated in Section IV. The set of all

possible optimizations is derived from the patterns

𝑝1, 𝑝2, 𝑝3, 𝑝4 by Algorithm D.1 and shown in Listing 9.

Algorithm D.3 generated 5 read benefit equations and

Algorithm D.4 generated 24 write penalty equations. The space

of valid configurations is bounded by 206 constraints. Since the

generated BLP program is large, we illustrate just a few the

most representative equations.

The read benefit equation for the pattern 𝑝1 is following.

TKDE-2018-04-0373.R2

1041-4347 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

11

𝑟𝑏(𝑝1, 𝑐𝑥) = 5000 ⋅ (𝐴𝑝1
𝑜𝑝𝑡
+ 𝐵𝑝1

𝑜𝑝𝑡
+ 𝑃𝑝1

𝑜𝑝𝑡
+ 𝐶𝑝1

𝑜𝑝𝑡
+ 𝑈𝑝1𝑠

𝑜𝑝𝑡
+

𝑈𝑝1𝑏
𝑜𝑝𝑡
+ 𝑈𝑝1𝑚

𝑜𝑝𝑡
+𝑀𝑝1

𝑜𝑝𝑡
)

The optimization variable 𝐵𝑝1
𝑜𝑝𝑡

 for the entity 𝐵 in the pattern

𝑝1 is following (along with the contextual constraint).

𝐵𝑝1
𝑜𝑝𝑡
= (𝑜13 ∧ ¬𝐴𝑝1

𝑜𝑝𝑡
) ∧ (𝑜14 ∧ ¬𝐴𝑝1

𝑜𝑝𝑡
) ∧ (𝑜17 ∧ ¬𝐴𝑝1

𝑜𝑝𝑡
),

and (𝑜13 ∧ ¬𝐴𝑝1
𝑜𝑝𝑡
)⨁(𝑜14 ∧ ¬𝐴𝑝1

𝑜𝑝𝑡
)⨁(𝑜17 ∧ ¬𝐴𝑝1

𝑜𝑝𝑡
) = 0.

The write penalty for 𝑏𝐿 is given below. Since that function

is the first in the function composition, the penalty of updates

includes only the read-ahead component.

𝑤𝑝(𝑏𝐿 , 𝑐𝑥) = 4000 ⋅ [(𝑜16 ∧ ¬𝑜7) + (𝑜13 ∨ 𝑜14 ∨ 𝑜16 ∨ 𝑜17)]
A change of the function 𝑏𝐿 requires reading of the new bid’s

tree. The entity 𝐵 is read if the condition 𝑜13 ∨ 𝑜14 ∨ 𝑜16 ∨ 𝑜17

is satisfied. Similarly, the entity 𝑈 is loaded if 𝑜16 is applied and

the function 𝑛 is not redundantly stored in the record for the

entity 𝐵, as indicated in the condition 𝑜16 ∧ ¬𝑜7.

The following equation illustrates the write penalty for the

function 𝑐, which has both the write-backward and the read-

ahead components.

𝑤𝑝(𝑐, 𝑐𝑥) = (𝑜2 ∨ 𝑜4 ∨ 𝑜20 ∨ 𝑜23 ∨ 𝑜26 ∨ 𝑜30) ⋅ 𝑑𝑖
+(𝑜3 ∨ 𝑜4 ∨ 𝑜19 ∨ 𝑜20 ∨ 𝑜22 ∨ 𝑜23 ∨ 𝑜25 ∨ 𝑜26 ∨ 𝑜29 ∨ 𝑜30)

+((𝑜22 ∨ 𝑜23 ∨ 𝑜25 ∨ 𝑜26 ∨ 𝑜29 ∨ 𝑜30) ∧ (¬𝑜21 ∧ ¬𝑜24))

+((𝑜29 ∨ 𝑜30) ∧ (¬𝑜21 ∧ ¬𝑜28)).

𝑜17 = 𝑏𝐿 ∘ 𝑎

𝑜14 = 𝑏𝐿 ∘ 𝑏

𝑜16 = 𝑏𝐿 ∘ 𝑏 ∘ 𝑛

𝑜13 = 𝑏𝐿 ∘ 𝑡
𝑜10 = 𝑚 ∘ ℎ

𝑜12 = 𝑚 ∘ ℎ ∘ 𝑛

𝑜1 = 𝑖 ∘ 𝑛

𝑜2 = 𝑖 ∘ 𝑐
𝑜4 = 𝑖 ∘ 𝑐 ∘ 𝑛

𝑜20 = 𝑖 ∘ 𝑐 ∘ 𝑝

𝑜23 = 𝑖 ∘ 𝑐 ∘ 𝑝 ∘ 𝑛

𝑜26 = 𝑖 ∘ 𝑐 ∘ 𝑝 ∘ 𝑝

𝑜30 = 𝑖 ∘ 𝑐 ∘ 𝑝 ∘ 𝑝 ∘ 𝑛

𝑜29 = 𝑐 ∘ 𝑝 ∘ 𝑝 ∘ 𝑛

𝑜33 = 𝑤 ∘ 𝑏 ∘ 𝑛

𝑜35 = 𝑤 ∘ 𝑡
𝑜34 = 𝑤 ∘ 𝑎

𝑜31 = 𝑤 ∘ 𝑏

𝑜7 = 𝑏 ∘ 𝑛

𝑜21 = 𝑝 ∘ 𝑛

𝑜24 = 𝑝 ∘ 𝑝

𝑜28 = 𝑝 ∘ 𝑝 ∘ 𝑛

𝑜11 = ℎ ∘ 𝑛

𝑜3 = 𝑐 ∘ 𝑛

𝑜19 = 𝑐 ∘ 𝑝

𝑜22 = 𝑐 ∘ 𝑝 ∘ 𝑛

𝑜25 = 𝑐 ∘ 𝑝 ∘ 𝑝

𝑜18 = 𝑠 ∘ 𝑛
Listing 9 The set of all possible optimization derived from the auction data

retrieval patterns 𝑝1, 𝑝2, 𝑝3, 𝑝4.

We used Gurobi solver [35] to solve this binary linear

program and it converged to the optimal solution (58,240) in 5

iterations spending around 0.05s. The optimizations in the final

solution are shown below and depicted in Figure 5. Intuitively,

we can say that if the given workload was replayed against the

denormalized relational model, as suggested in the solution, the

application would eliminate loading of 58,240 records.

𝑜1 = 𝑖 ∘ 𝑛
𝑜2 = 𝑖 ∘ 𝑐
𝑜21 = 𝑝 ∘ 𝑛

𝑜24 = 𝑝 ∘ 𝑝

𝑜28 = 𝑝 ∘ 𝑝 ∘ 𝑛

𝑜7 = 𝑏 ∘ 𝑛

𝑜35 = 𝑤 ∘ 𝑡
𝑜34 = 𝑤 ∘ 𝑎

𝑜31 = 𝑤 ∘ 𝑏

𝑜11 = ℎ ∘ 𝑛

𝑜17 = 𝑏𝐿 ∘ 𝑎

𝑜14 = 𝑏𝐿 ∘ 𝑏

𝑜13 = 𝑏𝐿 ∘ 𝑡

Listing 10 Optimal denormalization for the auction application model.

 𝑝1 𝑝2 𝑝3 𝑝4

𝜔 5,000 30,000 1,500 500

𝑟𝑏 25,000 30,000 7,500 3,000

Table 3 Frequencies and read benefits for the auction patterns obtained by the

optimal denormalization shown in Listing 10.

The cumulative write penalty for all the functions was 7,260.

Compared to the solution in Section IV, the optimal solution

gives higher benefit than the manually chosen one for 6,140

records. We evaluated our optimization approach also using a

real benchmark and presented the results in the next section.

Figure 5 The final optimization solution for the auction model. The dotted lines

depict the applied optimizations. The grey nodes depict entities that need to be
loaded to satisfy the data demands of the transactions. Note how DRE discarded

the optimizations 𝑜16 and 𝑜33, since 𝑜7 is much more frequent.

VI. EXPERIMENTAL ANALYSIS

The proposed optimization methodology was evaluated using

the industry-standard TPCE benchmark for OLTP systems

(www.tpc.org/tpce). According to the specification [36], the

benchmark represents an activity of a stock brokerage firm and

is comprised of 12 types of transactions of different

complexities, and with frequencies that follow an empirical

distribution function. The transactions are: Broker Volume

(BV), Customer Position (CP), Market Watch (MW), Security

Detail (SD), Trade Lookup (TL), Trade Order (TO), Trade

Result (TR), Trade Status (TS), Trade Update (TU), Data

Maintenance (DM). They operate on the normalized relational

model provided in the specification. The benchmark comes

with a data generator and a workload generator. The workload

represents a set of the transactions generated according to the

empirical frequency distribution function [36].

A. Test Environment Setup

The performance tests were executed against Microsoft SQL

Server 2016 on Windows 10. The test machine had 4 Intel i5

CPU cores running at 3.2GHz. The server hosted two databases:

(1) a standard (referent) TPCE database with the normalized

schema, and (2) a clone of the first database, but denormalized

using our optimization approach. Both databases contained

identical data, except that the second one additionally contained

redundant data created based on the suggested optimizations.

Both databases were deployed on two disks: an SSD for the data

files and an HDD for the transaction log files. The performance

characteristics of the disks are shown in Table 4.

 Seq. RD Seq. WR Rand. RD Rand. WR

SSD 200MB/s 126MB/s 133MB/s 90MB/s

HDD 180MB/s 180MB/s 0.7MB/s 1.7MB/s

Table 4 The throughput values for the SSD and the HDD used in the test.

B. Test Input

The size of the normalized database was 120GB. It was

prepared by ingesting around 75GB of raw input data from CSV

files created by the data generator. The data generator is

http://www.tpc.org/tpce

TKDE-2018-04-0373.R2

1041-4347 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

12

configured to produce the following numbers of records in the

referent relations shown below.
CUSTOMER: 20,000 CUSTOMER_ACCOUNT: 100,000

TRADE: 172,812,504 SETTLEMENT: 172,800,000

COMPANY: 10,000 SECURITY: 13,700

The transactions, implemented as batches of SQL statements,

are divided into smaller logical pieces called frames in the

TPCE specification [36]. We implemented each frame as one

stored procedure. The transaction mix therefore represented a

batch of the stored procedures calls (transactions).

C. Data Retrieval Patterns

Data retrieval patterns were extracted by profiling a control

transaction mix of 10,000 transactions using SQL Server

Profiler. The number of the transactions in the control mix

ensured that each query in the stored procedures appeared at

least once in the profile, while keeping the profile still

manageable and representative for the analysis. In Table 5 we

show 13 data retrieval patterns detected in the control TPCE

workload. For each pattern (query) we give its code name (for

further referencing in the text), a complexity indicator of the

pattern tree, as the number of vertices and the maximum tree

depth, a frequency in the control mix, the ratio 𝜌 of relevant

data in the pattern, a physical cost obtained from the query plan

optimizer (cost), and the normalized cost of the pattern (𝜃)

relative to all the patterns in the control mix. The code name is

comprised of the three segments: the two-letter transaction

name acronym, a frame identifier and a pattern identifier (e.g.,

the code name BVF1P1 refers to the pattern P1 extracted in the

Frame 1 of the Broker-Volume transaction).

We also calculated values of the physical parameters (𝜏 = 0,

𝐿 = 0.1, 𝜆 = 0.01), but skip the detailed calculations due to the

lack of space. The average record locating cost 𝜆 was calculated

as a weighted sum of the costs in Table 5. Write frequencies of

the properties were obtained by querying the TPCE profile.
 Query parameters Prediction

Pattern
Vertices

/Depth
Freq. 𝝆 𝒄𝒐𝒔𝒕 𝜽 Records Cost

BVF1P1 9/5 548 0.34 1.600 0.551 1,096 252.85

CPF1P2 7/3 1,462 0.73 0.170 0.059 1,462 63.20

CPF2P3 9/2 744 0.45 0.088 0.030 0 0.00
MWF1P4 3/2 1215 1.00 0.007 0.002 1,215 1.58

MWF1P5 5/3 117 0.32 0.030 0.010 234 0.85

MWF1P6 3/2 118,274 0.19 0.006 0.002 118,274 154.07
SDF1P7 39/4 1,567 0.73 0.023 0.008 4,701 8.16

SDF1P8 4/2 1,567 0.47 0.014 0.005 3,134 5.74

SDF1P9 3/2 1,567 0.86 0.085 0.003 1,567 3.06
TLF1P10 10/2 1,024 0.47 0.700 0.241 0 0.00

TRF3P11 3/2 428 1.00 0.200 0.002 428 0.55

TSF1P12 13/3 2,130 0.43 0.240 0.083 0 0.00
TSF1P13 6/2 2,130 0.23 0.009 0.003 4,260 4.68

Table 5 Data retrieval patterns detected in the test TPCE workload: P1 (p.89),

P2 (p.87), P3 (p.89), P4 (p.99), P5 (p.99), P6 (p.99). P7 (p.105), P8 (p.106), P9
(p.108), P10 (p.112), P11 (p.154), P12 (p.162), P13 (p.163). For each pattern

we provide a page number in the TPCE specification [36].

Given the patterns, the frequencies of the patterns, the write

frequencies of the functions, and the physical parameters, our

optimization engine derived 198 optimizations and created a

BLP program with 598 constraints. The Gurobi solver found the

optimal solution in 0.07s (running on an ordinary PC) by

selecting 63 of the 198 determined optimizations. The

following patterns (10 of 13) were affected by the suggested

optimizations: B1F1P1, CPF1P2, MWF1P4, MWF1P5,

MWF1P6, SDF1P7, SDF1P9, SDF1P9, TRF3P11 and

TSF1P13. The BLP program produced two benefit predictions

of the optimizations: one based on the record counting and the

other one, more sophisticated, that considered the physical

parameters, as shown in the last two columns in Table 5. For

the found configuration, our optimization engine created a

denormalization (SQL) script for the second test database. The

affected queries and updates in the TPCE transactions were

adjusted to exploit the implemented optimizations.

D. Performance Tests

For the performance testing, we generated a transaction mix

(workload) of 100,000 transactions. In order to highlight the

effects of the optimizations on each particular transaction type,

we also divided the transaction mix into the partial homogenous

batches shown in Table 6, such that each batch contained only

one type of the transactions.

Each partial batch was run several times on the normalized

database and several times on the (optimally) denormalized

database. The database server was restarted each time before

switching the database. The following performance parameters

were measured for each batch (using SQL Server Profiler): the

average number of logical reads per transaction (Rd), the

average number of logical writes per transaction (Wr) and the

batch response time (𝑇). Logical reads and writes correspond to

the number of (logical) database page accesses performed by

the DBMS. They may not necessarily reflect the real I/O traffic,

because the pages usually reside in the main memory or in the

CPU’s cache and can be reused by multiple queries. They rather

depict the implicit complexity of the queries.

Table 6 TPCE performance results showed for the normalized, the optimally

denormalized and the fully denormalized relational TPCE database.

In Table 6 we can notice that the highest response time

improvement of the benchmark executed on the optimally

denormalized TPCE database is achieved for the batches that

were fully optimized by packaging all the patterns into single

database records (BV – 89%, MW – 25%). In the SD (7%) and

TS (8%) batches the data retrieval was not fully optimized, and

JOINs were still needed. The performance results for the

batches TO, TR and DM, aimed for updates, were degraded (but

just for 6%) due to the increased data maintenance overhead.

We also tested the TPCE workload on a fully denormalized

database, implemented by packaging the entire patterns into

single database records, to check whether the optimal

denormalization truly leads to the best performance. Therefore,

we additionally applied all those optimizations that were

discarded in the optimal solution. The discarded optimizations

mainly had the root entities in the huge tables, such as TRADE

and TRADE_HISTORY. After adding the redundant data (from

 Normalized Optimal denorm. Fully denorm.

Tr. Freq. Rd Wr TN[s] Rd Wr TO[s] Rd Wr TF[s]

BV 4,946 47,718 0 1,762 25,061 0 193 62,439 0 228
CP 13,116 226 0 27 212 0 25 551 0 54

MW 18,165 1,422 0 64 649 0 48 648 0 48

SD 14,128 2,214 0 244 2,137 0 226 2,126 0 230
TL 8,069 405 0 159 422 0 153 628 0 210

TO 10,191 100 5 18 104 6 19 112 6 20

TR 10,192 155 5 53 156 5 56 127 6 99
TS 19,175 533 0 79 431 0 73 166 0 137

TU 2,018 1,089 18 61 1,087 18 60 1,111 31 106

DM 1,000 14,757 4 65 14,609 4.4 69 14,307 4.6 71

TKDE-2018-04-0373.R2

1041-4347 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

13

much smaller tables) to these big tables, the database size

significantly increased, as shown in Table 7. The fully

denormalized relation TRADE occupied 162GB, whilst the

fully denormalized relation TRADE_HISTORY occupied

64GB. Querying from these big tables was impossible without

appropriate covering indexes. The biggest covering index on

TRADE was ~50GB large, whilst the biggest covering index on

TRADE_HISTORY was ~26GB. Such large indexes induced

the higher I/O traffic during the performance test. The

performance results of the TPCE workload on the fully

denormalized database are shown in Table 6.

Finally, the full workload with 100,000 mixed transactions

was executed on all the three databases and the results are given

in Table 7. The response time of the workload was improved by

65% on the optimally denormalized database, and by 57% on

the fully denormalized database. The optimally denormalized

database was 25% larger, whilst the fully denormalized

database was 316% larger than the normalized database.

Although the optimal denormalization gave just 19% better

response time than the greedy denormalization (because the

redundant data in the largest tables never got updated), the

optimal denormalization was much more effective in

controlling the database space expansion.

TPCE schema T [s] ∆T [%] Size [GB] ∆Size [%]

normalized 2,910 -- 120 --

optimally denormalized 1,005 -65 150 +25
fully denormalized 1,240 -57 380 +316

Table 7 The impact of a denormalization strategy on the TPCE benchmark

response time and the TPCE database size. The percentages quantify changes

of the response time and the database size relative to the normalized model.

E. Analysis of the Cost-Benefit Model

We also analyzed the quality of the prediction, provided by

the cost-benefit model, on the test sample of 10,000

transactions. The results are shown in Table 8. The cumulative

logical reads are shown in column 𝑁 for the normalized

database, and in column D for the denormalized database.

 Measured records Prediction

Tr. Freq. N [pages] D [pages] ∆P=N-D ∆R=∆P/86 Cost Records

BV 495 23,620,749 12,405,379 11,215,369 130,411 252.85 1,096

CP 1312 297,332 278,887 18,445 214 63.20 1,462

MW 1817 1,754,453 349,778 1,404,675 16,333 156.50 120,500

SD 1413 161,897 49,870 112,027 1,303 16.96 9,300

TR 1019 42,058 30,645 11,413 133 0.55 428

TS 1918 1,023,405 828,559 194,846 2,266 4.68 4,260

Overall 26,899,894 13,943,118 12,956,775 150,660

Table 8 Summary of the measured logical reads and writes in the transaction

mix of 10,000 transactions (N – normalized, D – denormalized).

The cumulative decrease of the logical reads in Table 8 is

equal to 12,956,776 (pages). In order to compare this result with

our prediction based on record-counting, we analyzed the

average number of records per page for each table that appeared

in the patterns and calculated ~86 records per page on average.

When the logical counters are divided by the given coefficient,

it yields the benefit of 150,660 records. On the other hand, our

record-counting prediction calculated the optimal objective of

122,279 records (our metrics did not consider index pages).

We checked the correlation between the predicted and the

measured values using the Pearson’s correlation function

(Table 9). The low correlation between the record counting

prediction and the measured parameters clearly confirms that

record counting is not sufficient as the only metric. However, it

does not mean that this metric is not useful in other contexts,

where record or request counting makes more sense, which will

be the subject of our further research. On the other hand, the

record counting cost-benefit model, enhanced by the physical

parameters, led to the strong correlation of the predicted values

with the measured values, as shown in Table 9. Consequently,

this analysis confirms that the proposed enhanced cost-benefit

model gives meaningful and real estimates.
 Measured parameters

 ∆T=TN-TO dT= ∆T/TN ∆R

Prediction
Cost 0.83 0.90 0.87

Records -0.21 0.02 -0.10

Table 9 Pearson’s correlation of the predicted benefit and the measured

performance parameters shown in Table 6.

VII. CONCLUSION

In this paper we presented a methodology for optimization of

data retrieval from relational databases in OLTP systems based

on the data redundancy denormalization technique. Selection of

the optimizations that trade off the increased overhead of rare

update operations for better performance of more frequent read

operations is driven by the proposed formal cost-benefit model.

We proved that finding the optimal level of redundancy in the

relational model represents an NP-complete optimization

problem and gave the detailed reduction to binary linear

programming problem. The proposed optimization

methodology was experimentally evaluated using the TPCE

benchmark (on SQL Server 2016). The response time of the

benchmark was improved by 65%, whilst the prediction of cost-

benefit model was strongly correlated with the measured

parameters according to the maximum Pearson’s correlation

coefficient 0.9. We have also shown that the optimal

denormalization is superior relative to the full denormalization

in terms of both the response time and the space consumption.

The experimental evaluation has confirmed that the proposed

optimization approach is highly scalable, and that it can be

efficiently applied to real-life relational data models.

VIII. REFERENCES

[1] S. K. Shin and G. L. Sanders, "Denormalization strategies for data

retrieval from data warehouses.," Decision Support Systems, vol. 42,

no. 1, pp. 267-282, 2006.

[2] A. Boniewicz, P. Wisniewski and K. Stencel, "On redundant data for

faster recursive querying via ORM systems," in Computer Science and

Information Systems (FedCSIS), Kraków, 2013.

[3] C. E. Dabrowski, D. K. Jefferson, J. V. Carlis and S. T. March,

"Integrating a knowledge-based component into a physical database

design system," Information & Management, vol. 17, no. 2, pp. 71-86,
1989.

[4] S. Agrawal, S. Chaudhuri, A. Das and V. Narasayya, "Automating

layout of relational databases," in Proceedings of the 19th IEEE
International Conference on Data Engineering, 2003.

[5] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L. Wiener and G.

Graefe, "Query processing techniques for solid state drives," in
Proceedings of the 2009 ACM SIGMOD International Conference on

Management of Data, 2009.

TKDE-2018-04-0373.R2

1041-4347 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

14

[6] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park and D. J. DeWitt, "Query
processing on smart ssds: Opportunities and challenges," in

Proceedings of the 2013 ACM SIGMOD International Conference on

Management of Data, 2013.

[7] H. Garcia-Molina and K. Salem, "Main memory database systems: An

overview," IEEE Transactions on knowledge and data engineering, vol.

4, no. 6, pp. 509-516, 1992.

[8] H. Plattner, "A common database approach for OLTP and OLAP using

an in-memory column database," in Proceedings of the 2009 ACM

SIGMOD International Conference on Management of Data, 2009.

[9] D. J. Abadi, P. A. Boncz and S. Harizopoulos, "Column-oriented

database systems," in Proceedings of the VLDB Endowment 2, 2009.

[10] S. Harizopoulos, V. Liang, D. J. Abadi and S. Madden, "Performance

tradeoffs in read-optimized databases," in Proceedings of the 32nd

international conference on Very large databases, 2006.

[11] https://cloud.google.com/spanner/docs/schema-and-data-model.

[Online]. Available: https://cloud.google.com/spanner/docs/schema-

and-data-model.

[12] D. Dash, N. Polyzotis and A. Ailamaki, "CoPhy: a scalable, portable,

and interactive index advisor for large workloads," Proceedings of the

VLDB Endowment 4, vol. 4, no. 6, pp. 362-372, 2011.

[13] T.-H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser and P.

Flora, "Detecting performance anti-patterns for applications developed

using object-relational mapping," in Proceedings of the 36th
International Conference on Software Engineering, Hyderabad, 2014.

[14] B. Baesens, A. Backiel and S. v. Broucke, "The state of database access

in Java: Passchendaele revisited," Cutter Consortium, Research Center
for Management Informatics (LIRIS), Leuven, 2015.

[15] D. Vohra, B. Baesens, A. Backiel and S. v. Broucke, Beginning Java

programming: the object-oriented approach, Wiley & Sons, 2015.

[16] P. Wegrzynowicz, "Performance antipatterns of one to many

association in hibernate," in Federated Conference on Computer

Science and Information Systems (FedCSIS), 2013.

[17] D. Milicev, Model-driven development with executable UML, John

Wiley & Sons, 2009.

[18] J. W. Rahayu, E. Chang, T. S. Dillon and D. Taniar, "Performance
evaluation of the object-relational transformation methodology," Data

& Knowledge Engineering, vol. 38, no. 3, pp. 265-300, 2001.

[19] S. Guéhis, V. Goasdoué-Thion and a. P. Rigaux, "Speeding-up data-
driven applications with program summaries," in Proceedings of the

2009 International Database Engineering & Applications Symposium

ACM, Calabria, 2009.

[20] P. A. Bernstein, S. Pal and D. Shutt, "Context-based prefetch–an

optimization for implementing objects on relations," The VLDB Journal

- The International Journal on Very Large Databases, vol. 9, no. 3, pp.
177-189, 2000.

[21] T.-H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser and P.

Flora, "Finding and evaluating the performance impact of redundant
data access for applications that are developed using object-relational

mapping frameworks," IEEE Transactions on Software Engineering,

vol. 42, no. 12, pp. 1148-1161, 2016.

[22] T.-H. Chen, "Improving the quality of large-scale database-centric

software systems by analyzing database access code," in Data

Engineering Workshops (ICDEW), 2015 31st IEEE International
Conference, 2015.

[23] M. Schkolnick and P. Sorenson, "Denormalization: a performance-

oriented database design technique," in Proceedings of the AICA,
Bologna, Italy, 1980.

[24] M. Hanus, "To normalize or denormalize, that is the question," in

Proceedings of 19th International Conference for the Management and
Performance Evaluation of Enterprise Computing Systems, San Diego,

CA, 1994.

[25] U. Rodgers, "Denormalization: why, what, and how?," Database
Programming & Design, vol. 12, p. 46–53, 1989.

[26] S. Agarwal, C. Keene and K. M. Arthur, "Architecting object
applications for high performance with relational databases," in

OOPSLA Workshop on Object Database Behaviour, Benchmarks, and

Performance, Austin, 1995.

[27] S. Navathe, S. Ceri, G. Wiederhold and J. Dou, "Vertical partitioning
algorithms for database design," ACM Transactions on Database

Systems (TODS), vol. 4, pp. 680-710, 1984.

[28] S. Agarawal, S. Chaudhuri and V. Narasayya, "Automated selection of
materialized views and indexes for SQL databses," in Proceedings of

26th International Conference on Very Large Databases, Cairo, Egypt,

2000.

[29] R. Chirkova, A. Y. Halevy and S. Dan, "A formal perspective on the

view selection problem," in VLDB, 2001.

[30] S. Agrawal, N. Vivek and Y. Beverly, "Integrating vertical and
horizontal partitioning into automated physical database design," in

Proceedings of the 2004 ACM SIGMOD international conference on
Management of Data, 2014.

[31] J. Zhou, B. Nicolas and L. Wei, "Advanced partitioning techniques for

massively distributed computation," in Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, 2012.

[32] A. Olivé, Conceptual Modeling of Information Systems, New York,

Inc., Secaucus, NJ, USA: Springer-Verlag, 2007.

[33] O. M. Group, "Unified Modeling Language," OMG, 2017.

[34] D. J. Abadi, D. S. Myers, D. J. DeWitt and S. R. Madden,

"Materialization strategies in a column-oriented DBMS," in ICDE
2007. IEEE 23rd International Conference on Data Engineering, 2007.

[35] "Gurobi Solver," Guroby Optimization, [Online]. Available:

http://www.gurobi.com/.

[36] TPC, "TPCE," 2010. [Online]. Available:

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-

e_v1.14.0.pdf.

Nemanja M. Kojić is a PhD student at the

University of Belgrade. He received his

B.S. degree in 2008, and M.S. degree in

2010, all from the University of Belgrade.

He is specialized in system analysis and

design of enterprise software systems,

reverse engineering and architecting large-

scale data-processing solutions for digital

forensic and e-discovery.

From 2010 to 2018, he worked as a Teaching Assistant at the

University of Belgrade. His research interests are model-based

software engineering, data engineering, and optimization

problems and applications.

Dragan S. Milićev is Professor at the

University of Belgrade, Faculty of

Electrical Engineering. He received his

dipl. ing. degree in 1993, M.S. in 1995, and

PhD in 2001, all from the University of

Belgrade. He is specialized in software

engineering, model-based engineering,

model-driven development, UML,

software architecture and design, information systems, and real-

time systems. He is a member of the Editorial Board of

Springer’s Software and System Modeling journal (SoSyM).

He authored three books on object-oriented programming and

UML, published in Serbian, and a book in English, published

by Wiley/Wrox, entitled “Model-Driven Development with

Executable UML”.

With more than 30 years of extensive industrial experience in

building complex commercial software systems, he has been

serving as the chief software architect, project manager, or

consultant in a few dozen international projects.

